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Abstract: The electronic structure and the optical properties of Graphene/MoS2 heterostructure (GM)
are studied based on density functional theory. Compared with single-layer graphene, the bandgap
will be opened; however, the bandgap will be reduced significantly when compared with single-layer
MoS2. Redshifts of the absorption coefficient, refractive index, and the reflectance appear in the
GM system; however, blueshift is found for the energy loss spectrum. Electronic structure and
optical properties of single-layer graphene and MoS2 are changed after they are combined to form
the heterostructure, which broadens the extensive developments of two-dimensional materials.
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1. Introduction

Graphene has been popular among researchers since it was successfully exfoliated by
Novoselov et al. in 2004 [1]. Graphene has excellent electrical conductivity [2], excellent mechanical
strength [3,4], superior thermal conductivity [5], and high light transmittance in the visible
light–infrared area [6]. Graphene has been widely used in applications such as solar cells, lighting,
and touch screens [7–14]. However, graphene has been extremely limited in the research and
application of some fields because of its zero band gap. One of the methods used to broaden
the application of graphene is to form a multilayer structure or heterostructure. Stacking different
two-dimensional materials together can form a double-layer or even multi-layer artificial material
that is maintained by van der Waals interactions. Such materials are known as van der Waals
heterojunctions. Surprising physical properties can be obtained by stacking two-dimensional materials
of different properties together. The almost infinitely rich possibilities make the van der Waals
heterojunction even more important than the two-dimensional material itself [15–18]. The large
surface area, high chemical resistance, high stability, and good electrical conductivity of graphene
indicate that graphene sheets are promising as substrates for improving the electrochemical and
electrocatalytic properties of metal oxides and metal sulfides. Properties have already been studied
in the heterostructure of Ni(OH)2/graphene [19] and SnO2/graphene [20], which indicates that the
heterostructure of graphene also has great research prospects. On the other hand, heterostructures
based on graphene and other two-dimensional materials, such as MoS2, will change their electronic
structure and other properties, which has attracted people’s attention.

MoS2 is one of the transition metal dichalcogenides (TMDs). MoS2 can appear in two-dimensional
or three-dimensional forms. The direct band gap will be about 1.8 eV [21,22] when MoS2 appears
as a single-layer two-dimensional material, which makes it a very good semiconductor material.
Monolayers of MoS2 have many excellent properties, such as high electron mobility, low dimensionality,
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smooth atomic sheet [21,23], and outstanding mechanical properties [24]. Monolayers of MoS2 have
been successfully prepared due to their extraordinary properties [25] and have been extensively
studied [21,26–31]. Furthermore, the heterostructure of graphene/MoS2 opens up possibilities
for many applications. For example, Ma et al. [32] systematically investigated the electronic and
magnetic properties of perfect, vacancy-doped, and nonmetal elements (H, B, C, N, O, and F)
adsorbed MoSe2, MoTe2, and WS2 monolayers by means of first-principles calculations. In 2011,
Chang et al. [33,34] successfully synthesized layered graphene or graphene nanosheet/MoS2

composites by an L-cysteine-assisted solution-phase methodand the obtained composites showed
three-dimensional architecture and excellent electrochemical performances which can act as anode
materials for Li-ion batteries. Soon Li et al. [35] developed a selective solvothermal synthesis of
MoS2 nanoparticles on reduced graphene oxide (RGO) sheets and the MoS2/RGO hybrid exhibited
superior electrocatalytic activity in the hydrogen evolution reaction. Coleman et al. [36] showed that
hybrid dispersions or composites could be prepared by blending MoS2 with suspensions of graphene
or polymer solutions. A recent study reported the catalytic activity of MoS2/graphene dots for an
oxygen evolution reaction [37]. The above results proved that the heterostructures of GM are useful in
applications ranging from electronics to energy storage.

There is still a lack of research of optical properties in GM heterostructures up to now.
The heterogeneous structure of graphene has bright prospects of applications and the direct bandgap
electronic structure of MoS2 is an essential property for many optical applications; so, in this paper,
we explore the optical properties of GM based on density functional calculations. The structure of
this paper is as follows: Section 2 gives the theoretical calculation method, Section 3 gives the result
analysis, and Section 4 gives the conclusion.

2. Methods

The DFT calculations we used are performed by the VASP (Vienna ab-initio Simulation Package)
software package [38,39]. The lattice constant of the MoS2 monolayer is 3.16Å, and the lattice constant
of pure graphene is 2.47Å, so the supercell of MoS2 we used was 4*4*1, and the supercell of graphene
was 5*5*1. The lattice mismatch ratio of the system was about 2.29%. We stacked monolayer graphene
and monolayer MoS2 to form the heterostructure of GM, which is shown in Figure 1. In order to
reduce the interaction between the periodic structures in the vertical direction when constructing
the model, a 20Å vacuum is added. In the theoretical calculations, we use the projector-augmented
wave (PAW) [40,41] method to describe the interaction between ions and electrons. At the same
time, the exchange-correlation potential is selected based on the Generalized Gradient Approximation
(GGA [42]) in terms of the Perdew–Burke–Ernzerhof (PBE [42]) functional, which is often used to
calculate the molecular adsorption at the electrode surface. The cutting power of the plane wave is set
to 500 eV. When the structure relaxes, the convergence precision of each interatomic force is 0.02 eV/Å,
and the self-consistent convergence energy is not higher than 10−4 eV. The Brillouin zone was summed
according to the 9×9×1 Monkhorst–Pack characteristic K point. Based on the above conditions,
the calculated distance between graphene and MoS2 is 3.64Å. Then, the electronic structure and the
optical properties of the heterostructures are calculated. Van der Waals interactions are included in
the calculations.

The optical properties can be modeled by the dielectric constant of the system. We use the
superposition of Lorentz oscillators to model the complex dielectric function ε(ω) = ε1(ω) + iε2(ω) of
the heterostructure, which is a function of photon energy. Generally speaking, the dielectric constant is
the real part of the complex permittivity, ε1(ω). The dielectric constant is caused by various kinds of
displacement polarization inside the material and represents the energy storage term of the material.
The imaginary part of the complex permittivity, ε2(ω), is related to the absorption (loss or gain) of the
material. The steering polarization can not keep up with the various relaxation polarizations caused
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by the change of the external high-frequency electric field, and represents the loss term of the material.
The formula of ε2(ω) is as follows:

ε2(ω) =
4π2e2

Ω
lim
q→0

1
q2 ∑

c,v,k
2wkδ(∈ck − ∈vk −w)×

〈
uck + eαq|uvk

〉
〈uck + eβq|uvk 〉∗ (1)

The real part ε1(ω) of the dielectric function can be obtained by using the Kramers–Kroing relation,

ε1(ω) = 1 +
2
π

P
∫ ∞

0

ε
αβ
2 (w′)w′

w′2 − w2 + iη
dω′ (2)
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Figure 1. Top (a) and side (b) views of the Graphene/MoS2 (GM) heterostructure. (c) The differential 
charge density distributions of GM. Gray, purple, and yellow atoms represent C, Mo, and S atoms, 
respectively. Blue means loss electrons and yellow means gain electrons. 
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Figure 1. Top (a) and side (b) views of the Graphene/MoS2 (GM) heterostructure. (c) The differential
charge density distributions of GM. Gray, purple, and yellow atoms represent C, Mo, and S atoms,
respectively. Blue means loss electrons and yellow means gain electrons.

Other optical constants can also be obtained from the dielectric function. For example,
the absorption coefficient α(ω), refractive index n(ω), reflectance R(ω), and energy loss spectrum L(ω)
can all be derived by ε1(ω) and ε2(ω). The formulas are:

α(ω) =

√
2ω

c

{[
ε2
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] 1
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} 1
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R(ω) =

∣∣∣∣∣
√
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∣∣∣∣∣
2

(5)

L(ω) =
ε2(ω)

ε2
1(ω) + ε2

2(ω)
(6)

3. Results and Discussion

In order to illustrate the similarities and the differences of the graphene monolayer,
MoS2 monolayer, and the GM heterostructure, we first calculate the electronic structures of the
three systems. The energy band structures and the electronic density of states (DOS) for the three
systems are shown in Figure 2. It can be found that our calculated curves are well matched with the
results of previous calculations [43,44]. As shown in Figure 2, graphene is a zero bandgap material
and MoS2 is a material with a band gap of 1.73 eV. After they are stacked together to form the GM
structure, as shown in Figure 1, the band gap is 3.49 meV for GM heterostructures, which can be
obtained from the embedded figure in Figure 2c. Based on the interlayer interactions between G and
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M, there will be a change in the on-site energy of atoms in the G layer, so the band gap opens [44,45].
The upward shift of the Dirac point of graphene with respect to the Fermi level indicates that holes are
donated by the MoS2 monolayer, which can be confirmed by the charge transfer between graphene
and MoS2 after stacking. Figure 1c gives the differential charge density distributions, blue means loss
electrons and yellow means gain electrons. It is clear from the figure that holes in G are donated by
M monolayer after the stacking. From Figure 2 we can clearly see that after the heterostructure is
formed, the electronic structure changes greatly. Therefore, we speculate that the formation of the GM
heterostructure will influence the optical properties compared with single-layer graphene or MoS2.
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of Figure 3a. Under the same analysis of the three systems in the low-energy region, we find that the 
most obvious change is a more obvious redshift for the GM system compared with the G system. 
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illustrates differences in the vertical and horizontal directions. Figure 3c, d shows the parallel and 
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constant of the GM system has been significantly improved compared with G and M and different 
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Figure 2. Band structure and density of states (DOS) of graphene (a), MoS2 (b) and the GM
heterostructure (c), respectively. The embedded figure in (c) shows the zoom in of the band structure
near Fermi Energy.

The calculated dielectric constants ε(ω) of the monolayer graphene (G), monolayer MoS2 (M),
and GM heterostructure are shown in Figure 3. Figure 3a shows the parallel direction of the ε1(ω).
We can clearly see from the figure that the overall trends for all systems are almost identical with only
small differences. In fact, people are more interested in the changes that occur in the visible light region.
In the visible light region, the value of the ε1(ω) is obviously the largest in the GM system, followed by
the M system, and finally the G system. Comparing the GM and G system at the low-energy zone, it can
be found that the parallel direction of ε1(ω) for the two systems not only changes at the maximum
values, but also GM has an obvious blueshift of ε1(ω) relative to the G system. Figure 3b shows the
ε1(ω) in the vertical direction and we find similar regularity with those of Figure 3a. Under the same
analysis of the three systems in the low-energy region, we find that the most obvious change is a more
obvious redshift for the GM system compared with the G system. This is because the GM system is an
anisotropic material and the parallel direction of the ε1(ω) illustrates differences in the vertical and
horizontal directions. Figure 3c, d shows the parallel and vertical directions of the imaginary part
of the dielectric constant, respectively. Same properties between the real and the imaginary parts of
ε1(ω) can be found. The peak value of the dielectric constant of the GM system has been significantly
improved compared with G and M and different degrees of redshift or blueshift can also be found.
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Figure 3. The complex dielectric constants of monolayer graphene (G), monolayer MoS2 (M) and GM 
systems. (a,b) represent the parallel and vertical components of the real part of the dielectric 
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constant, respectively. 
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Figure 3. The complex dielectric constants of monolayer graphene (G), monolayer MoS2 (M) and
GM systems. (a,b) represent the parallel and vertical components of the real part of the dielectric
constant, (c,d) represent parallel and vertical components of the imaginary part of the dielectric
constant, respectively.

Figure 4a shows the absorption coefficient α(ω) in the parallel direction. The overall change trend
of the GM and M systems are similar, and the only difference is in the peak values. There are obvious
differences between the GM and G systems. The α(ω) of the GM system is more volatile than the G
system at the peak position. Among the three systems, GM usually has a large α(ω) value in most
cases; however, in the visible region, G is slightly larger than that of the GM system. A zoom in the
region between 0 and 2 eV of Figure 4a is also embedded. The value of the intersection between the
reverse tangent and the x-axis is the optical band gap in the region between 0 and 2 eV in Figure 4a.
It can be found from Figure 4a, that the optical band gap of G is about 0.75 eV, and the optical band
gap of M is about 1.63 eV. However, the band gaps are around 0.41 eV and 1.40 eV when the system is
going from G and M to GM. It is well known that a photoelectron can be excited with less energy when
the optical band gap is small. The optical band gap of GM is significantly reduced, which indicates
that we can use a lower energy to excite a photoelectron in GM compared with the G and M systems.
The vertical direction of α(ω) is given in Figure 4b. The overall change trend of the vertical direction,
α(ω), has a similar regularity compared with the parallel direction. The obvious difference is that the
GM system has a large redshift in the vertical direction compared with the G system. The α(ω) is
greatly improved for the GM system compared with the G and M systems, so the GM system is indeed
superior to the G and M systems in terms of absorption properties.
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Figure 4. The absorption coefficient α(ω) and the refractive index n(ω) of three systems. (a,b) represent
parallel and vertical components of the absorption coefficient α(ω), (c,d) represent parallel and vertical
components of the refractive index n(ω), respectively.

The parallel direction and vertical direction of the refractive index n(ω) are given in Figure 4c,d,
respectively. According to the formula for calculating the refractive index, i.e., Equation (4), we can
see that the refractive index is essentially related to the real and the imaginary parts of the dielectric
constant. By comparing the dielectric constant of Figure 3 and the refractive index image of Figure 4,
it can be found that the change trends of Figure 3a,b are similar with those in Figure 4c,d, which means
that the effects of the real part of the dielectric constant on the refractive index play the leading
role. We found that the n(ω), especially in the visible light range, has a large value for the GM
system. The heat preservation characteristics will be good if the material has a big refractive index.
This property can be applied to materials that require constant temperature conditions.

The parallel and vertical directions of the reflectance R(ω) are given in Figure 5a,b, respectively.
For parallel directions, the GM system is significantly higher than those of the G and M systems,
especially in the visible region. It is obvious that the GM system has a certain redshift relative to the G
system, and this phenomenon is also reflected in the vertical direction. In the visible light region, the
value of the GM system is also higher than those of the other two systems.

The energy loss spectra L(ω) are given in Figure 5c,d. In the parallel direction, L(ω) of the GM in
the low-energy region is significantly less than those of the other two systems. Especially for the G
system, the maximum energy loss in the low-energy zone reaches 2, while the GM system is around 0.3.
As the energy increases, energy losses also increase. The energy loss of the GM system is concentrated
inthe range of 15–20 eV, however for the G and M systems, the energy losses are concentrated in
the range of 5–20 eV and they span a large energy extent. In the vertical direction, the energy losses
of the three systems in the low-energy region are almost zero, indicating that the loss of power in
the vertical direction is small in the low-energy region. The energy loss of the GM system is almost
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concentrated between 15 eV and 18 eV, while the energy of the G and the M system are lost relatively
evenly between 5 eV and 15 eV, which means that the ability to control the energy loss of the GM
system is the best. In addition, the GM system is relatively blueshifted for both horizontal and vertical
energy loss compared with the G and M systems.
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4. Conclusions

In this article, we mainly discuss the electronic structure and the optical properties of GM
heterostructures from the first principles calculations. Based on the DFT theory, dielectric constant,
ε(ω) absorption coefficient α(ω), refractive index n(ω), reflectivity R(ω), and energy loss spectrum
L(ω) of the systems are calculated. It is found that there is indeed a clear improvement of the optical
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