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Abstract: Developing effective methods for the instant detection of Cu2+ and S2− is highly desired
in the biological and environmental fields. Herein, a novel fluorescent nanoprobe was elaborately
designed and synthesized by grafting a phenanthroline derivative onto the surface of carbon dots
(CDs). The obtained functionalized CDs (FCDs) exhibited blue fluorescence (FL) with excellent
photostability and possessed a mean diameter around 4 nm. Cu2+ can be selectively captured by
the phenanthroline group of FCDs to generate an absorptive complex in situ, leading to obvious
quenching of the FCDs’ FL signal through an inner filter effect. Furthermore, the FL of the FCD–Cu2+

can be effectively recovered by S2− anions due to the release of FCDs from the FCD–Cu2+ complex
owing to the formation of stable CuS (Ksp = 1.27 × 10−36) between S2− and Cu2+. The detection limits
of the FCDs were determined to be 40.1 nM and 88.9 nM for Cu2+ and S2−, respectively. Moreover,
this nanoprobe can also be used for the imaging of intracellular Cu2+ and S2−, which shows strong
application prospects in the field of biology.

Keywords: carbon dots; Cu2+; S2−; (2,3-f)-pyrazino(1,10)phenanthroline-2,3-dicarboxylic acid;
fluorescent nanoprobe

1. Introduction

Copper ion (Cu2+) and sulfide anion (S2−) have attracted increasing attention in recent years
owing to their vital roles in various pathological/physiological processes and their being highly toxic
to the environment and human health [1,2]. As an essential metal in biological systems, copper acts as
a cofactor for many enzymes and proteins, and thus abnormal levels of Cu2+ may cause neurological
problems or damage to livers and kidneys [1]. Meanwhile, Cu2+ is also a priority pollutant as
listed by the US Environmental Protection Agency (EPA) [3]. Similarly, S2− is a well-known toxic
pollutant for the environment [4] and an important anion in biological organisms [5]. Exposure to
high concentrations of S2− can induce unconsciousness and suffocation [6], while unbalanced S2−

levels in life systems are related to multiple diseases, for instance, Alzheimer’s disease and diabetes [7].
Developing simple and effective methods for the instant detection of Cu2+ and S2− is highly desirable
in biological and environmental fields.

To date, many methods have been developed for the detection of Cu2+ and S2−, including
electrochemical methods [8,9], inductively coupled plasma atomic emission spectroscopy [10,11],
fluorescence (FL) spectrometry [12–14], and others. Among those analytical methods, combining FL
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spectrometry with specific fluorescent sensors has become a promising way to detect Cu2+ and S2−

because of its non-invasive, economic, real-time, highly selective, and sensitive properties. Recently,
various fluorescent sensors have been synthesized for the monitoring of Cu2+ or S2− [12–14]. However,
most of these reported sensors were fabricated on the base of conventional fluorescence materials,
such as organic dye molecules or semiconductor quantum dots (QDs) [13,14]. The poor luminescence
stability of organic dye molecules [15] and the high toxicity of semiconductor QDs [16] severely
restrict their practical applications. Very recently, carbon dots (CDs), as a new family member of
carbon nanomaterials, have emerged as promising photoluminescent nanoparticles due to their
outstanding properties such as nontoxicity, FL stability, high biocompatibility, water solubility, and
facile preparation [17,18]. With these features, CDs exhibit prospective applications in sensing [19,20],
FL markers [21], drug delivery [22], and bioimaging [23]. However, it is worth noting that pristine CDs
usually show unsatisfactory selectivity or have very limited analytes in sensing applications [7,24,25].
Therefore, it is very important to integrate highly specific recognition molecules into CDs to extend
their sensing applications.

We grafted (2,3-f)-Pyrazino(1,10)phenanthroline-2,3-dicarboxylic acid (PPDA), a molecule specific
for Cu2+ identification [26], onto the surface of carbon dots and provided an effective strategy for
the detection and imaging of intracellular Cu2+ and S2−. The FL interactions between Cu2+ and the
FCDs were investigated in detail. The phenanthroline groups of the functionalized QDs (FQDs) can
selectively capture Cu2+ to generate an absorptive complex in situ, which can lead to an intense
quenching of the FQDs’ FL through an inner filter effect [24]. Moreover, the FL of the FCD–Cu2+ can
be effectively recovered by S2− anions due to the release of FCDs from the FCD–Cu2+ complex owing
to the formation of stable CuS (Ksp = 1.27 × 10−36) (Figure 1) [27]. Furthermore, the FCDs showed
remarkable FL stability and can be used for the imaging of intracellular Cu2+ and S2−. The comparison
of several existing CD-based methods for Cu2+ or/and S2− detection is listed in Table S1, indicating the
good sensitivity and other merits of our sensing system compared with previously reported sensing
systems [6,7,27].
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Figure 1. Schematic diagram of functionalized carbon dots (FCDs) for Cu2+ and S2− recognition.

2. Materials and Methods

2.1. Materials

N-Hydroxysuccinimide (NHS, Energy Chemical, Shanghai, China), (2,3-f)-
Pyrazino(1,10)phenanthroline-2,3-dicarboxy-lic acid (PPDA, Energy Chemical, Shanghai, China),
Ethylenediamine (Energy Chemical), 1-(3-dimethylaminopropyl)-3-ethyl-carbodiimide hydro chloride
(EDC, Energy Chemical, Shanghai, China), citric acid (Energy Chemical, Shanghai, China), HEPES
(Energy Chemical, Shanghai, China), nitrate salts of metal ion and sodium salts of anion of analytic
grade were used as received. HeLa cells (Human cervix carcinoma cell) were purchased from a cell
bank in Shanghai (Shanghai, China).
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2.2. Preparation of CDs

The CDs were prepared according to a modified hydrothermal method [28]. Briefly, 1.0600 g
citric acid and 340 µL ethylenediamine were added to 8 mL distilled water under drastically stirring.
The generated clear solution was diverted to a Teflon-lined stainless steel vessel (23 mL) and heated at
200 ◦C for 5 h. Then the product was cooled naturally and subjected to dialysis. Redundant precursors
were removed over 24 h via a cellulose membrane (MWCO 500) in pure water. After drying by
lyophilization, CD powders were collected (yield: 46%).

2.3. Synthesis of PPDA-Functionalized CDs (FCDs)

The ligand PPDA (0.1 mmol) was dispersed in 10 mL of DMSO (Dimethyl sulfoxide), and then
0.2 mmol NHS and 0.2 mmol EDC were added to activate the carboxyl groups of the ligand. The
mixtures were stirred for 2 days in the dark. Then, 10 mL aqueous solution of CDs (6 mg/L) was added
dropwise to the mixture and the resulting solution was further stirred for 3 days at room temperature.
Then, the reaction solution was dialyzed against water for 24 h to obtain the FCDs.

2.4. Characterization

The size distribution of the FCDs was measured by a Tecnai G2 F20 TEM characterization (FEI,
Hillsboro, OR, USA). Absorption spectra were determined on a Perkin-Elmer-Lambda 900 spectrometer
(PerkinElmer, Waltham, MA, USA). FL spectra were measured on a FluoroMax-P spectrophotometer
(Horiba Jobin Yvon, Paris, France). Infrared spectra (IR) were measured on a Prestige IR21 FTIR
spectrometer (Shimadzu, Kyoto, Japan).

2.5. Fluorescence Detection for Cu2+ and S2−

For the FL detection of Cu2+, different amounts of Cu2+ (0–50 µM) were added into FCDs
dispersed in pH 7.4 HEPES buffered water. Different metal ions (Zn2+, Na+, Fe3+, Mg2+, Fe2+, Mn2+,
Ni2+, Pb2+, Co2+, and Cd2+) were selected to assess the selectivity of the FCDs towards Cu2+.

For the monitoring of S2−, different amounts of S2− (0–20 µM) were added into a mixture of 20 µM
of Cu2+ and FCDs dispersed in pH 7.4 HEPES buffered water. Different anions (F−, Cl−, HCO3

−,
SO4

2−, NO3
−, CO3

2−, and HPO4
2−) were selected to evaluate the selectivity of the FCDs for S2−.

The following equation was used to calculate the limit of detection for Cu2+ (or S2−): the limit
of detection = 3SB/S, where SB is standard error for the blank test and where S is the slope of the
calibration curve.

2.6. Cell Culture and Fluorescence Imaging

HeLa cells were cultured in RPMI-1640 medium (a class of media developed by Roswell Park
Memorial Institut) containing 1% of penicillin-streptomycin and 10% fetal bovine serum (FBS). The cells
were grown at 37 ◦C in an incubator with a 5% CO2 atmosphere for 24 h. After removal of the culture
medium, cells were incubated with the prepared FCD sensor in 2 mL fresh culture medium at 37 ◦C
for 6 h. Then the medium was removed, and the cells were washed three times with phosphate buffer
solution (PBS) to remove the residual nanoparticles. Subsequently, the cells were treated with a certain
amount of Cu2+ (0, 50, and 100 µM) in 2 mL refresh medium at 37 ◦C for 1.5 h. After removing the
medium and washing it three times with PBS, the cells were suspended in 0.5 mL of PBS and observed
under an Olympus FV1000-IX81 laser confocal microscope (Olympus Corporation, Tokyo, Japan).

The S2− imaging experiments were performed using the same procedure as for Cu2+, except that
cells were first treated using a medium containing the sensor FCD–Cu2+ and then by S2− (0, 75, and
150 µM each). Blue emissions from FCDs was excited at 405 nm.
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3. Results

3.1. Synthesis and Characterization of the FCDs

As portrayed in Figure 2, FCDs were prepared through a modified hydrothermal method and
subsequent surface functionalization technique. For this work, PPDA was selected as functional
molecules to modify FCDs for two main reasons. Firstly, PPDA can be easily grafted onto the surface
of the pristine CDs due to the reaction between the amino group of the CDs and the carboxyl group of
PPDA. Secondly, a PPDA with a phenanthroline group has an excellent affinity for Cu2+ and has been
successfully applied in the selective recognition of Cu2+ in a Eu-MOF [26].
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Figure 2. Schematic diagram of the preparation for FCDs.

As demonstrated in Figure S1, the UV-vis absorption spectrum of the pristine CDs exhibited a
peak at around 346 nm, while its FL spectra (Figure S2) show a typical excitation-dependent property,
demonstrating the synthesis of the desirable CDs [28]. In the IR spectrum (Figure 3a) of the CDs, the
peaks observed around 3417, 3248, 1705, 1564, and 1404 cm−1 correspond to the O–H stretching, N–H
stretching, C=O vibration, N–H bending, and amido C–N stretching vibration, respectively [28]. After
grafting PPDA onto the surface of the CDs, new peaks at around 2973 and 1652 cm−1 were observed,
which correspond to C=C/C=N stretch of polycyclic aromatic hydrocarbons [29]. The appearance of
the C=C/C=N stretch in the IR spectrum indicates the formation of PPDA-functionalized CDs.
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As shown in Figure 3b, the FCDs exhibit two absorption bands centered at 258 and 354 nm. The
band located at 258 nm can be primarily attributed to the π–π* electronic transitions of the ligand
PPDA, while the band centered at 354 nm can be ascribed to the absorption of CDs. Upon the addition
of Cu2+, a new UV absorption band centered at 306 nm appeared and increased gradually, while the
absorption intensity of the band centered at 354 nm decreased significantly. These results indicate
the interaction between Cu2+ and the ligand PPDA and also demonstrate the successful synthesis of
the FCDs.

The TEM image (Figure 3c) reveals that the FCDs a1re uniform in morphology with an average
diameter of around 4 nm (Figure 3d).

3.2. Detection of Cu2+ by FCDs

Figure 4a illustrates the FL changes of the FCDs under different concentrations of Cu2+. The FL
intensity of FCDs clearly decreased with the addition of 5 µM Cu2+. For comparison, the FL intensity
of the pristine CDs changed a little when 200 µM of Cu2+ were added (Figure S3). This clearly shows
the interaction between Cu2+ and the FCDs, which resulted in the apparent FL decrease of the FCDs.
Good linearity between the FL intensity of the FCDs and the Cu2+ concentrations was obtained in
the range of 0–6.0 µM (Y = 693.4717 − 56.5662X, R2 = 0.9966, Figure 4b). The detection limit of this
sensor was calculated to be 40.1 nM, which is well suited for detecting copper ion in drinking water
and blood systems [30].

Nanomaterials 2018, 8, x FOR PEER REVIEW  5 of 11 

 

3.2. Detection of Cu2+ by FCDs 

Figure 4a illustrates the FL changes of the FCDs under different concentrations of Cu2+. The FL 
intensity of FCDs clearly decreased with the addition of 5 μM Cu2+. For comparison, the FL intensity 
of the pristine CDs changed a little when 200 μM of Cu2+ were added (Figure S3). This clearly shows 
the interaction between Cu2+ and the FCDs, which resulted in the apparent FL decrease of the FCDs. 
Good linearity between the FL intensity of the FCDs and the Cu2+ concentrations was obtained in the 
range of 0–6.0 μM (Y = 693.4717 − 56.5662X, R2 = 0.9966, Figure 4b). The detection limit of this sensor 
was calculated to be 40.1 nM, which is well suited for detecting copper ion in drinking water and 
blood systems [30]. 

 
Figure 4. (a) Fluorescence (FL) spectra (λex = 320 nm) of FCDs upon addition of Cu2+; (b) Plot of the FL 
intensity of FCDs against Cu2+ concentration, λex = 320 nm, λem = 452 nm. 

3.3. Mechanism for Cu2+ Detection Using FCDs 

The quenching mechanism can be explained as follows. As mentioned above, the introduction 
of Cu2+ into the FCDs results in a new UV absorbance band centered at 306 nm. Notably, the solution 
of Cu2+ shows almost no absorption peak above 250 nm (Figure S4), while such a new absorption 
band can also appear when 140 μM Cu2+ was added into the PPDA solution. Considering that the 
synthesized FCDs are PPDA-capped, we speculate that the new absorbance peak can be attributed to 
the addition of Cu2+ with the PPDA on the surface of FCDs. Moreover, the absorbance band located 
at 306 nm (Figure 5 line b) partially overlapped with the excitation spectrum of the FCDs (Figure 5 
line c). The overlapping between the absorption band of an absorber (in this case, the PPDA–Cu2+ 
complex) and the FL excitation (and/or emission) spectrum of the fluorophores (in this case, FCDs) 
can result in a decrease of the FL intensity of the fluorophore, which is the so-called inner filter effect 
(IFE) [24]. In short, the quenching of the FCDs’ FL by Cu2+ ions may be attributed to the formation of 
PPDA–Cu2+ complexes at the surface of FCDs that can absorb the excitation light of FCDs; in other 
words, the addition of Cu2+ decreases the concentration of the fluorescent FCDs. 

Figure 4. (a) Fluorescence (FL) spectra (λex = 320 nm) of FCDs upon addition of Cu2+; (b) Plot of the
FL intensity of FCDs against Cu2+ concentration, λex = 320 nm, λem = 452 nm.

3.3. Mechanism for Cu2+ Detection Using FCDs

The quenching mechanism can be explained as follows. As mentioned above, the introduction of
Cu2+ into the FCDs results in a new UV absorbance band centered at 306 nm. Notably, the solution
of Cu2+ shows almost no absorption peak above 250 nm (Figure S4), while such a new absorption
band can also appear when 140 µM Cu2+ was added into the PPDA solution. Considering that the
synthesized FCDs are PPDA-capped, we speculate that the new absorbance peak can be attributed to
the addition of Cu2+ with the PPDA on the surface of FCDs. Moreover, the absorbance band located
at 306 nm (Figure 5 line b) partially overlapped with the excitation spectrum of the FCDs (Figure 5
line c). The overlapping between the absorption band of an absorber (in this case, the PPDA–Cu2+

complex) and the FL excitation (and/or emission) spectrum of the fluorophores (in this case, FCDs)
can result in a decrease of the FL intensity of the fluorophore, which is the so-called inner filter effect
(IFE) [24]. In short, the quenching of the FCDs’ FL by Cu2+ ions may be attributed to the formation of
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PPDA–Cu2+ complexes at the surface of FCDs that can absorb the excitation light of FCDs; in other
words, the addition of Cu2+ decreases the concentration of the fluorescent FCDs.Nanomaterials 2018, 8, x FOR PEER REVIEW  6 of 11 
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3.4. Selective Detection of Cu2+ in Water

To assess the selectivity of FCDs toward Cu2+, the quenching effect of other metal cations (Zn2+,
Na+, Fe3+, Mg2+, Fe2+, Mn2+, Ni2+, Pb2+, Co2+, and Cd2+), as well as the mixture of Cu2+ and one of the
above cations were investigated. The addition of Cu2+ resulted in apparent PL quenching, while other
metal cations induced quite a few changes in the FL intensity of the FCDs (Figure 6a). Furthermore, the
coexistence of other cations did not cause obvious interference for FCDs when sensing Cu2+ (Figure 6b)
and allowed for the highly selective detection of Cu2+.
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λex = 320 nm, λem = 452 nm).

It should be noted here that 1,10-phenantroline is a commonly used reagent for the determination
of Fe3+. However, the FL intensity of the FCDs was not significantly quenched with the addition of
Fe3+. We then examined the effect of Fe3+ ions on the absorption spectra of the FCDs. As can be seen
from Figure S5, under the addition of Fe3+, the absorption bands at 350 nm increased slightly, and
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no new peak appeared. This phenomenon may illustrate the weak interaction between Fe3+ and the
FCDs, which may be responsible for the weak quenching effect of Fe3+ on the FL intensity of FCDs.

3.5. S2− Detection by FCD–Cu2+

Since S2− can react with Cu2+ and generate a very stable CuS species [22], the addition of S2− into
the FCD–Cu2+ complex may result in the release of FCDs, which can make the FCD–Cu2+ possible
to use as a turn-on FL sensor for S2−. Based on the above considerations, fluorescent titration was
carried out to assess the FL response of the FCD–Cu2+ complex to S2−. As delineated in Figure 7a, the
FL intensity of the FCD–Cu2+ complex was gradually enhanced after the addition of S2−.
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The FL intensity increased nearly three-fold when the S2− concentration was 20 µM. The FL
intensity of FCD–Cu2+ and the S2− concentrations show a linear relationship in the range of 0–10 µM
(Y = 210.3426 + 25.6692X, R2 = 0.9971, Figure 7b). The detection limit of the FCD–Cu2+ for S2− was
determined to be 88.9 nM, which is clearly below the recommended maximum S2− concentration
in drinking water (about 15 µM) [31]. Therefore, the sensor can be used for S2− detection in water
quality monitoring.

To study the selectivity of FCD–Cu2+ toward S2−, the quenching effect of other anions (F−, Cl−,
HCO3

−, SO4
2−, NO3

−, CO3
2−, and HPO4

2−), the mixture of S2−, and one of the above anions were
investigated. Only the introduction of S2− can result in the apparent PL enhancement of FCD–Cu2+

(Figure 8a), exhibiting outstanding selectivity for S2− detection. Moreover, the coexistence of other
anions shows a negligible effect on the FL enhancement of the FCD–Cu2+ complex (Figure 8b), which
indicates that FCD–Cu2+ can be used as an effective sensor for S2− with high selectivity.
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3.6. Intracellular FL imaging of Cu2+ and S2−

To evaluate the feasibility of FCDs for Cu2+ imaging in live cells, HeLa cells were chosen to be
incubated with the FCDs. As depicted in Figure 9, after the introduction of Cu2+ to the HeLa cells,
the FL intensity of the FCDs decreased significantly and almost disappeared with 100 µM of Cu2+.
Furthermore, the ability of the FCD–Cu2+ complex to monitor intracellular S2− was also tested. HeLa
cells were firstly incubated with the FCD–Cu2+ and subsequently treated with S2−. As shown in
Figure 10, with the increasing S2−, the FL intensity of the cell also clearly increased (recovered). These
results indicate the great potential of FCDs and FCD–Cu2+ for monitoring Cu2+ and S2− in live cells.
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Figure 9. Confocal images of HeLa cells incubated with FCDs sensor (FCD, 50 µg mL−1, A,D) and
treated with 50 µM (B,E) and 100 µM (C,F) of Cu2+. The overlay images confirm the signals are from
in-cell FCDs, not interference.
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Figure 10. Confocal images of HeLa cells incubated with the FCD sensor (FCD, 50 µg mL−1) and
100 µM of Cu2+ (A,D), and then treated with 75 µM (B,E) and 150 µM of S2− (C,F). The overlay images
confirm the signals are from in-cell FCDs, not interference.

3.7. Photostability of FCDs

The as-synthesized FCDs exhibited prominent photostability under different conditions. The FL
intensity of the FCDs solution remained almost unchanged under continuous excitation (80 min) using
365 nm UV light (Figure S6). Moreover, when the FCDs were stored for 40 days, negligible changes
(<3%) in the F/F0 intensity of the FCDs in the presence of Cu2+ (15 µM) were observed (Figure S7).
No obvious F/F0 changes of the FCDs were noticed in the biologically-related pH range 5.0–9.0 after
the addition of small concentrations of Cu2+ (Figure S8). These results indicate that the FCDs possess
favorable FL stability under light excitation, air conditions, and pH variation, and can be used for the
detecting and imaging of Cu2+ in complex environments.

3.8. Analysis in a Real Sample

To further test the applicability of this sensing system for detecting Cu2+ in a real sample, we
used a standard addition method to detect the concentration of Cu2+ ions in several tap water samples.
As displayed in Table S2, the relative standard deviation (RSD) for all tests are less than 0.38% while
recoveries were in the range from 85% to 99.5%. These results indicated the high precision and accuracy
of this CD-based FL sensing method for the detection of Cu2+ in real samples.

4. Conclusion

In summary, a novel fluorescent nanoprobe was elaborately fabricated by grafting a
phenanthroline derivative onto the surface of CDs. This nanoprobe exhibits good selectivity and
sensitivity (detection limit: 40.1 nM) for Cu2+ detection due to a specific inner filter effect. The
generated FCD–Cu2+ complex can be further used as an effective off–on-type sensor for the detection
of S2− with a detection limit of 88.9 nM. Furthermore, the FCD sensor with excellent photostability
can also be applied for the monitoring intracellular Cu2+ and S2−. These CDs-based nanoprobe may
have great prospects in the biological field in the future. This work may provide some meaningful
insights for constructing CD-based multifunctional FL sensors to detect analytes in the biological and
environmental fields.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/12/1071/
s1, Figure S1: The UV–vis and fluorescence emission spectra of the pristine CDs (λex = 360 nm); Figure S2:
The fluorescence emission spectra of CDs under different excitation wavelength (λex = 280~460 nm); Figure S3:
Fluorescence titration of the un-functionalized CDs sample with different Cu2+ concentrations (λex = 320 nm);
Figure S4: UV spectra of 140 µM Cu2+ ions, 100 µM PPDA, and 140 µM Cu2+ ions + 100 µM PPDA; Figure S5: UV
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spectra of FCDs upon addition of Fe3+; Figure S6: Fluorescence intensity changes of the FCDs under a continuous
365 nm UV lamp irradiation (λex = 365 nm, λem = 452 nm); Figure S7: Longterm photostability of FCDs dispersion
for Cu2+ recognition (Cu2+ concentration: 15 µM, λex = 320 nm, λem = 452 nm); Figure S8: Fluorescence intensity
changes of the FCDs under pH range 5.0–9.0 upon addition of Cu2+ (Cu2+ concentration: 10 µM, λex = 320 nm,
λem = 452 nm); Table S1: Comparison of representative CDs-based sensors for Cu2+ or/and S2− detection; Table S2:
Determination of Cu2+ in tap water.
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