

Supplementary Materials: Synthesis of Small Ce³⁺-Er³⁺-Yb³⁺ Tri-Doped BaLuF⁵ Active-core-active-shellactive-shell Nanoparticles with Strong Down Conversion Luminescence at 1.5 μm

Yongling Zhang, Yudi Shi, Zhengkun Qin, Mingxing Song and Weiping Qin

We measured the photo stability of BaLuF₅:18%Yb³⁺,2%Er³⁺,2%Ce³⁺@BaLuF₅:5%Yb³⁺@BaLuF₅:5% Yb³⁺ core-active-shell-active-shell NPs. Figure S1a shows the intensity change of BaLuF₅:18%Yb³⁺,2% Er³⁺,2%Ce³⁺@BaLuF₅:5%Yb³⁺@BaLuF₅:5%Yb³⁺ core-active-shell-active-shell NPs for 980 nm constant light exposure. The inset shows the down conversion (DC) emission of the core-active-shell-activeshell NPs after 980 nm laser light irradiation for 0 h, 6 h, and 12 h, respectively (Figure S1b). The intensity of the core-active-shell-active-shell NPs has no change. That results the show BaLuF₅:18%Yb³⁺,2%Er³⁺,2%Ce³⁺@BaLuF₅:5%Yb³⁺@BaLuF₅:5%Yb³⁺ core-active-shell-active-shell NPs have optical stability.

FigureS1.(a)TheintensitychangeofBaLuF5:18%Yb³⁺,2%Er³⁺,2%Ce³⁺@BaLuF5:5%Yb³⁺@BaLuF5:5%Yb³⁺core-active-shell-active-shellNPsfor 980 nm constant light exposure.(b) The inset shows the down conversion (DC) emission of thecore-active-shell-active-shell NPs after 980 nm laser light irradiation for 0 h, 6 h, and 12 h, respectively.