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Abstract: Stable polymeric micelles have been demonstrated to serve as suitable templates for
creating mesoporous metals. Herein, we report the utilization of a core-shell-corona type triblock
copolymer of poly(styrene-b-2-vinylpyridine-b-ethylene oxide) and H2PtCl6·H2O to synthesize
large-sized mesoporous Pt particles. After formation of micelles with metal ions, the reduction process
has been carried out by vapor infiltration of a reducing agent, 4-(Dimethylamino)benzaldehyde.
Following the removal of the pore-directing agent under the optimized temperature, mesoporous
Pt particles with an average pore size of 15 nm and surface area of 12.6 m2·g−1 are achieved.
More importantly, the resulting mesoporous Pt particles exhibit superior electrocatalytic activity
compared to commercially available Pt black.

Keywords: mesoporous materials; catalysts; triblock copolymers; platinum; methanol electro-oxidation

1. Introduction

Currently, platinum (Pt) is widely used as industrial catalysts in the automobile, chemical,
pharmaceutical and electronic industries because of its high catalytic activity toward various catalytic
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reactions [1–3]. Due to the strong demand for Pt catalysts, several technologies have been developed
to optimize Pt catalysts. In contrast to bulk Pt, nanosized Pt possesses larger surface area and
specifically designed surface morphology; hence, they are more attractive for various catalytic
applications. Up to now, various Pt nanostructures have been fabricated, such as nanoparticles [4,5],
nanotubes [6], nanosheets [7], nanodendrites [8], nanocages [9–12], and nanoporous/mesoporous
materials [13–15]. However, it remains a challenge to precisely tune their properties according to their
diverse requirements. Small-sized Pt nanoparticles exhibit low thermal-dynamic stability, and tend to
aggregate easily [16]. The stability of single-atom metal catalysts is difficult to maintain under harsh
reaction conditions [17]. Furthermore, the surface areas of Pt nanotubes, nanosheets, nanodendrites,
and nanocages tend to be not much larger than commercially available Pt black.

Recently, it has been experimentally and theoretically demonstrated that mesoporous materials
can overcome these problems, owing to their specific physical and chemical properties, including
high surface area and controllable pore size. Furthermore, Pt catalysts with large mesopores are
expected to generate higher electrochemical activity due to the less restricted diffusion of guest
species [18–20]. Mesoporous Pt materials have been traditionally synthesized by templating methods
(hard- or soft-templating). The hard-templating approach usually involves several steps, in which
mesoporous silica or carbon is used as a starting template to prepare the desired morphology [21].
However, the mesopores sometimes tend to collapse during the removal of the template. In the
one-pot soft-templating method, amphiphilic molecules (e.g., Brij 58, P123 and F127) have been mostly
utilized as pore-directing agents with inorganic species to design the targeted materials [22–24].
In general, the soft-templating approach has shown more advantages for the preparation of
mesoporous metals as it can easily be extracted by organic solvents at room temperature [25].
Our previous report demonstrated that stable polymeric micelles can serve as templates for the
formation of mesopores in metallic materials [18]. In this study, we extend this concept by using
a core-shell-corona type triblock copolymer of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) to
realize the facile synthesis of large-sized mesoporous Pt particles by vapor infiltration of a reducing
agent, 4-(dimethylamino)benzaldehyde (DMAB). The hydrophobic PS core determines the diameter of
the mesopores, and the anionic PtCl62− ions are accommodated on protonated P2VP+ shell, the free
PEO corona acts as stabilizer of micelles and prevents the fusion of micelles. Thus, each polymeric
block plays a distinct and important role in this system. Finally, the resulting mesoporous Pt particles
exhibit enhanced catalytic activity towards methanol electro-oxidation compared to commercially
available Pt black catalyst, thereby indicating their promising potential as electrocatalysts for various
catalytic reactions in the future.

2. Materials and Methods

Chemicals. Triblock copolymers poly(styrene-b-2-vinylpyridine-b-ethylene oxide) PS192-b-P2VP143-
b-PEO613 was purchased from Polymer Source (Quebec, QC, Canada). Methanol (CH3OH),
tetrahydrofuran (THF), and 4-(Dimethylamino)benzaldehyde (DMAB) were obtained from Acros
Organics (Geel, Antwerp, Belgium). H2PtCl6·H2O and commercially available Pt black were purchased
from Alfa Aesar (Heysham, Lancs, UK). Ethanol was purchased from HiPure Chem. 5 wt% Nafion
solution was obtained from Sigma Aldrich (St Louis, MO, USA). 35% hydrochloric acid (HCl) and
sulfuric acid (H2SO4) were purchased from Beijing chemical plant (Beijing, China). All chemicals were
used directly without further purification.

Preparation of polymeric micelle solution. 25 mg of triblock copolymer PS192-b-P2VP143-
b-PEO613 was completely dissolved in 3.5 mL of THF, and an ultrasonic cleaner was used to accelerate
its dissolution. Then, 70 µL of 35% HCl solution was added to stimulate micellization. The solution was
stirred by magnetic stirring for 10 min so that it was sufficiently micellized. The obtained solution was
transferred into a dialysis membrane tube (Mw cut-off: 14,000 Da, Merck, Germany) and was dialyzed
against methanol for six dialysis cycles. Each cycle was conducted for 6 h to completely remove the
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THF. Finally, 5 mL volumetric flask was used to set the micelle capacity to a fixed concentration of
5 g·L−1.

Preparation of large-sized mesoporous Pt powders. 1 mL of the polymeric micelle solution
(5 g·L−1) was mixed with 1.73 mL of 20 mM H2PtCl6 solution and stirred for 30 min at room
temperature. The mixed solution was then transferred onto glass substrates. After the full evaporation
of the solvent, the glass substrates were placed in a closed vessel with a small amount of DMAB
powder at 28 ◦C. The color of the mixture on the glass substrates gradually changed from orange to
black after 3 days. After that, the solid mixtures were collected and rinsed 3 to 5 times with deionized
water and centrifuged. After the deionized water was evaporated, the dried black powder was calcined
for 1 h at different temperatures (250 ◦C, 350 ◦C and 450 ◦C). The obtained products of mesoporous
Pt-250, Pt-350, Pt-450 (the number represents the calcination temperature) were collected and stored
for further characterization.

Characterization. The morphology of the mesoporous Pt particles was observed with a field
emission scanning electron microscope (SEM, HITACHI S-4800, Tokyo, Japan) at 10 kV. The interior
structure was investigated with a transmission electron microscope (TEM, JEOL JEM-1200EX, Tokyo,
Japan) operated at 120 kV. The phase composition of the product was determined using wide-angle
X-ray diffraction (XRD) (RIGAKU, Japan) with a Smart lab X-ray diffractometer. The hydrodynamic
diameters (Dh) and zeta potential values of the polymeric micelles and the composite polymeric
micelles were measured by Malvern Zetasizer Nano ZS90 (Malvern, UK). The morphology of the
micelles was performed using atomic force microscope (AFM, Bruker, Billerica, MA, USA) with the
non-contact mode. The thermal stability of the triblock copolymer was tested using thermogravimetric
analysis (TG, TA instruments Q600 SDT, New Castle, DE, USA). The specific surface area of
the mesoporous Pt particles was measured by the Brunauer–Emmett–Teller (BET, Quantachrome
QuadraSorb, Boynton Beach, FL, USA) analysis method.

Electrochemical test. The electrochemical measurements investigations were performed
with a CHI 600E electrochemical analyzer (CHI Instrument, Austin, TX, USA) to perform cyclic
voltammograms (CVs) and chronoamperometric curves (CA) of mesoporous Pt catalysts and
commercially available Pt black. A three-electrode system consisting of reference electrode (Ag/AgCl
electrode), counter electrode (Pt wire), and working electrode (glassy carbon electrode, GCE).
To prepare the working electrode, the sample was dispersed into a solution containing 5 wt% Nafion
and deionized water, and placed into an ultrasonicator to make it into a well-mixed suspension
(5 g·L−1). Then, 3 µL of the suspension was loaded onto the GCE and dried at room temperature.
Methanol electro-oxidation measurements were carried out in 0.5 M H2SO4 containing 0.5 M methanol.
The electrochemical surface area (ECSA) was determined from the charge associated with the hydrogen
desorption (0.21 mC·cm−2) between −0.2 V to 0.2 V, and it was calculated from the CVs using
the equation:

ECSA
(

m2·g−1
)
=

SH
V × 10 × 0.21 × MPt

(1)

where, SH (A·V) is the desorption peak area, V is the sweep rate (V·s−1), the conversion value used for
the desorption of a hydrogen monolayer is 0.21 (mC·cm−2) and MPt is the mass of Pt (g).

3. Results

3.1. Polymeric Micelle Solution

A stable micelle solution in methanol was prepared through a dialysis process. The triblock
copolymer of PS192-b-P2VP143-b-PEO613 was completely dissolved as unimers in THF. Then, HCl
solution was added to stimulate micellization. Three-layer micelles were formed, including a PS core,
a P2VP shell, and a PEO corona and this was accompanied by the change in color of the solvent from
clear to turbid. This is because the hydrophobic PS unit prefers to self-assemble as PS core to reduce
the interfacial energy between the PS block and the solvent. After stirring, the mixed solution was
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transferred into a dialysis membrane tube, which was dipped into the methanol solution. The dialysis
membrane was porous; thus, the polymeric micelles of PS192-b-P2VP143-b-PEO613 were preserved
inside, while the THF was gradually replaced by methanol. The Tyndall effect is observed as a clear
optical path in the solution, which confirms the presence of stable micelles in solution (Figure 1a,b).
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Figure 1. (a) Photograph of the reaction solution after micellization, a light scattering of the Tyndall
effect demonstrates the presence of micelles. (b) TEM image of micelles. AFM images and particle size
distribution histograms of micelles (c,d) in neutral solution and (e,f) in acidic solution. The particle size
distribution histograms were obtained from representative regions, and the diameters of 100 micelles
were collected.

The hydrodynamic diameter (Dh) of the micelles was determined using dynamic light scattering
measurements. In neutral solution, the Dh value of PS192-b-P2VP143-b-PEO613 micelles was
approximately 56.4 nm with a size polydispersity (PDI) of 0.288. In acidic solution, Dh and PDI
were measured to be 61.8 nm and 0.195, respectively. The Dh value was increased because of intra- and
intersegmental electrostatic repulsive force between adjacent protonated P2VP+ blocks. The shape of
the micelles was changed from shrunken to swollen. The low value of PDI indicates the formation of
nearly monodispersed micelles. Figure 1c–f gives the particle size distribution histograms based on the
AFM measurement, which are in good agreement with those results detected from Dh. The dominant
size of the micelles in acidic solution is relatively larger, which gives further evidence of pH-sensitive
morphological change of the micelles. In the same concentration, the micelle density in neutral
environment is obviously higher, and the micelle shows irregular contours. This might be due to
the ease of aggregation of micelles under neutral conditions. On the other hand, highly regular and
stable spherical micelles are observed in acidic micelle solution. Furthermore, a smaller value of
approximately 30 nm was observed for micelles under acidic condition from the SEM image, because
the “dried” micelles were shrunken.
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3.2. Synthesis of Mesoporous Pt Particles

Mesoporous Pt particles were prepared via several steps, as shown in Figure 2. Initially, polymeric
micelle of PS192-b-P2VP143-b-PEO613 reacted with negatively charged PtCl62− to form composite
micelles. Strong acidic media promoted the protonation of P2VP shells. The protonated P2VP+ blocks
in acidic environment provide accommodation sites for anionic PtCl62−. After addition of Pt solution,
the zeta potential value was changed from positive to almost zero, indicating that the absence of
positive charge on the surface of the micelles. This suggests the occurrence of neutralization reaction
between P2VP+ and PtCl62−. After stirring at room temperature for 30 min, a small volume of the
PS192-b-P2VP143-b-PEO613/PtCl62− composite micelle solution was dropped onto the glass substrate
to induce rapid evaporation of the solvent. This process of solvent evaporation promoted the micelle
assembly into spherical close-packing micelles. The as-prepared sample was completely dried and
appeared as yellow-colored species on the glass substrate. Several pieces of the as-prepared samples
were placed in a closed vessel with a little amount of DMAB powders at 28 ◦C. DMAB vapor acts
as a reducing agent to drive Pt deposition, as suggested by the change in color of the as-prepared
samples from yellow to dark, thus indicating successful Pt deposition. After reaction, the Pt samples
were scratched from the glass substrate and washed 3–5 times with water to remove unreacted
H2PtCl6. Different temperatures (250 ◦C, 350 ◦C and 450 ◦C) were chosen to investigate the effect of
calcination temperature on the degradation of triblock copolymers and the morphology of the resulting
mesoporous Pt product.

Nanomaterials 2018, 8, x FOR PEER REVIEW  5 of 10 

 

3.2. Synthesis of Mesoporous Pt Particles  

Mesoporous Pt particles were prepared via several steps, as shown in Figure 2. Initially, 
polymeric micelle of PS192-b-P2VP143-b-PEO613 reacted with negatively charged PtCl62− to form 
composite micelles. Strong acidic media promoted the protonation of P2VP shells. The protonated 
P2VP+ blocks in acidic environment provide accommodation sites for anionic PtCl62−. After addition 
of Pt solution, the zeta potential value was changed from positive to almost zero, indicating that the 
absence of positive charge on the surface of the micelles. This suggests the occurrence of 
neutralization reaction between P2VP+ and PtCl62−. After stirring at room temperature for 30 min, a 
small volume of the PS192-b-P2VP143-b-PEO613/PtCl62− composite micelle solution was dropped onto the 
glass substrate to induce rapid evaporation of the solvent. This process of solvent evaporation 
promoted the micelle assembly into spherical close-packing micelles. The as-prepared sample was 
completely dried and appeared as yellow-colored species on the glass substrate. Several pieces of the 
as-prepared samples were placed in a closed vessel with a little amount of DMAB powders at 28 °C. 
DMAB vapor acts as a reducing agent to drive Pt deposition, as suggested by the change in color of 
the as-prepared samples from yellow to dark, thus indicating successful Pt deposition. After reaction, 
the Pt samples were scratched from the glass substrate and washed 3–5 times with water to remove 
unreacted H2PtCl6. Different temperatures (250 °C, 350 °C and 450 °C) were chosen to investigate the 
effect of calcination temperature on the degradation of triblock copolymers and the morphology of 
the resulting mesoporous Pt product. 

 
Figure 2. Schematic illustration of the preparation procedures of mesoporous Pt particles. (a) 
Polymeric micelle of PS192-b-P2VP143-b-PEO613 reacts with negatively charged PtCl62− to form composite 
micelles, and the solvent on the glass substrate is evaporated. (b) Pt deposition is stimulated by the 
vapor infiltration of the reducing agent DMAB. (c) After removal of the template through calcination, 
black mesoporous Pt catalyst is obtained. 

The beauty of the triblock copolymer is the distinct contribution of each block in core-shell-
corona type PS192-b-P2VP143-b-PEO613. The hydrophobic PS block forms the core of the micelles to 
control the pore size. The pH-sensitive P2VP block is the key binding site of inorganic species. In 
acidic media, anionic ions preferably interact with P2VP+. The outer free PEO block acts as a micelle 
stabilizer through steric repulsion, leading to well-dispersed micelles in precursor solutions [26]. 
From the TEM image, the highlighted PS core by 0.1 wt% phosphotungstic acid has a diameter of 
approximately 15 nm (Figure 1b). We examined the effect of the inorganic precursor concentration 
on the structure of the mesopores. The molar ratio of PtCl62−/P2VP was changed from 1.5:1 and 3:1 to 
5:1 while keeping the concentration of micelles constant. When the molar ratio of PtCl62−/P2VP was 
1.5:1, small-sized Pt particles with incomplete mesoporous structures were obtained (Figure S1a). The 
mesoporous structure can be obtained when the molar ratio of PtCl62−/P2VP is increased to 3:1 (Figure 
3). However, with a further increase of the molar ratio of PtCl62−/P2VP to 5:1, heavily aggregated 
large-sized Pt particles are observed (Figure S1b). The extra amount of PtCl62− appears to bind several 
composite micelles to form merged particles. The optimized molar ratio of PtCl62−/P2VP is 3:1 in this 
study. 

Figure 2. Schematic illustration of the preparation procedures of mesoporous Pt particles. (a) Polymeric
micelle of PS192-b-P2VP143-b-PEO613 reacts with negatively charged PtCl62− to form composite micelles,
and the solvent on the glass substrate is evaporated. (b) Pt deposition is stimulated by the vapor
infiltration of the reducing agent DMAB. (c) After removal of the template through calcination, black
mesoporous Pt catalyst is obtained.

The beauty of the triblock copolymer is the distinct contribution of each block in core-shell-corona
type PS192-b-P2VP143-b-PEO613. The hydrophobic PS block forms the core of the micelles to control the
pore size. The pH-sensitive P2VP block is the key binding site of inorganic species. In acidic media,
anionic ions preferably interact with P2VP+. The outer free PEO block acts as a micelle stabilizer
through steric repulsion, leading to well-dispersed micelles in precursor solutions [26]. From the TEM
image, the highlighted PS core by 0.1 wt% phosphotungstic acid has a diameter of approximately
15 nm (Figure 1b). We examined the effect of the inorganic precursor concentration on the structure of
the mesopores. The molar ratio of PtCl62−/P2VP was changed from 1.5:1 and 3:1 to 5:1 while keeping
the concentration of micelles constant. When the molar ratio of PtCl62−/P2VP was 1.5:1, small-sized
Pt particles with incomplete mesoporous structures were obtained (Figure S1a). The mesoporous
structure can be obtained when the molar ratio of PtCl62−/P2VP is increased to 3:1 (Figure 3). However,
with a further increase of the molar ratio of PtCl62−/P2VP to 5:1, heavily aggregated large-sized Pt
particles are observed (Figure S1b). The extra amount of PtCl62− appears to bind several composite
micelles to form merged particles. The optimized molar ratio of PtCl62−/P2VP is 3:1 in this study.
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Figure 3. (a) SEM and (b) TEM images of mesoporous Pt-350 particles prepared from triblock copolymer
PS192-b-P2VP143-b-PEO613. (c) High-resolution TEM image focusing on the edge of mesoporous Pt-350
particles. (d) The corresponding electron diffraction (ED) patterns of (111), (200), (220) and (311) planes
can be assigned to a fcc crystal. (e) XRD analysis with the red vertical lines representing the diffraction
peaks of bulk Pt (JCPDS Card No. 65-2868).

Since large-sized mesoporous noble-metal particles have good thermal stability [27], we applied
a simple calcination to remove the organic template. According to the thermogravimetric (TG) analysis,
the thermal degradation temperature of the used triblock copolymer is around 400 ◦C (Figure S2).
Three samples of Pt-250, Pt-350 and Pt-450 were prepared at different calcination temperatures (Note:
Pt-0 is the as-prepared sample before the removal of the template). From SEM images (Figure S3a,b),
both Pt-0 and Pt-250 have organic residues on their surface. The presence of organic residues devalues
the electrocatalytic activity of Pt catalysts. Well-designed mesoporous structures were observed on the
surface of Pt-350 with pore sizes ranging from 15–20 nm (Figure 3a). However, a higher calcination
temperature of 450 ◦C can facilitate rapid removal of the template and collapse of the mesoporous
structure due to significant rearrangement of Pt atoms and rapid growth to aggregated Pt crystals
(Figure S3c). Hence, it is necessary to carefully investigate the thermal treatment process to synthesize
mesoporous Pt particles with desirable structure and morphology.
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In this study, Pt-350 calcined at 350 ◦C was selected as a representative sample for further
characterization. TEM and high-resolution TEM images (Figure 3b,c) indicate that the observed
fringe spacing is around 0.23 nm, which can be assigned to the (111) plane of a fcc Pt crystal [28].
The black powder scratched from the glass substrate was used for the wide-angle X-ray diffraction
(XRD) analysis (Figure 3e). The observed diffraction peaks of (111), (200), (220), (311), and (222) match
well with the Pt fcc structure (JCPDS Card No. 65-2868) and these results are consistent with the
selected-area electron diffraction (SAED) pattern (Figure 3d), suggesting that this mesoporous Pt
sample has a fcc atomic arrangement. By analyzing the (111) diffraction peak of Pt-350 using the
Scherrer equation, the average crystallite size of the Pt nanoparticles was calculated to be 8.6 nm.
This value is slightly larger than the value measured from the high-resolution TEM image (Figure 3c),
because the volume-weighted measurements of XRD sometimes tend to overestimate the geometric
particle size [29]. From the N2 adsorption-desorption isotherm, the surface area of Pt-350 is measured
to be approximately 12.6 m2·g−1.

3.3. Methanol Electro-Oxidation

Mesoporous Pt particles have demonstrated good electrocatalytic activity toward methanol
electro-oxidation owing to their high surface area and easy access of the interior area. Three samples
(Pt-250, Pt-350 and Pt-450) and the commercially available Pt black (Figure S4) were investigated in
a three-electrode system. Figure 4a shows the typical cyclic voltammetry (CV) curves detected in 0.5 M
H2SO4 at a scan rate of 50 mV·s−1. The ECSA of each sample was obtained by calculating the charge
passed during hydrogen desorption in the potential range from –0.2 V to 0.2 V. Pt-350 has the largest
specific ECSA of 14.6 m2·g−1 due to the presence of a high density of accessible active sites. It is 5.5, 1.7,
and 3.5 times higher than that of Pt-250 (2.66 m2·g−1), Pt-450 (8.36 m2·g−1), and Pt black (4.18 m2·g−1),
respectively. Both less-conductive organic layers coated on the surface (in the case of Pt-250) and
significant thermal aggregation of the Pt crystals (in the case of Pt-450) hinder electrolyte contact
with the catalysts, and lower the utilization of active sites. Furthermore, the representative methanol
electro-oxidation test was detected in 0.5 M H2SO4 containing 0.5 M CH3OH solution, as shown in
Figure S5. Two typical anodic peaks are observed during the forward and backward sweeps. Pt-350
still exhibits the best catalytic performance. Normalized by ECSA, the peak current densities of the
forward sweep are 10.04, 5.17, 3.84, and 7.15 A·m−2 for Pt-350, Pt-450, Pt-250, and Pt black, respectively.
The mass-specific current density of Pt-350 is 146.6 mA·mg−1, which is comparable with the data
published in the literature [14,30]. However, there is still a lot of potential for further improvement
in catalytic performance. The excellent performance of Pt-350 can be ascribed to the formation of
mesoporous structure with more accessible active sites. Typical chronoamperometric measurements
were performed at 0.6 V to investigate their stability (Figure 4b). All samples show a downward trend.
Among these samples, Pt-350 has the highest initial current density and the slowest decay rate over
a period of 2000 s due to the contribution of well-defined mesoporous structure.
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analysis (Figure 3e). The observed diffraction peaks of (111), (200), (220), (311), and (222) match well 
with the Pt fcc structure (JCPDS Card No. 65-2868) and these results are consistent with the selected-
area electron diffraction (SAED) pattern (Figure 3d), suggesting that this mesoporous Pt sample has 
a fcc atomic arrangement. By analyzing the (111) diffraction peak of Pt-350 using the Scherrer 
equation, the average crystallite size of the Pt nanoparticles was calculated to be 8.6 nm. This value 
is slightly larger than the value measured from the high-resolution TEM image (Figure 3c), because 
the volume-weighted measurements of XRD sometimes tend to overestimate the geometric particle 
size [29]. From the N2 adsorption-desorption isotherm, the surface area of Pt-350 is measured to be 
approximately 12.6 m2·g−1. 

3.3. Methanol Electro-Oxidation  

Mesoporous Pt particles have demonstrated good electrocatalytic activity toward methanol 
electro-oxidation owing to their high surface area and easy access of the interior area. Three samples 
(Pt-250, Pt-350 and Pt-450) and the commercially available Pt black (Figure S4) were investigated in 
a three-electrode system. Figure 4a shows the typical cyclic voltammetry (CV) curves detected in 0.5 
M H2SO4 at a scan rate of 50 mV·s−1. The ECSA of each sample was obtained by calculating the charge 
passed during hydrogen desorption in the potential range from –0.2 V to 0.2 V. Pt-350 has the largest 
specific ECSA of 14.6 m2·g−1 due to the presence of a high density of accessible active sites. It is 5.5, 
1.7, and 3.5 times higher than that of Pt-250 (2.66 m2·g−1), Pt-450 (8.36 m2·g−1), and Pt black (4.18 m2·g−1), 
respectively. Both less-conductive organic layers coated on the surface (in the case of Pt-250) and 
significant thermal aggregation of the Pt crystals (in the case of Pt-450) hinder electrolyte contact with 
the catalysts, and lower the utilization of active sites. Furthermore, the representative methanol 
electro-oxidation test was detected in 0.5 M H2SO4 containing 0.5 M CH3OH solution, as shown in 
Figure S5. Two typical anodic peaks are observed during the forward and backward sweeps. Pt-350 
still exhibits the best catalytic performance. Normalized by ECSA, the peak current densities of the 
forward sweep are 10.04, 5.17, 3.84, and 7.15 A·m−2 for Pt-350, Pt-450, Pt-250, and Pt black, 
respectively. The mass-specific current density of Pt-350 is 146.6 mA·mg−1, which is comparable with 
the data published in the literature [14,30]. However, there is still a lot of potential for further 
improvement in catalytic performance. The excellent performance of Pt-350 can be ascribed to the 
formation of mesoporous structure with more accessible active sites. Typical chronoamperometric 
measurements were performed at 0.6 V to investigate their stability (Figure 4b). All samples show a 
downward trend. Among these samples, Pt-350 has the highest initial current density and the slowest 
decay rate over a period of 2000 s due to the contribution of well-defined mesoporous structure. 

 
Figure 4. (a) Cyclic voltammograms were carried out in 0.5 M H2SO4 with the potential between −0.2 
and 1 V at a scan rate of 50 mV·s−1. (b) Chronoamperometric curves at 0.6 V were recorded in an 
aqueous solution containing 0.5 M H2SO4 and 0.5 M CH3OH. 

  

Figure 4. (a) Cyclic voltammograms were carried out in 0.5 M H2SO4 with the potential between
−0.2 and 1 V at a scan rate of 50 mV·s−1. (b) Chronoamperometric curves at 0.6 V were recorded in
an aqueous solution containing 0.5 M H2SO4 and 0.5 M CH3OH.
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4. Conclusions

We proposed a realizable approach for the synthesis of mesoporous Pt particles with accessible
pores using the core-shell-corona type PS-b-P2VP-b-PEO triblock copolymer as a soft template.
The triblock copolymer PS-b-P2VP-b-PEO is critical to direct the formation of large mesopores, and each
block serves a distinct contribution. The hydrophobic PS cores determine the size of the mesopores,
the protonated P2VP+ units are the selective binding sites for anionic PtCl62−, the hydrophilic PEO
coronas are critical for stability of the micelles. The molar ratio of PtCl62−/P2VP plays an important
role in determining the mesoporous structure. The excessively large proportion of PtCl62− can lead to
the aggregation of Pt particles, while an insufficient amount of PtCl62− results in the incomplete
mesoporous structure. Here, the optimum molar ratio of PtCl62−/P2VP is identified to be 3:1.
Furthermore, it is demonstrated that 350 ◦C is the optimum calcination temperature, as organic
residues were not completely removed at 250 ◦C, and the mesoporous structure would be destroyed
at 450 ◦C. The obtained mesoporous Pt particles were shown to be highly active electrocatalysts
for methanol electro-oxidation compared to commercially available Pt black. The processes of Pt
deposition and removal of template are simple and easy to implement, and easy preparation of other
mesoporous Pt-based alloys may also be achieved using the same methodology. These results provide
an important finding for boosting the catalytic performance of Pt, especially for fuel cells.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/10/841/s1,
Figure S1. SEM images of mesoporous Pt samples prepared with molar ratios of PtCl62−/P2VP: (a) 1.5:1 and (b) 5:1.,
Figure S2. TG data of polymeric micelle of PS192-b-P2VP143-b-PEO613, Figure S3. SEM images of mesoporous Pt
samples (a) Pt-0, (b) Pt-250 and (c) Pt-450, Figure S4. SEM image of commercially available Pt black. Figure S5.
(a,b) Cyclic voltammograms detected in 0.5 M H2SO4 containing 0.5 M CH3OH solution with the potential
between 0 and 1 V at a scan rate of 50 mV·s−1. The currents of panel (a) were normalized by the Pt mass and
the currents of panel (b) were normalized by the ECSA values obtained from the CV curves recorded in 0.5 M
H2SO4 solution.
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