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Abstract: We present a theory of thermal conduction in a transition metal dichalcogenide nanocomposite
structure with rough interfaces that accounts for the anisotropic conductivities of the host, the insert
and the interface regions. The host and insert conductivities are calculated using a semi ab-initio
method. The effects of specularity in phonon interface scattering and the thermal boundary resistance
is incorporated through linking a phonon wavevector dependent specular scattering parameter to
the average height of surface inhomogeneities, and the conductivity of the composite is calculated by
employing an extension of a modified effective medium approach. Our work for spherical inserts
of WS2 in MoS2 predicts that the effects of specular scattering due to surface roughness is more
pronounced for inserts smaller than 100 nm, even at volume fractions of the order of 0.05.
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1. Introduction

The determination of key parameters of a nanocomposite structure that control its physical
properties, such as thermal, electronic and optical characteristics, is essential for future technological
advances. The calculation of the bulk properties of nanocomposites where a small fraction of insertions
of one material are embedded within a matrix of a different material, perhaps with a boundary layer
between the insertion and the matrix, is a long-standing problem. Effective medium approaches (EMAs)
are a widely used method of calculating properties (such as the thermal conductivity [1] or the dielectric
constant [2]) of composite systems using the properties of their individual constituents [2,3]. In thermal
or electrical conductivity calculations, these constituents usually consist of inserts of one material
embedded in a matrix of another, along with the effects of the boundary between them. Such a boundary
is usually considered to be either an infinitely thin interface layer possesed of a Kapitza or interface
resistance [4] (e.g., Ref. [1]) or a finite region with a conductivity of its own (e.g., Ref. [5]). The former
approach can be adapted to model a wide variety of systems, for instance cases involving a bimodal
distribution of insert particle sizes (e.g., Ref [6]) or systems containing pores (e.g., Ref [7]). However,
this form of EMA is only valid for micrometer sized inserts, and requires further modification if it is
to be valid for nanocomposite systems. For thermal conductivity calculations, Minnich and Chen [8]
proposed a modified effective medum approach (mEMA) which is suitable for nanoscale systems such
as the recently synthesised Bi100−xSbx/Al2O3 nanocomposites [9]. In the mEMA the effects of phonon
scattering from the boundaries of spherical inserts are included in the calculation of the matrix and
insert thermal conductivities that are input into the closed-form expression for the effective thermal
conductivity. This approach has been generalised to account for different insert shapes, where the
effects of boundary scattering are not isotropic [10–13], and also to systems containing multiple particle
sizes and orientations [14].
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In composites formed of anisotropic materials (e.g., layered systems such as transition metal
dichalcogenides) the directional dependence of the matrix thermal conductivity or dielectric constant
must be accounted for [15–17]. If a Kapitza resistance exists in such a system, it is reasonable to
assume that will also be directionally dependent and must be accounted for in a similar fashion
(the principle of doing so within a Morika-Tanaki approach has been discussed in, for example,
Ref. [18]). Within the context of the multiple scattering approach used in this study, an extension to
Minnich and Chen’s [8] approach that accounts for anisotropic boundary resistance effects (emEMA)
has been recently proposed in [19].

However, the originally formulated mEMA [8] and its recent extension [19] assume that the
phonon scattering from insert boundaries is fully diffusive. In other words, these formulations treat
the boundary as being perfectly rough. This is unlikely to be the case in real systems, since fully
diffusive and specular scattering are idealised limiting cases. A simple phenomenological approach to
the problem has been proposed [11], in which an empirically weighted average of the two limits is
calculated. While this gives physically plausible results, there is no obvious connection between the
value of the weighting parameter and the physical properties of the nanocomposite. In this work we
suggest a scheme based upon Koh et al. [20] proposed correspondence between the relative proportions
of different boundary scattering types and the average height of inhomogeneities on the boundary layer
that is wave-vector dependent. In other words, our proposed extenstion improves on the approach
adopted by Behrang et al. [11] for including both specular and diffuse scattering contributions to
phonon boundary scattering rate as well as the thermal interface (Kapitza) scattering term.

Transition metal dichalcogenides (TMDCs) such as MoS2 and WS2 possess high electrical
conductivities and low thermal conductivities. Because of this, they are thought to be good candidates
for use in thermoelectric applications. Recent studies [21–23] demonstrate early attempts at fabricating
TMDC-based nanostructures and composites. Through a judicious choice of insert and matrix material
it will be possible to further reduce the thermal conductivity of these systems without strongly
affecting the thermoelectric power factor, and so improve the thermoelectric figure of merit. In order
to accurately predict the thermal conductivity reduction in a given nanocomposite, some means of
accounting for the quality of the matrix-insert interface is required. Therefore in anticipation of future
thermal conductivity measurements, we implement this scheme within the emEMA for a layered
(hence anisotropic) bulk transition metal dichalcogenide nanocomposite consisting of spherical inserts
of bulk 2H WS2 embedded within a matrix of bulk 2H MoS2, where semi-ab initio calculations [24]
are used to obtain the required insert and matrix thermal conductivities.

2. Theoretical Method

An emEMA calculation for a system with anisotropic interface resistance is performed in two
steps. Firstly we compute the effective thermal conductivity of the insert and the interface regions [19]:

κ∗ = κi
[
I+ 3

a
Nsκ

iRK
]−1

, (1)

where κi is the thermal conductivity of the insert in the absence of the boundary, κ∗ is the effective
thermal conductivity of the insert and the boundary, a is the radius of the spherical insert, RK is the
thermal boundary or Kapitza resistance, and Ns is the surface depolarisation tensor (see Appendix A)
accounting for the effects of anisotropic Kapitza resistance. The thermal conductivities, depolarisation
tensor, Kapitza resistance and identity matrix I are 3× 3 matrices, and we assume that the system is
oriented so that κi and RK are diagonal.

We then calculate the thermal conductivity of the effective medium κE using the standard
anisotropic EMA equation [15]:
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κE = κm + f (κ∗ − κm)J−1κm,

J = κm + (1− f )Nm(κ
∗ − κm).

(2)

Here f is the volume fraction of inserts, κm is the thermal conductivity of the matrix and Nm the
matrix depolarisation tensor (see Appendix A) accounting for any anisotropy in κm. We assume the
simplest possible case where κm and κ∗ are both diagonal.

The required values of κi and κm may be computed via any reliable method for calculating the
thermal conductivity. In this work we use a semi-ab initio method [24], which we summarise in
Appendix B.

In order to include the effects of specularity, we define a momentum dependent parameter sq

as the fraction of modes of momentum q that undergo diffusive scattering from the insert interfaces.
Generalising the simple expression of Koh et al. [20], we write:

sq = 1− lq, (3)

where lq = exp(−ε2/λ2
q) with ε being the average height of surface inhomogeneities and λq being

the wavelength corresponding to momentum q. We define ε = ηa0 where a0 is the lattice spacing,

and λq = 2π/Q, where Q = 2π|q|/a0 and |q| =
√

q2
x + q2

y + q2
z is the norm of the lattice momentum

vector in Cartesian co-ordinates. From these definitions it follows that:

sq = (1− e−η2|q|2). (4)

The value of η controls the extent of specular scattering. If η → 0, then the surface becomes
smooth and we obtain the specular limit sq = 0. If η → ∞ then the surface becomes infinitely rough
and we obtain the diffuse limit sq = 1. Physically meaningful values of η will lie somewhere between
these extremes, although in principle it is possible for a surface to be smooth enough or rough enough
that all scattering is effectively specular or diffusive.

The effects of finite η enter into our calculation on two levels: through the thermal boundary
resistance at the EMA level, and through modifications of the effective boundary lengths of the matrix
and insert at the mEMA level. We begin with the latter.

Scattering from the sample boundary itself is taken to be purely diffusive and unaffected by the
specularity parameter. Minnich and Chen [8] include the effects of phonon scattering from insert
interfaces by means of effective boundary lengths, and these must be modified so as to include the
effects of specularity. In the case of the insert, any mode not scattered from the interface boundary due
to specularity must be scattered from the sample boundary, and so the effective boundary length must
be a weighted average of the sample length and the insert diameter. In the case of the matrix, only the
interface density contribution to the effective boundary length is affected by the specularity. We may
therefore write the the effective boundary length LB as follows:

L−1
B =

{
sqL−1

B, I + lqL−1
B, S for inserts

L−1
B, S + sqL−1

IS for the matrix
, (5)

where LB, I = 2a is the insert boundary length, LB, S is the sample boundary length, LIS = 4/Φ is the
scattering length due to interface density Φ = 6 f /LB, I and lq = 1− sq. In the case of the semi-ab initio
thermal conductivity calculations performed in this study, the incorporation of these effective lengths
into the overall scattering rate is discussed in Appendix B, specifically Equation (A10).

Next, we discuss the thermal boundary resistance. This is a challenging property to calculate with
any accuracy, since the assumptions of the prevailing models are strictly valid only in the continuum
limit and exclude the effects of inelastic scattering and other anharmonic processes (see Ref. [25] and
citations within), and at best only give plausible bounds on the experimental value of the boundary
resistance [4,25]. Nevertheless, we must qualitatively account for the effects of specularity on the
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thermal boundary resistance in some fashion, and so we follow in the spirit of previous theoretical
work on mEMA-type calculations [11] by making use of an approximate model based on Chen’s
expressions for the case of superlattice systems [26]. Our intent is to interpolate between the diffuse
mismatch model (diffuse limit) and the acoustic mismatch model (specular limit) in a mode-dependent
fashion reflecting the value of sq, making use of the full band dispersions in our calculation. We use
the equivalent equilibrium approach [26], and express RTB as the sum of weighted diffuse RD

TB and
specular RS

TB contributions:
RTB = RD

TB + RS
TB. (6)

We begin with RD
TB. Defining 〈Cjvj〉 = ∑qs Cj, qsvj, qs and 〈Cjvj〉W = ∑qs Cj, qsvj, qssq where j = i, m

denotes the insert or matrix value respectively, Cj, qs is the specific heat for the mode with momentum

q and band number s and vj, qs is the mode speed (which in the x or y direction is
√

v2
x + v2

y and in the

z direction is |vz|), we may write:

RD
TB ≈

2(〈Civi〉W + 〈Cmvm〉W)

〈Civi〉〈Cmvm〉
. (7)

For RS
TB, having defined the impedences 〈Zj〉 = ρj ∑qs vj, qsnqs/ ∑qs nqs and 〈Zj〉W =

ρj ∑qs vj, qslqnqs/ ∑qs nqs where ρj is a density and nqs is the Bose-Einstein distribution, we can write
the transmission coefficients:

Tmi(µi) =
4〈Zi〉〈Zm〉

(〈Zi〉µm + 〈Zm〉µm)2 ,

Tim(µm) =
〈Cmv3

m〉
〈Civ3

i 〉
Tmi(µi),

T W
mi (µi) =

4〈Zi〉〈Zm〉
(〈Zi〉Wµi + 〈Zm〉Wµm)2 ,

(8)

where µj = cos θj where θj is the angle of incidence, and 〈Cjv3
j 〉 = ∑qs Cj, qsv3

j, qs. Taking µc, j to be the
value of µi corresponding to the critical angle above which all incident phonons are reflected, using the
following integrals

Ijk =
∫ µc, j

0
Tjk(µj)µjdµj,

IW
mi =

∫ µc, m

0
T W

mi (µm)µmdµm,
(9)

we may write:

RS
TB ≈

2
〈Cmvm〉IW

mi
(1− Imi − Iim). (10)

Note that RTB is not a linearly weighted average, since the weighting of the diffusive contribution
enters its definition linearly whereas for the specular contribution it enters quadratically.

As an example calculation, we examine the effects of average inhomogeneity height η

on the effective thermal conductivity of bulk 2H WS2 embedded within a matrix of bulk
2H MoS2, where the relevent input thermal conductivities are obtained using a semi-ab initio [24]
method described in Appendix B. We assume that the cross-plane and in-plane axes of both
materials align, and in calculating the thermal boundary resistances we distinguish the in-plane

values Rxx = RTB, x = Ryy = RTB, y from the cross-plane values Rzz = RTB, z by setting v =
√

v2
x + v2

y

in the former case and v = |vz| in the latter. All other components of R are set to 0.

3. Results

Figure 1 displays the results varying η in a system with f = 0.2, LB, S = 10 µ, and LB, I = 1 µm.
Panel (a) displays RTB in the cross-plane (z) and in-plane (x) directions. In both directions it undergoes
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a rapid decrease as the temperature rises before saturating above 400 K. RTB at η = 5.0 is close to
that of the diffuse limit; in the range 0.1 ≥ η ≥ 0.001 we see little change in its value, suggesting that
we have attained the specular limit. Any interesting physics regarding the boundary resistance must
therefore occur within the range 5.0 > η > 0.1. We find that RTB, z > RTB, x, which is consistent with
κzz being smaller than κxx in the constituent materials. Note that the change in RTB as η decreases is
not monotonic: It decreases from the diffuse value, reaches a minimum in the vicinity of η ≈ 1.0 to
≈ 0.5 and increases towards the specular limiting value. This is a consequence of sq entering into our
definition of the diffuse contribution as sq and into the specular contribution as (1− sq)2 which would
not be seen in a linear mixing approach such as that of Ref. [11].
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Figure 1. Effect of varying η on (a) thermal boundary resistance (note that RTB, x = Rxx and
RTB, z = Rzz); (b) effective thermal conductivity; (c) matrix thermal conductivity; and (d) insert
conductivity for bulk 2H WS2 inserts embedded in a matrix of bulk 2H MoS2 with f = 0.2,
LB, I = 1000 nm, LB, S = 10 µm. The thermal boundary resistance is in units of m2 K W−1, the thermal
conductivities are in units of W m−1 K−1.

Panel (b) of Figure 1 displays κE in the cross-plane and in-plane directions. The cross-plane κE
zz is,

as we would expect from the constituents, smaller than κE
xx. The overall behaviour with decreasing

η in both directions is a monotonic increase from the value in the diffuse limit to saturation as the
specular limit is approached for η ≤ 0.1. Note that while η = 5.0 does not result in a hugely different
value of RTB from that of the diffuse limit, for κE the difference is far more apparent due to the effects
of phonon scattering from the interface boundaries.

Results for κm and κi are displayed in panels (c) and (d) of Figure 1, respectively. Similarly
to the κE results we see that decreasing η takes us monotonically from the diffuse limit (where
scattering from interface boundaries is important) to the specular limit where there is no scattering
from interface boundaries, only the sample edges. Interestingly, κm appears to be slightly less sensitive
to decreasing η close to the specular limit, becoming saturated at η = 0.01 rather than at η = 0.1 as is
seen for κi. This is a result of LIS (the contribution to the scattering length due to interface density)
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being larger in size than LB, I ; as η tends towards zero the effective scattering length of the matrix will
approach the value of the sample length much more quickly.

Figure 2 displays κE
xx and κE

zz for a number of insert sizes, volume fractions and η values between
5.0 and 1.0, with sample size LB, S = 10 µm. These are intended to capture the effects of physically
plausible surface roughnesses, i.e., with deviations from the smooth surface of between 1 and 5
times the lattice constant in height. For all η values, κE in both directions increases with LB, I and
decreases with f , as one would expect. The effect of decreasing η is to reduce the effects of scattering
from interfaces, and so we see enhancement of the peak in thermal conductivity below 100 K as the
surface of the insert becomes more smooth. This enhancement is most noticable for 10 nm inserts
(Figure 2a,b), which in the diffuse limit lack a pronounced peak. As the temperature is increased,
the enhancement is decreased, and the thermal conductivities for all finite η values considered tend
towards the values seen in the diffuse limit. This is to be expected due to the dominance of anharmonic
as opposed to length-based scattering at higher temperatures. The onset of anharmonic dominance
generally occurs at lower temperatures for larger insert sizes, however, even at room temperature we
can see from Table 1 that the effects of varying η can still be quite significant for 10 nm and 100 nm
inserts, particularly for f = 0.2.

Why is the deviation from the diffuse result greater for smaller particles? Recall from Equation (5)
that the effective boundary length LB for both the insert and the matrix is dependent on both the insert
size LB, I and sq. We may vary sq from 1 (diffuse limit) to 0 (specular limit) by decreasing η. A small
LB, I means a smaller LB in the diffuse limit than would be the case with a LB, I , and so for a small LB
a wider range of values will be traversed as sq is varied than in the case where it is larger. The same
decrease in sq will therefore cause a relatively greater change in LB for the case where LB, I is smaller.

For practical purposes, the above conclusion should be qualified slightly. We can estimate from the
lattice constant of WS2 that for LB, I = 10 nm, there is a maximum meaningful value of η ≈ 16, which is
the point at which the average inhomogeneity height is equal to the radius of the insert. This means
that it is entirely possible for η > 5.0 and so for calculations considering only diffusive scattering to
remain good models. However, if the quality of the interface-matrix boundary is sufficiently high,
then the effects of specular scattering from the interfaces of small inserts must be included if the correct
effective thermal conductivity is to be calculated.

In fact, comparing these results with those of Ref. [19] we find that the effects of specularity can
significantly outweigh the effects of the corrections due to matrix and thermal boundary resistance
anisotropy. Behrang et al’s calculation of the effects of specularity through simple mixing for spherical
Si inserts in a Ge matrix [11] suggest that only a slight momentum independent specularity is
needed to mimic Monte Carlo results. However, direct qualitative comparison between our results
and theirs is difficult since they treat thermal boundary resistance differently from the standard
approach, such that they predict smaller thermal conductivities than Minnich-Chen type [8] diffuse
limit calculations for intermediate f and higher thermal conductivities for larger f , whereas we would
expect a Minnich-Chen calculation (with appropriate modifications as in Ref. [19]) to provide the
lower bound for our thermal conductivities.

Table 1. Effective thermal conductivities in units of W m−1 K−1 at different η, LB, I , and volume fraction
for LB, S = 10 µm at 300 K.

Volume
Fraction

0.05 0.1 0.2

LB, I

η Diff. 1.0 2.0 5.0 Diff. 1.0 2.0 5.0 Diff. 1.0 2.0 5.0

κE
xx

10 nm 47.9 73.2 59.3 51.7 28.9 52.5 39.8 31.7 15.5 33.7 23.4 16.9
100 nm 110.2 121.9 114.7 112.5 87.8 104.4 94.1 90.8 61.9 80.6 69.2 61.2
1000 nm 140.0 143.5 141.4 140.5 133.0 139.5 135.6 134.0 121.5 132.7 126.0 123.1

κE
zz

10 nm 1.13 2.69 2.28 1.70 0.67 2.15 1.71 1.07 0.37 1.67 1.18 0.61
100 nm 3.81 4.91 4.52 4.37 2.73 4.04 3.64 3.39 1.77 3.17 2.79 2.41
1000 nm 6.41 6.76 6.59 6.56 5.67 6.22 5.97 5.93 4.67 5.44 5.13 5.05
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Figure 2. Effects of varying η on the effective thermal conductivities of bulk 2H WS2 inserts embedded
in a matrix of bulk 2H MoS2 for LB = 10 µm and different insert sizes and f . (a,b) LB, I = 10 nm;
(c,d) LB, I = 100 nm; (e,f) LB, I = 1000 nm. Thermal conductivities are in units of W m−1 K−1.

4. Conclusions

We have used an extension of a modified effective medium approach (mEMA) to study thermal
conduction in a transition metal dichalcogenide nanocomposite structure with rough interfaces by
accounting for the anisotropic conductivities of the host, the insert and the interface regions. The role
of specularity in phonon-interface scattering and in thermal boundary resistance is incorporated by
implementing a simple phenomenological model relating momentum-dependent specular scattering
and surface roughness. In general, it is found that the effect of specular scattering due to interface
roughness is more pronounced for inserts smaller than 100 nm in the vicinity of 300 K. In particular,
from comparison with calculations carried out in the diffuse limit, for spherical WS2 inserts in
a matrix of MoS2, we predict that the effects of specular scattering due to surface roughness is
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more pronounced for smaller insert sizes, even at volume fractions of the order of 0.05. In other words,
the surface roughness of the insert is a key parameter in controlling the thermal conductivity of
nanocomposites with insert diameters of the order of tens of nanometers. For applications where the
thermal conductivity should be as low as possible (e.g., thermoelectric applications) the surface of
such inserts should be as rough as possible.
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Abbreviations

The following abbreviations are used in this manuscript:

EMA Effective Medium Approach
mEMA modified Effective Medium Approach
emEMA extended modified Effective Medium Approach
SMRT Single Mode Relaxation Time
N Normal anharmonic scattering process
DFT density functional theory

Appendix A. Depolarisation Tensors

We first define the affine transformations for the surface and matrix depolarisation tensors as
follows [15,17,19]:

as, x =

√
RK

xx
RK

zz
a, as, y =

√
RK

yy

RK
zz

a, as, z = a,

am, x =

√
κs

zz
κs

xx
a, am, y =

√
κs

zz
κs

yy
a, am, z = a,

(A1)

Since for this system al, z > al, x = al, y for l = s, m and κl is oriented diagonally for its mixing step,
we may write the depolarisation tensors as follows [16]:

Nl, zz =
1− e2

2e3

(
ln

1 + e
1− e

− 2e
)

, where e =

√√√√1−
a2

l, x

a2
l, z

,

Nl, xx = Nl, yy =
1
2
(1−Nl, zz) .

(A2)

Appendix B. Calculation of the Thermal Conductivity

Appendix B.1. Callaway Thermal Conductivity

Our calculations are performed using the semi-ab initio approach outlined in Ref. [24] with
phonon eigensolutions calculated using density functional theory (DFT) as input.

We compute the relaxation time of anharmonic phonon-phonon processes using a mode-averaged,
temperature-dependent coupling constant, unlike fully ab initio calculations which numerically
estimate third-order force constant tensor elements that are formally valid only at T = 0 K.
We express the thermal conductivity tensor by solving the linearised phonon Boltzmann equation
within a physically appealing generalisation of Callaway’s scheme to obtain an effective relaxation time
[27]. Recently, some research groups have adopted an ‘iterative’ approach for solving the Boltzmann
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equation for an effective relaxation time. Such an approach can be related to the concept of a variational
method described in Ref. [28]. An early work by one of the present authors [29] indicates that the
resulting conductivites would be similar in magnitude to those of the Callaway scheme, as does a more
recent work [30]. More importantly, our overall approach has been validated against experimental
measurements of Si and Ge thermal conductivities over a wide temperature range [24]. The present
approach is briefly outlined below.

We work within the Boltzman transport approach [28], using a generalization [27] of
Callaway’s [31] improvement on the single-mode relaxation time (SMRT) solution which accounts
for the momentum conservation of Normal (N) phonon-phonon scattering processes through the
inclusion of an additional ‘N-drift’ term. The thermal conductivity tensor is defined as follows [27]:

κij =
h̄2

N0ΩkBT2

[
∑
qs

vi
s(q)v

j
s(q)ω2(qs)τqsn̄(qs)(n̄(qs) + 1)

+AC ∑
qs

qivj
sω(qs)τqsτ−1

qs,N n̄(qs)(n̄(qs) + 1)
]
, (A3)

= κSMRT
ij + κN−drift

ij . (A4)

Here,AC is temperature dependent but polarisation and phonon wave-vector independent, and is
expressed as:

AC =
∑qs qivj

sω(qs)τqsτ−1
qs,N n̄(qs)(n̄(qs) + 1)

∑qs qiqjτ−1
qs,N(1− τqsτ−1

qs,N)n̄(qs)(n̄(qs) + 1)
. (A5)

In the above, Ω is the unit cell volume and N0 their number; ω(qs) is the frequency of a phonon
with wavevector q and polarisation s; vi

s(q) is the corresponding group velocity component; n̄(qs) is
the Bose-Einstein distribution function; τqs is the SMRT relaxation time; and τqs,N is the contribution to
τqs from N-type phonon-phonon anharmonic scattering processes. (We note in passing that the above
is a correction to the expressions given in Refs. [24,32], which erroniously state a form valid only for
linear phonon dispersions as opposed to the general form [27] that is actually used in our calculations.)

Contributions to the SMRT are summed as follows:

τ−1
qs = τ−1

qs (bulk) + τ−1
qs (IF/B),

τ−1
qs (bulk) = τ−1

qs (md) + τ−1
qs,N + τ−1

qs,U .
(A6)

Here τ−1
qs (bulk) is the total scattering rate for a bulk system, which is the sum of the mass-defect

and anharmonic (both Normal and Umklapp) scattering rates. τ−1
qs (IF/B) is the contribution from

interface or boundary scattering.

Appendix B.2. Bulk Scattering Rates

The isotopic mass defect scattering rate is given by [28]:

τ−1
qs (md) =

π

2N0
ω2

qs ∑
q′s′

δ(ωqs −ωq′s′)∑
b

Γmd(b)|e?qs(b) · eq′s′(b)|2, (A7)

where eqs(b) is an eigenvector of the lattice dynamical matrix and b labels an atomic site within the
unit cell. For a given atom the mass-disorder coefficient is:

Γmd(b) = ∑
i

fi(b)[1−Mi(b)/M̄(b)]2, (A8)

where fi(b) is the frequency of isotope i of the atomic species at b, Mi(b) the corresponding isotope
mass and M̄(b) is the average mass of that atomic species.
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The semi-ab initio approach [24] is used to calculate the three phonon anharmonic contributions [28]:

τ−1
3ph, qs =

πh̄
$N0Ω

γ̄2(T)
c̄2 ∑

q′s′ , q′′s′′ , G
ωω′ω′′δq+q′+q′′ ,G

×
[ n̄′(n̄′′ + 1)

(n̄ + 1)
δ(ω + ω′ −ω′′) +

1
2

n̄′n̄′′

n̄
δ(ω−ω′ −ω′′)

]
, (A9)

where $ is the mass density, c̄ is the average acoustic velocity and we have suppressed the wavevector
and polarisation indices for ω and n̄ for reasons of brevity. The mode-averaged, temperature dependent
squared Grüneisen parameter γ̄2(T) is calculated using the quasi-harmonic approximation [28,33–35].
If G = 0 then the process is a Normal one, otherwise it is an Umklapp process.

Appendix B.3. Sample Boundary and Interface Scattering Rates

These enter into the total scattering time as:

τ−1
qs (IF/B) =

|vs(q)|
LB

, (A10)

where LB for the matrix and insert are defined in Equation (5).

Appendix B.4. Computational Details

Full details of the generation of phonon eigensolutions for MoS2 and WS2 are given in [32].
Calculations used the Quantum Espresso DFT package [36] with PBE [37] pseudopotentials on 8× 8× 2
Monkhorst-Pack (MP) grids [38]. From these force constants we obtained the frequencies, eigenvectors
and velocities needed for thermal conductivity calculations using 28× 28× 7 MP grids.
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