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Abstract: Functionalization of calcium phosphates for biomedical applications has been proposed as
a strategy to enrich the good osteoinductive properties of these materials with specific therapeutic
characteristics. Herein, we prepared and characterized hydroxyapatite nanocrystals functionalized with
an anticancer agent, (9R)-9-hydroxystearate (HSA), and loaded with an antimicrobial agent, namely
silver nanoparticles (AgNPs). Nanocrystals at two different contents of HSA, about 4 and 9 wt %, were
prepared via direct synthesis in aqueous solution. Loading with the antibacterial agent was achieved
through interaction with different volumes of AgNPs suspensions. The amount of loaded nanoparticles
increases with the volume of the AgNPs suspension and with the hydroxystearate content of the
nanocrystals, up to about 3.3 wt %. The structural, morphological, and hydrophobic properties of the
composite materials depend on hydroxystearate content, whereas they are not affected by AgNPs
loading. At variance, the values of zeta potential slightly increase with the content of AgNPs, which
exhibit a sustained release in cell culture medium.

Keywords: hydroxyapatite; silver; nanoparticles; X-ray diffraction; transmission electron microscopy;
ceramic; biomaterial

1. Introduction

Calcium phosphate (CaP)-based biomaterials are among the most utilized systems in biomedical
applications aimed to solve problems related to musculoskeletal disorders. In particular, hydroxyapatite
(HA) closely resembles the inorganic phase of bone and is the most employed CaP for hard tissue
substitution/repair. HA displays an extremely good biocompatibility and bioactivity, and it can be utilized as
delivery system of active agents aimed to promote specific biological functions [1]. To this purpose, HA can
be functionalized with bioactive ions, molecules, growth factors, and drugs, adding specific characteristics to
the osteogenic properties of the calcium phosphate [2–7]. We have previously synthesized HA at different
contents of (9R)-9-hydroxystearate (HSA) [8]. HSA derives from 9-hydroxystearic acid, an endogenous
long-chain monohydroxyl fatty acid, which is able to downregulate tumor cell proliferation [9]. In fact,
it was shown to provoke apoptosis of the osteosarcoma cell line U2OS via a mitochondrial pathway [10].
Moreover, especially in the (9R) enantiomeric form, it exerts an antiproliferative action on the colon
cancer cell line HT29 [11]. HSA maintains its antitumor activity also when incorporated into HA,
in agreement with the cytostatic and cytotoxic effect of HSA functionalized HA nanocrystals on
osteosarcoma cell line SaOS2, which is modulated by HSA content of the composite material [9].

Herein, we explored the possibility to add a further functionalization to hydroxystearate
containing HA nanocrystals through loading of silver nanoparticles (AgNPs). AgNPs should imbue
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antimicrobial properties to the functionalized nanocrystals, in agreement with their strong efficacy
as broad-spectrum antibacterial agents [12,13]. As a matter of fact, AgNPs are widely employed as
antibacterial agents in the biomedical field, as well as in several other applications, including water
disinfection and cosmetics [14]. Their main applications in the biomedical field include wound dressing,
catheters, and cardiovascular implants [15]. More recently, AgNPs have been raising increasing interest
also for orthopedic applications [4,16–18]. In this study we synthesized hydroxyapatite nanocrystals
at different hydroxystearate and AgNPs contents. To this aim, we loaded different amounts of
AgNPs stabilized with low molecular weight polyethylenimine (PEI) on hydroxyapatite synthesized
at different hydroxystearate contents. The results indicate that hydroxystearate functionalization
influences AgNPs loading, which reaches contents up to about 3.3 wt % in the samples at the highest
hydroxystearate content.

2. Materials and Methods

2.1. Synthesis of Composite Materials

Hydroxyapatite was synthesized by a co-precipitation method, using CO2-free distilled water
and under N2 atmosphere in order to avoid the formation of carbonated apatite. Fifty milliliters of
Ca(NO3)2·4H2O solution (1.08 M), pH 10 adjusted with ammonia, was added drop-wise to 50 mL
of (NH4)2HPO4 0.65 M solution at 90 ◦C under stirring. The reaction solution was kept at 90 ◦C for
5 h under stirring, and then the precipitate was separated by centrifugation at 10,000 rpm for 10 min,
rinsed twice with CO2-free distilled water, and dried at 37 ◦C.

Potassium (9R)-9-hydroxystearate was prepared by treatment of (9R)-9-hydroxystearic acid, obtained
from Dimorphotheca sinuata L. seed oil [11], with an equimolar amount of KOH in methanol solution, as
previously described [8]. Samples containing HSA were obtained following the above procedure but
dissolving potassium (9R)-9-hydroxystearate into the (NH4)2HPO4 solution before starting dropping
the Ca(NO3)2·4H2O solution. The concentrations of potassium (9R)-9-hydroxystearate used were 10
and 20 mM, calculated on final volume. The obtained powder samples were labelled as HSA10 and
HSA20, respectively.

Silver nanoparticles (AgNPs) solution was prepared by heating 100 ml of AgNO3 solution (10 mM
in ultra-pure MilliQ water) until 100 ◦C under stirring. When the solution is boiling, 0.70 mL 10%
(w/w) of polyethyleneimine (PEI) (average Mw ~2000, 50 wt % in H2O, Sigma-Aldrich, St. Louis, MO,
USA) solution was added quickly in one step. The solution was vigorously stirred for 4 min and then
cooled at room temperature. Finally, the volume was taken back to 100 mL with ultra-pure water in
order to compensate for evaporation.

In order to support AgNPs on apatitic materials, different volumes of AgNPs solution were added
to 0.5 g of powder (HA, HSA10, and HSA20). Each support was submitted to incubation with 5, 20, and
50 mL of solution. The suspension was vigorously stirred for 1 h at room temperature. The product is
then filtered and dried at 37 ◦C. Final materials were labeled using a combination indicating the kind
of apatitic support and the volume of AgNPs solution (i.e., HA-Ag5 indicates the sample obtained
after incubation of HA into 5 mL of AgNPs solution; HSA20-Ag50 indicates the sample obtained after
incubation of HSA20 into 50 mL of AgNPs solution).

2.2. Characterization of Composite Materials

X-ray diffraction analysis was performed using a PANalytical X’Pert PRO powder diffractometer
(Malvern PANalytical, Almelo, The Netherlands) equipped with a fast X’Celerator detector.
CuKα radiation was used (40 mA, 40 kV). The patterns were recorded in the 10◦–60◦ 2θ range
with a step size of 0.1◦ and time/step of 100 s. In order to evaluate the coherence lengths of the crystals
and to perform the full profile pattern refinement, further X-ray powder data were collected with
a fixed counting time of 400 s for each 0.033/step, using silicon as internal standard. The Scherrer
formula [19] was applied to calculate the coherence lengths of crystalline domains. The Rietveld
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routine of the HighScore Plus software package (Malvern PANalytical, Almelo, The Netherlands)) was
used to process the data for evaluation of cell parameters.

HSA content was determined through thermogravimetric analysis using a Perkin–Elmer TGA-7.
Heating was performed in a platinum crucible in air flow (20 cm3/min) at a rate of 10 ◦C/min up to
900 ◦C. The samples’ weights were in the range 5–10 mg.

The amount of silver present in the different samples was determined by atomic absorption
spectroscopy (AAS, Thermo Scientific, Waltham, MA, USA) in air-acetylene flame (λ = 328.1 nm;
spectral band-width = 0.5 nm). Ca. 8 mg of previously grinded solid samples were solubilized in
25 mL of a 0.5 M HNO3 aqueous solution. The calibration line was made with 5 calibration standards
(2, 4, 6, 8, 10 ppm), prepared by dilution to 50 mL of a 100 ppm silver standard for AAS in 0.5 M HNO3

(Merck KGaA , Darmstadt, Germany).
A Philips CM100 transmission electron microscope (80 kV) was used for TEM investigations.

Sample powders were suspended in ethanol and sonicated. A drop of sonicated suspension was
transferred onto formvar films supported on conventional copper microgrids. The ImageJ® picture
analyzer software was used to estimate the mean particles dimensions. The reported results are the
average values of measurements performed over at least 100 data points per sample.

Zeta potential was measured using Electrophoretic Light Scattering (ZetasizerNano; Malvern
PANalytical, Malvern, UK). Five milligrams of powder sample were suspended in 50 mL of MilliQ
water after sonication for 2 min. Each analysis was performed in triplicate.

Atomic force Microscopy (AFM), contact angle and silver release analyses were carried out on
disk-shaped samples (Ø = 6.0 mm) in order to examine the materials mimicking the conditions of
possible applications as biomaterials. Disk-shaped samples were prepared by pressing the powder
(40 mg for each disk) into cylindrical molds by using a standard evacuable pellet die (Hellma,
Müllheim, Germany).

Static contact angle measurements were performed by means of a Theta Lite optical tensiometer
(Biolin Scientific, Gothenburg, Sweden) under ambient conditions by recording the side profiles of
deionized water drops for image analysis. The shape of the drop was recorded in a time range of
0–30 s, with images collected every 0.033 s. At least five drops were observed for each sample.

AFM imaging was performed using a Veeco Nanoscope 3D instrument (Veeco, Plainview, NY,
USA). The disk-shaped samples were analyzed in tapping mode using an E scanner (maximum scan
size 15 µm) and phosphorus (n) doped silicon probes (spring constant 20–80 N/m; resonance frequency
250–290 kHz; nominal tip radius <10 nm). Roughness parameters, namely arithmetic mean roughness
(Ra), root-square roughness (Rq), and the vertical distance between the highest and lowest points
within the evaluation length (Rt), were recorded.

Release of silver from disk-shaped samples was measured in the medium used for cell
culture differentiation, Dulbecco’s Modified Eagle Medium (DMEM, Sigma, Saint Louis, MO, USA)
supplemented with antibiotics (100 U/mL penicillin, 100 µg/mL streptomycin). Ag content in the
supernatant was analyzed at increasing times up to 14 days using flame atomic absorption spectroscopy
(AAS, Thermo Scientific, Waltham, MA, USA), in air-acetylene flame (λ = 328.1 nm; spectral band-width
= 0.5 nm). Results from this analysis represent the mean value of three different determinations.

3. Results and Discussion

The XRD patterns of the different supports functionalized with AgNPs show a number of
reflections, which correspond to those characteristic of hydroxyapatite (PDF 9-432), together with
the most intense reflection of Ag at about 38.1 ◦ of 2θ (PDF 4-873). The relative intensity of this peak
increases on passing from HA-Ag50 to HSA10-Ag50, to HSA20-Ag50 (Figure 1a) and as the volume of
the AgNPs colloidal suspension increases (Figure 1b), suggesting the presence of variable quantities of
metallic silver associated to the different materials as a function of experimental procedures.

Functionalization does not affect significantly the dimensions of the unit cell of the apatitic
structure, as shown by the values of the lattice parameters of the different samples reported in



Nanomaterials 2018, 8, 390 4 of 9

Table 1. The comparison between the XRD patterns reported in Figure 1a shows that the patterns of
the samples functionalized with HSA display slightly broader diffraction reflections than those of
HA-Ag50, in agreement with an overall reduction of the length of crystallite sizes (τhkl) provoked by
HSA functionalization [8]. The values of the mean crystallite sizes along the c-axis (τ002) and along a
direction perpendicular to it (τ310), calculated using the Scherrer equation [19] and reported in Table 1,
display an anisotropic reduction on increasing HSA content. The greater reduction along the direction
perpendicular to the c-axis suggests that hydroxystearate is preferentially adsorbed on HA (hk0) faces,
as previously reported for anionic polyelectrolytes and acidic amino acids [8,20,21].
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Quantitative chemical analysis confirms that AgNP loading depends both on the different 
supports and on the amount of AgNPs suspension used for the loading procedure: as shown in Table 
1, the maximum amount loaded on HA is about 1.2%, whereas it reaches values up to 3.3% on HSA 
containing supports. The maximum AgNPs loading achieved on HSA samples is smaller than that 
previously loaded on polyacrylate functionalized HA supports [22]. However, previous data 
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Figure 1. X-ray diffraction patterns of materials functionalized with silver nanoparticles (AgNPs):
(a) different supports loaded in 50 mL of AgNPs suspension; (b) HSA20 loaded in different volumes
of AgNPs; (c) photographs of samples. The samples are labelled HA-AgX and HSAY-AgX, where X
indicates the volume (in mL) of the AgNPs suspension used for loading, and Y is the hydroxystearate
concentration (in mM) in the synthesis solution. The positions of the 002 and 310 peaks of HA used for
the evaluation of the crystallite size are indicated. The two orange bars indicate the positions of the
two most intense reflections of silver metal (PDF 4-873).

Table 1. Structural parameters, silver content and surface parameters of composite materials. Standard
deviations are reported in parentheses.

Sample a (Å) c (Å) τ 002 (Å) τ 310 (Å)
Ag Content

(wt %)
ζ Potential

(mV)
Contact

Angle (◦)

HA 9.423(2) 6.883(2) 523(7) 315(4) – −8.5 10 (4)
HA-Ag5 9.427(2) 6.883(2) 518(5) 308(3) 0.5 (1) +0.5 20 (5)

HA-Ag20 9.421(1) 6.879(1) 522(6) 316(4) 1.0 (1) +7.2 18 (2)
HA-Ag50 9.427(2) 6.886(3) 515(6) 304(3) 1.2 (1) +8.3 25 (2)

HSA10-Ag5 9.428(3) 6.878(3) 473(5) 212(3) 0.6 (1) −2.6 113 (2)
HSA10-Ag20 9.430 (2) 6.884 (2) 478(5) 208(2) 2.2 (1) +3.5 119 (1)
HSA10-Ag50 9.414(2) 6.871(2) 471(4) 200(3) 2.9 (1) +5.0 114 (3)
HSA20-Ag5 9.431(3) 6.879(3) 450(5) 172(2) 0.8 (1) −5.0 123 (5)
HSA20-Ag20 9.414(2) 6.871(3) 458(4) 176(2) 2.4 (1) +1.2 128 (3)
HSA20-Ag50 9.430 (2) 6.880 (2) 453(4) 171(1) 3.3 (1) +2.0 121 (2)

Quantitative chemical analysis confirms that AgNP loading depends both on the different
supports and on the amount of AgNPs suspension used for the loading procedure: as shown in
Table 1, the maximum amount loaded on HA is about 1.2%, whereas it reaches values up to 3.3%
on HSA containing supports. The maximum AgNPs loading achieved on HSA samples is smaller
than that previously loaded on polyacrylate functionalized HA supports [22]. However, previous
data demonstrated that contents greater than 3% provoke significant cytotoxicity, whereas lower
values imbue the materials with a long standing antibacterial activity without causing cytotoxicity [22].
The different amounts of AgNPs loaded on the different substrates are confirmed by the different
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number of nanoparticles appreciable in the TEM images of the different samples. The images reported
in Figure 2a–c allow to appreciate a significantly higher number of AgNPs on HSA containing samples
than on HA nanocrystals. Furthermore, electron microscopy allows to verify that AgNPs are always
associated to the surface of the apatitic crystals. In fact, free particles are never observed. The average
diameter of the nanoparticles, about 7 nm, as well as their size distribution, does not vary significantly
on the different supports (Figure 2d–f).
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A qualitative evaluation of AgNPs presence is provided also by the color variation of the
different supports which can be observed on increasing AgNPs loading (Figure 1c). The presence
of silver provides the powders with a yellow-brownish color, which is more intense for HSA
functionalized samples and becomes darker on increasing AgNPs content. The great AgNPs
amounts loaded onto HSA-containing supports in comparison to HA support can be related to
the more negatively charged surfaces of the functionalized crystals, which exert a greater attraction
towards the PEI-stabilized AgNPs. Indeed, HSA10 and HSA20 exhibit more negative values of zeta
potential than HA. Furthermore, adsorption of the positively charged nanoparticles (zeta potential
of AgNPs = +37 mV [22,23]) provokes an increase of the zeta potential of all the samples, as shown
in Table 1.

AgNPs adsorption does not provoke any significant variation of the content of HSA of the
different samples, as determined through thermogravimetric analysis. Thermal decomposition
of hydroxystearate occurs between 200 and 600 ◦C and the total weight loss calculated from the
thermogravimetric plots of the different samples indicates that HSA content assumes mean values of
about 4 and 9% respectively in HSA10 and HSA20 samples, independently from the presence of AgNPs.
Typical thermogravimetric plots are reported in Figure 3 for samples loaded with Ag50. The slightly
different weight losses (about 1 wt %) exhibited by HA-Ag50 and HA, which has been reported for
comparison, are due to the adsorption of PEI from the AgNPs suspension onto HA-Ag50 nanocrystals.
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Figure 3. Thermogravimetric plots of as-prepared HA, HA-Ag50, HSA10-Ag50, and HSA20-Ag50,
useful for quantification of HSA in the composite materials.

HSA hydrophobic tails on the nanocrystals surface are also responsible for the very great difference
between the values of contact angle measured on HSA containing samples than on the HA ones
(Table 1). The values are slightly higher for HSA20 than for HSA10 samples, in agreement with their
different hydroxystearate content, and do not vary during the 30 s of acquisition. At variance, the water
droplet is completely spread on HA samples within a few seconds (Figure 4). The data reported in
Table 1 show that the hydrophobic/hydrophilic behavior of the samples was not significantly modified
by the presence of AgNPs.
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Figure 4. Plots of contact angle values as a function of time. The images of droplets measured after 1
second on different composite materials are shown on the right.

Contact angle measurements, as well as AFM investigation and release analysis, were performed
on disk-shaped samples in order to mimic the conditions of possible applications as biomaterials.
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Indeed, the nanometric dimensions of the synthesized materials can cause severe cytotoxic effects
and prevent their use as free powders [24]. The results of AFM investigation indicate a decrease
of the roughness parameters, Ra, Rq and Rt, on passing from HA to HSA containing samples,
most likely because of the smaller dimensions of these last nanocrystals, as it can be appreciated
also in Figure 2. The average values do not vary significantly as a function of AgNPs content
and are: Ra = 0.060 ± 0.004 µm, Rq = 0.075 ± 0.002 µm, Rt = 0.495 ± 0.015 µm for HA and
Ra = 0.024 ± 0.002 µm, Rq = 0.030 ± 0.003 µm, Rt = 0.247 ± 0.012 µm for HAHSA20 samples,
independently from their AgNPs content. The images of two typical samples are reported in Figure 5.
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At variance, the comparison of the thermogravimetric curves of the different samples before and
after 14 days soaking in DMEM does not reveal significant difference in the total weight losses, in
agreement with no significant hydroxystearate release from the samples (Figure 7). The results of Ag
and hydroxystearate release are supported by the results of AFM analysis, which indicate that the
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morphology and the roughness parameters of the samples are not significantly affected by soaking
in DMEM.Nanomaterials 2018, 8, x FOR PEER REVIEW  8 of 9 
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4. Conclusions

The results of this study indicate that functionalization of hydroxyapatite nanocrystals with
hydroxystearate enhances AgNPs loading, most likely thanks to the interaction between the positive
charges provided by PEI on AgNPs and the negative charges of HSA. Loading increases as a function
of hydroxystearate content reaching values up to 3.3 wt %, without modifying nanocrystals’ structural
parameters, crystallinity, and morphology, which are influenced just by HSA content. Moreover,
the good interaction with hydroxystearate functionalized hydroxyapatite crystals stabilizes AgNPs,
which show a sustained release in solution.
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