

Supplementary materials

Fluorescence and Cytotoxicity of Cadmium Sulfide Quantum Dots Stabilized on Clay Nanotubes

Anna V. Stavitskaya¹, Andrei A. Novikov^{1,*}, Mikhail S. Kotelev¹, Dmitry S. Kopitsyn¹, Elvira V. Rozhina², Ilnur R. Ishmukhametov², Rawil F. Fakhrullin², Evgenii V. Ivanov¹, Yuri M. Lvov^{1,3,*}, and Vladimir A. Vinokurov¹

- ¹ Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow, Russian Federation; novikov.a@gubkin.ru
- ² Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation; kazanbio@gmail.com
- ³ Institute for Micromanufacturing, Louisiana Tech University, Ruston, USA; ylvov@latech.edu
- * Correspondence: novikov.a@gubkin.ru; ylvov@latech.edu Tel.: +7-499-507-8692

Figure S1. Source TEM image of pristine HNT (Fig.1A).

Figure S2. Source TEM image of HNT-NH2-CdS (Fig.1B).

Figure S3. Source TEM image of HNT-Azine-CdS (Fig.1C).

Figure S4. Source TEM image of HNT-Azine-Cdu7Znu3S (Fig.1D).

Figure S5. Flow cytometry graphs of the control sample of PC-3 cells (percentage of live cells shown in Figure 6 was calculated as Live, $\% = Q1-1 / (Q1-1 + Q2-1 + Q3-1 + Q4-1) \times 100\%$).

Figure S6. Flow cytometry graphs of PC-3 cells exposed to the HNTs-NH2-CdS sample.

Figure S7. Flow cytometry graphs of PC-3 cells exposed to the HNT-Azine-CdS sample.

Figure S8. Flow cytometry graphs of PC-3 cells exposed to the HNTs-Azine-Cdu,7Znu,3S sample.

	Diameter, nm						
#	HNT-NH2-CdS	HNT-Azine-CdS	HNT-Azine-Cd0.7Zn0.3S				
1	3.90	9.64	8.49				
2	4.64	8.08	6.53				
3	3.67	9.14	10.75				
4	4.06	7.55	7.42				
5	3.35	7.09	7.49				
6	3.68	7.44	8.89				
7	3.33	10.01	7.75				
8	2.67	7.63	10.50				
9	2.33	7.95	9.44				
10	2.67	7.32	9.61				
11	3.00	12.76	8.18				
12	5.74	7.41	7.01				
13	4.81	9.78	8.56				
14	5.70	8.51	7.89				
15	4.35	7.09	7.42				
16	4.63	6.37	6.04				
17	3.80	8.72	6.48				
18	3.73	9.82	8.27				
19	2.33	9.91	7.80				
20	3.73	7.54	7.22				
21	3.80	10.00	8.63				
22	4.38	8.79	8.29				
23	5.18	8.71	7.22				
24	4.22	6.49	6.26				
25	3.54	5.88	6.85				
26	5.59	7.00	5.88				
27	3.90	10.08	6.71				
28	4.35	7.21	5.33				
29	3.35	8.84	7.34				
30	12.02	5.94	8.06				
31	6.00	7.64	8.21				
32	4.06	6.30	5.65				
33	4.53	7.58	6.63				
34	6.01	8.61	6.76				
35	6.33	10.20	6.07				
36	6.67 E E0	10.33	6.92				
37	5.59	9.43	5.54				
38	4.96	9.15	7.35				
39	5.00	7.29	6.69				
40 41	6.33	ð.17 7 69	6.26 8.45				
41	4.00	1.00	0.40				

Table S1. Measured diameters of electron-dense particles found in TEM images.

42	4.35	7.26	8.38
43	4.64	9.57	7.97
44	5.43	10.52	6.94
45	5.33	7.25	6.62
46	5.52	6.16	5.50
47	7.03	6.58	8.18
48	4.53	5.52	5.60
49	5.19	7.27	7.10
50	4.71	7.70	6.03
51	3.90	10.46	6.71
52	4.45	7.73	7.64
53	4.18	9.59	7.44
54	4.01	8.19	7.60
55	4.45	7.19	7.19
56	4.64	6.02	6.79
57	5.19	7.87	9.65
58	4.68	8.39	7.98
59	6.01	10.14	4.62
60	6.37	9.71	6.02
61	5.34	8.49	8.02
62	4.00	6.97	6.14
63	4.22	8.84	7.15
64	6.80	9.25	7.35
65	6.00	6.35	5.78
66	5.18	7.23	6.18
67	5.67	6.41	4.48
68	6.55	6.00	4.69
69	5.91	6.70	7.42
70	6.01	7.05	5.78
71	4.12	8.35	7.89
72	8.34	7.38	7.75
73	7.49	8.51	7.87
74	7.52	7.75	5.77
75	7.78	7.92	7.65
76	6.87	8.55	6.99
77	7.28	8.10	5.17
78	7.13	7.15	6.53
79	6.15	6.64	6.00
80	9.30	5.89	5.09
81	6.37	7.60	6.20
82	6.23	6.21	5.86
83	7.18	6.30	5.19
84	5.68	6.05	5.61
85	8.33	7.63	5.38
86	5.27	6.89	6.59

Nanomaterials 2018, 8, x FOR PEER REVIEW

87	7.62	7.03	8.04
88	4.33	7.18	5.45
89	5.68	11.50	6.71
90	6.67	9.02	7.69
91	5.00	7.66	6.07
92	7.00	7.61	6.53
93	6.34	6.94	6.59
94	5.68	6.19	6.53
95	4.68	7.79	6.37
96	5.38	10.26	6.63
97	5.50	9.67	5.76
98	5.04	10.90	8.74
99	5.33	6.92	7.65
100	4.47	8.31	6.08

 Table S2. Photostability data for the synthesized nanomaterials.

	Intensity, %				
Time, min	HNT-R6G	HNT-Fluor	HNT-NH2-CdS	HNT-Azine-CdS	HNT-Azine-Cd0.7Zn0.3S
0	100.00	100.00	100.00	100.00	100.00
30	101.75	86.86	92.66	57.39	58.60
60	97.17	69.14	87.39	35.23	67.12
90	93.16	58.38	86.51	25.71	58.26
120	87.93	51.93	91.78	23.42	58.41
150	84.26	46.88	83.29		
180	79.68	44.04	90.35		
210	76.92	41.84	86.99		
240	73.46	39.51			

Timo min	log(I₀/I)				
mine, min	HNT-R6G	HNT-Fluor	HNT-NH2-CdS	HNT-Azine-CdS	HNT-Azine-Cd0.7Zn0.3S
0	0.0000	0.0000	0.0000	0.0000	0.0000
30	-0.0174	0.1409	0.0762	0.5552	0.5344
60	0.0287	0.3691	0.1348	1.0432	0.3987
90	0.0708	0.5382	0.1449	1.3581	0.5402
120	0.1287	0.6553	0.0858	1.4514	0.5376
150	0.1713	0.7575	0.1829		
180	0.2272	0.8200	0.1015		
210	0.2624	0.8713	0.1394		
240	0.3084	0.9287			
k, min-1	0.0012	0.0045	0.00086	0.0139	0.0057

