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Abstract: Aqueous synthesis without ligands of iron oxide nanoparticles (IONPs) with exceptional
properties still remains an open issue, because of the challenge to control simultaneously numerous
properties of the IONPs in these rigorous settings. To solve this, it is necessary to correlate the
synthesis process with their properties, but this correlation is until now not well understood. Here,
we study and correlate the structure, crystallinity, morphology, as well as magnetic, relaxometric
and heating properties of IONPs obtained for different durations of the hydrothermal treatment
that correspond to the different growth stages of IONPs upon initial co-precipitation in aqueous
environment without ligands. We find that their properties were different for IONPs with comparable
diameters. Specifically, by controlling the growth of IONPs from primary to secondary particles
firstly by colloidal and then also by magnetic interactions, we control their crystallinity from
monocrystalline to polycrystalline IONPs, respectively. Surface energy minimization in the aqueous
environment along with low temperature treatment is used to favor nearly defect-free IONPs featuring
superior properties, such as high saturation magnetization, magnetic volume, surface crystallinity, the
transversal magnetic resonance imaging (MRI) relaxivity (up to r2 = 1189 mM−1·s−1 and r2/r1 = 195)
and specific absorption rate, SAR (up to 1225.1 W·gFe

−1).

Keywords: iron oxide nanoparticles; magnetic nanoparticle; aqueous synthesis; hydrothermal
treatment; saturation magnetization; MRI relaxivity; specific absorption rate
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1. Introduction

Iron oxide nanoparticles (IONPs) are widely used for numerous applications from solid state [1,2]
to biomedical ones [3–12]. For all these applications, one needs to control simultaneously numerous
mutually related properties of IONPs, such as composition, structure, morphology, crystallinity,
magnetic volume, saturation magnetization etc. Moreover, all these IONPs’ properties either directly
or indirectly determine specific application-related properties, such as magnetic resonance imaging
(MRI) relaxivity (r) or specific absorption rate (SAR) related to biomedical applications as MRI contrast
agents or as mediators for the hyperthermia treatment, respectively. Furthermore, fine-tuning of
the IONPs’ properties has been shown to strongly influence both r and SAR due to their complex
dependence on IONPs’ properties, which are in addition mutually related in a non-linear manner.
In fact, it has been shown that some of the small changes in one IONPs’ property could dramatically
affect even a few other properties. For instance, the magnetic volume is typically smaller than the
IONPs’ volume due to a “magnetically dead” surface layer of disordered spins. This is often considered
to be a consequence of structurally disordered (i.e., non-crystalline) surfaces around the crystalline
IONPs. Thus, high surface crystallinity is needed to increase the magnetic volume via minimizing
the thickness of the spin-disordered or magnetically dead surface layer. Besides the crystallinity of
IONPs, the shape of IONPs also affects spin ordering at their surface. Namely, specific shapes are
preferred for specific compositions, i.e., crystalline structures. For example, for IONPs with a cubic
crystal structure, i.e., Fe3O4 and γ-Fe2O3, a cubic shape is preferred over the spherical one, because
surface spins of a sphere are highly canted against external magnetic fields on most of the surface,
while the surface spin state in cubes has close similarity with the core spin state [13]. Indeed, numerous
studies of IONPs with cubic shapes reported advantageous properties as compared to IONPs with a
similar size but non-cubic shapes, such as higher values of saturation magnetization [14–17], which is
directly related to the magnetic volume and thus, to the thickness of the magnetically dead surface
layer. Consequently, IONPs with controlled shapes have been reported to have among the highest
r and SAR values for IONPs: r2 relaxivity of 761 mM−1·s−1 at 3 T for cubes of 22 nm [15] and SAR
of 2560 W·gFe

−1 at 20.7 kA·m−1 field strength and 325 kHz for octahedrons of 40 nm [18]. Beyond
the shape, the dipolar interaction strongly affects both r2 and SAR. r2 of 835 mM−1·s−1 (r2/r1 = 139)
at 3 T was reported for mesoscopic IONP clusters [19] and 675 mM−1·s−1 at 3 T was reported for
worm-like IONP clusters [20], while SAR of 960 W·g−1 at 410 kHz and field amplitude 10 kA·m−1

was reported for bacterial magnetosomes with a mean core diameter of about 30 nm [21]. Thus, the
simultaneous control of numerous IONPs’ properties is essential to obtain high r2 and SAR. Such
a control of the IONPs’ morphology, magnetic volume and other properties is difficult, but it can
be achieved typically by the specific combination of organic solvent(s) and/or ligand(s) with other
optimal synthesis parameters (e.g., high temperatures, special atmosphere) [15]. However, numerous
efforts have been recently put in green environmental-friendly chemistry, and thus, in designing and
studying chemical processes, which yield products with as-better-as-possible properties and which do
not use organic solvents, special atmosphere, extreme conditions, ligands etc. [22,23]. Such a synthesis
of IONPs with controlled properties, which result in r2 and SAR values comparable with values
obtained by non-aqueous synthesis with ligands remains the challenge. To achieve this, one firstly
need to understand the IONPs’ growth and changes under such conditions in a way, which allows
to obtain at least the desired chemical composition and structure and to study the other properties
in relation to the synthesis parameter(s). Therefore, our goal was to tackle these issues and to obtain
IONPs with controlled properties under such conditions, and to correlate such a synthesis process
with the properties of IONPs.

In order to control properties of IONPs in an aqueous synthesis and to separate nucleation and
growth, we have developed a novel synthesis route which combines the co-precipitation (CP) and the
hydrothermal treatment (HT), termed CP + HT [24]. In our previous study, we optimized some of
the general synthesis parameters [24], and we found the optimal temperature for the HT step, which
allowed high vacancy ordering in IONPs of γ-Fe2O3 studied by the synchrotron radiation powder
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diffractometry [25]. However, it is known that besides the temperature of the HT step, its duration
has a crucial influence on the final synthesis product and therefore, that influence has to be studied
into details. Since we previously optimized the other parameters, we here studied the influence of the
HT treatment duration, which represents different growth stages of IONPs, on the size, crystallinity,
structure, morphology, magnetic properties, MRI relaxivity and specific absorption rate of the obtained
IONPs. The results showed an optimal duration of the HT treatment, which corresponds to IONPs
with excellent properties.

2. Results

2.1. Synthesis, Structure and Crystallinity of IONPs

IONPs were synthesized by the CP + HT route, which consists of alkaline co-precipitation that
results in instantaneous nucleation [26], and subsequent HT treatment, which allows the growth of
previously formed nuclei. Briefly, the suspensions obtained by CP of ferrous and ferric chlorides in
alkaline milieu were heat treated in autoclaves at 120 ◦C. To assess and follow the “evolution” of
IONPs’ properties, the HT treatment was performed for different durations: 0, 6, 12, 15, 18 and 24 h; the
corresponding sample names are 1–6, respectively. The obtained magnetite (Fe3O4) nanoparticles (NPs)
were subsequently oxidized, yielding maghemite (γ-Fe2O3) IONPs, which were then characterized
without size separation. Figure 1a shows representative transmission electron microscopy (TEM)
micrographs of the obtained IONPs for different durations of the HT treatment. From manually
measured Feret diameters of 500 IONPs’ in representative TEM micrographs, we calculated the
equivalent diameter often termed “TEM diameter”, dT (see the Experimental Section for calculation
details, Figure S1 for additional TEM micrographs, and Figure S2 for dT distribution). As expected,
longer HT treatments resulted in larger particles (see Table 1).
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Figure 1. (a) Representative TEM micrographs of IONP samples. The scale bars on the micrographs
are 50 nm. The red arrow on the top indicates the direction of the increase of the duration of the
HT treatment. (b) Lattice parameter, and (c) saturation magnetization measured at 300 K for IONPs
compared with corresponding values of stoichiometric maghemite (γ-Fe2O3) and magnetite (Fe3O4)
used as reference and marked by red lines.
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The crystalline structure of IONPs was analyzed by X-ray diffraction, XRD (see patterns in
Figure S3). All samples displayed the characteristic spinel structure (space group Fd3m, number
227), which corresponds to both γ-Fe2O3 and Fe3O4. In fact, magnetite has larger values for all
desirable properties than maghemite (e.g., saturation magnetization, see Figure 1c); however the
latter is preferred for some applications, like for example for injectable nanomedicine, because the
presence of Fe2+ in the former was previously reported to promote oxidative stress [27]. The distinction
between these two iron oxides is possible by comparing the lattice parameters of the studied IONPs
with those of stoichiometric γ-Fe2O3 (8.346 Å, JCPDS file 39-1346) and Fe3O4 (8.396 Å, JCPDS file
19-629). The lattice parameters of IONPs (Figure 1b and Table 1), as obtained by the refinement of XRD
patterns match that of γ-Fe2O3 to within the standard deviation. The crystallite diameter of IONPs,
dC (Table 1), was obtained from XRD refinement combined with the Debye-Scherrer method using
either only the narrowest line (404), or all lines of the eight Bragg reflections (for dC calculated from all
8 lines separately see Table S1). The thereby obtained values of dC agree with the dT The typical peak
broadening with decreasing IONPs’ size (especially in sample 1) is also observed, which also suggests
the high defect density within IONPs in sample 1. As the duration of the HT treatment increases, both
dT and dC increase correspondingly: both dT and dC doubled in sample 2 as compared to sample 1,
while the following samples (3, 4 and 5) did not show any notable difference with sample 2. Further
enlargement of dT and dC occurs again in sample 6.

Table 1. Equivalent particle size or TEM diameter (dT), hydrodynamic diameter (dH) in water from
number-weighted distribution, crystalline diameter (dC) (the average (dCa) and obtained from the
narrowest line (404) (dC404)), lattice parameter (a), ζ-potential at pH 4 and specific surface area (SSA)
(measured by BET) of IONPs. Data are given as mean ± standard deviation. Standard deviation for dC

and SSA is ~10%.

Sample
Name

dT (nm) dH (nm)
dC (nm) ζ-Potential at

pH 4 (mV) a (Å) SSA (m2/g)
dCa dC404

1 8.0 ± 1.9 16.1 ± 4.5 7.6 8.2 55.6 ± 0.4 8.342(9) 170.33
2 14.7 ± 5.0 26.9 ± 8.5 14.6 16.6 47.4 ± 2.2 8.3468(29) 91.92
3 15.6 ± 4.7 29.5 ± 8.5 15.9 18.0 47.9 ± 2.3 8.3505(26) 91.92
4 19.0 ± 5.7 25.8 ± 7.8 15.1 16.8 46.3 ± 1.4 8.3504(25) 80.74
5 17.4 ± 4.7 35.1 ± 10.6 19.5 21.8 49.3 ± 2.4 8.3395(43) 77.53
6 21.5 ± 6.3 30.2 ± 9.1 20.3 22.4 48.2 ± 0.6 8.3519(19) 83.13

The infrared (IR) spectra of IONPs (Figure S4) showed multiple bands between 800 and 400 cm−1,
which suggests a structure of γ-Fe2O3 with ordered vacancies [28,29]. Also, by X-ray photoelectron
spectroscopy (XPS) obtained core-level spectra of the Fe 2p displayed a satellite peak, which is
characteristic for γ-Fe2O3 (Figure S5) [30].

Structural order at the surface of IONPs is crucial for numerous properties related to the magnetic
volume, Vm. Namely, the structurally disordered surface of magnetic NPs has also disordered
spins. Consequently, the surface layer is magnetically inactive (“dead”) and the Vm is lower than
volume, V, of NPs. This directly affects the saturation magnetization, Ms [28,29,31], which is thus
proportionally lower than Ms of bulk, Msb. Therefore, we measured the magnetization as a function
of the magnetic field strength (Figure S6) to obtain Ms values which were found to be below Msb
of maghemite (Figure 1c and Table S2). Comparing the obtained Ms values with Msb of maghemite
(about 78 A·m2·kg−1) allowed us to estimate the thickness of the magnetically dead layer, t, ranging
from 0.3 to 3.2 Å. From this, we calculated Vm to be from 84 to 99% of V, meaning that the non-magnetic
volume ranges from 1 to 16% of V; for values of t and Vm/V see Table S3. It has to be pointed out that
the obtained t values correspond to the approximate length of one to few unit cells. That also suggests
that IONPs with low t have a highly crystalline surface.

To verify this, we studied the IONP surface crystallinity using spherical aberration-corrected TEM
with the effects of chromatic aberration reduced by monochromating the incident beam. With this
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state-of-the-art TEM imaging, possible crystalline disorder at the surface can be assessed in detail.
Figure 2 shows that samples 4 and 6 have highly ordered crystalline surfaces. Note that these samples
were structurally stable under the low energy 80 keV electron beam, except for apparent hopping
of atoms at the edges of steps and kinks in monocrystalline IONPs (see Supplementary Video S1).
Therefore, this high surface crystallinity is not the result of electron-beam induced crystallization of an
initially disordered surface state. It is noted that high beam energies can instead strongly affect the
structure, morphology and bonding of nanoparticle samples [32,33].
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The high surface crystallinity of our IONPs can be explained by the aqueous environment during
the synthesis. Specifically, the high polarity of the medium creates a high energy barrier which drives
the recrystallization of IONPs to expose low energy surfaces. This process is enabled by direct interface
of the surface of IONPs with water molecules without ligands, which would suppress the mass
transport at the surface and lower the surface energy. Therefore, in an aqueous environment, the
absence of ligands promotes the surface structural ordering and thus, high crystallinity in two ways: by
creating a highly energetic interface with water and by allowing the surface atoms to freely rearrange
without capping boundaries. In fact, highly crystalline magnetic NPs were typically reported in HT
synthesis under harsh conditions (elevated temperatures and/or pressures), which were the cause for
the obtained high crystallinity [34]. Importantly, these reported syntheses usually started by lowering
the surface energy with suitable organic solvent(s) and/or ligand(s), and then by exposing IONPs to
harsh conditions [34]. On the contrary, we started without ligand(s) from water as a solvent creating a
high interfacial energy, and performed mild HT treatments. Our strategy is shown to be as successful
by the obtained results.

2.2. Magnetic Properties

The hysteresis curves of IONP suspensions were measured at 250 and 300 K, i.e., in the frozen
and liquid states, respectively (Figure S7). Values of coercive field Hc and remanent magnetization
Mr, extracted from these curves, are given in Table S2. IONPs did not show any significant coercivity
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in liquid suspensions (at 300 K), because even if some individual IONPs in these samples are in the
ferrimagnetic state, they are free to rotate in liquid. However, at 250 K the solvent is frozen and hence,
IONPs are in fixed positions without the possibility for Brownian rotation. In that case, IONPs at 250 K
have Mr/Ms ratio of up to 0.3 (see Table S2). That clearly shows a system of interacting IONPs since
this ratio is 0.5 for non-interacting randomly oriented MNPs with uniaxial symmetry [35]. This is
expected for IONP suspensions, which have higher concentrations (as in our samples, ~10 mgFe·mL−1.
It is common that values of Hc are used for the calculation of effective anisotropy constant (Keff), the
effective anisotropy constant, according to the expression:

HC =
2K
Ms

[
1 −

(
25kBT
KVm

)1/2
]

, (1)

where kB is the Boltzmann constant, Vm is the magnetic volume, T is the temperature, and
Ms is the saturation magnetization. We emphasize that this expression was derived for single
domain non-interacting MNPs in superparamagnetic regime below the blocking temperature [36].
Therefore, as for instance in this case, applying it to interacting MNPs would result in incorrect
Keff values. Specifically, it results in overestimation of Keff (as can be seen in Table S2), because the
estimated values are enhanced by the contribution of dipolar interactions, which are rarely taken into
consideration [35,37].

2.3. Morphology

By using state-of-the-art TEM imaging, differences in morphology were assessed; in sample:
1—small spherical IONPs; 2—“peanut shaped” IONPs resembling two small spherical IONPs from
sample 1; 3 and 4—more rectangular; 5—again deformed; and 6—polycrystalline and clearly irregular
in shape. Based on the above given physical/chemical properties, this morphological sequence can be
correlated with the current knowledge of IONPs’ growth.

At the beginning of the synthesis, instantaneous seed formation occurs due to the highly alkaline
environment (pH > 10) [26], yielding approximately spherical primary particles, PP, as seen in sample
1 (Figure 3a). An expected initial coalescence of such spherical PPs can be attributed to the “peanut
shape” IONPs in sample 2 (Figure 3b). This suggests that growth of PPs proceeded by their aggregation
into assemblies called secondary particles, SP, controlled by diffusion and collision, where colliding
PPs may re-align themselves into a more favorable energy state [38–40], such that adjacent PPs’
share a common crystallographic orientation across an interface [38]. This mechanism is favored by
hydrophobic/hydrophilic interactions due to the different polarity of crystallite surfaces [41]; this is
the driving force to self-assemble PPs in the mechanism known as “brick-by-brick” assembly [42].
In γ-Fe2O3, the typically exposed low energy surfaces are (100), (111) and (110) [43–45]. The latter is
non-polar, meaning relatively hydrophobic, while the first two surfaces are the polar surfaces with
exposed metal ions (i.e., more hydrophilic) and tend to reconstruct and become non-polar [43–45].
These largely abundant non-polar surfaces would have a higher surface energy, and would thus cause
PPs’ coalescence in order to reduce the overall free energy [46]. Therefore, such merging of typically
two PPs would give SPs as seen in sample 3 with the same “width” but double the “length” of the PPs
observed in sample 1.



Nanomaterials 2017, 7, 225 7 of 18

Nanomaterials 2017, 7, 225  6 of 18 

 

େܪ = ଶ௄ெ౩ ൤1 െ ቀଶହ௞ಳ்௄௏ౣ ቁଵ/ଶ൨, (1)

where kB is the Boltzmann constant, Vm is the magnetic volume, T is the temperature, and Ms is the 
saturation magnetization. We emphasize that this expression was derived for single domain non-
interacting MNPs in superparamagnetic regime below the blocking temperature [36]. Therefore, as 
for instance in this case, applying it to interacting MNPs would result in incorrect Keff values. 
Specifically, it results in overestimation of Keff (as can be seen in Table S2), because the estimated 
values are enhanced by the contribution of dipolar interactions, which are rarely taken into 
consideration [35,37]. 

2.3. Morphology 

By using state-of-the-art TEM imaging, differences in morphology were assessed; in sample: 1—
small spherical IONPs; 2—“peanut shaped” IONPs resembling two small spherical IONPs from 
sample 1; 3 and 4—more rectangular; 5—again deformed; and 6—polycrystalline and clearly 
irregular in shape. Based on the above given physical/chemical properties, this morphological 
sequence can be correlated with the current knowledge of IONPs’ growth. 

At the beginning of the synthesis, instantaneous seed formation occurs due to the highly alkaline 
environment (pH > 10) [26], yielding approximately spherical primary particles, PP, as seen in sample 
1 (Figure 3a). An expected initial coalescence of such spherical PPs can be attributed to the “peanut 
shape” IONPs in sample 2 (Figure 3b). This suggests that growth of PPs proceeded by their 
aggregation into assemblies called secondary particles, SP, controlled by diffusion and collision, 
where colliding PPs may re-align themselves into a more favorable energy state [38–40], such that 
adjacent PPs’ share a common crystallographic orientation across an interface [38]. This mechanism 
is favored by hydrophobic/hydrophilic interactions due to the different polarity of crystallite surfaces 
[41]; this is the driving force to self-assemble PPs in the mechanism known as “brick-by-brick” 
assembly [42]. In γ-Fe2O3, the typically exposed low energy surfaces are (100), (111) and (110) [43–45]. 
The latter is non-polar, meaning relatively hydrophobic, while the first two surfaces are the polar 
surfaces with exposed metal ions (i.e., more hydrophilic) and tend to reconstruct and become non-
polar [43–45]. These largely abundant non-polar surfaces would have a higher surface energy, and 
would thus cause PPs’ coalescence in order to reduce the overall free energy [46]. Therefore, such 
merging of typically two PPs would give SPs as seen in sample 3 with the same “width” but double 
the “length” of the PPs observed in sample 1.  

 

Figure 3. TEM micrographs and the corresponding scheme of growth from spherical primary particles 
(PPs) in sample 1 (a) by coalescence of PPs into secondary particles (SPs) in sample 2 (b) and their 
further recrystallization in sample 3 until rectangular and cubic shapes in sample 4 (c). All scale bars 
are 5 nm. 

Figure 3. TEM micrographs and the corresponding scheme of growth from spherical primary particles
(PPs) in sample 1 (a) by coalescence of PPs into secondary particles (SPs) in sample 2 (b) and their
further recrystallization in sample 3 until rectangular and cubic shapes in sample 4 (c). All scale bars
are 5 nm.

Typically, after coalescence, SPs recrystallize and indeed IONPs in samples 3 and 4 have more
rectangular and square shapes (Figure 3c). These shapes are close to a (100) cubic morphology
indicating more energetically favorable crystallographic faceting (Figure 2a,b and Figure 3c). Li et al.
also observed changes of shape of IONPs from spherical to cubic in their enlargement with prolonged
reflux time in HT treatment [47]. Moreover, for a cubic lattice, the spin states at surfaces of such shapes
are expected to be closer to the core spin states than for spherical shapes [28,29,48]. Therefore, samples
with more cubic IONPs would have lower t (i.e., higher Ms), as for instance observed in sample 3,
which has a Vm of 99% of V.

For longer HT treatment, coalescence can continue by the above-described colloidal interactions,
i.e., through a mechanism of oriented attachment of PPs, which gives monocrystalline SPs (Figure 4a).
However, as the duration of the HT treatment increases, polycrystalline SPs were also observed,
especially in sample 6 (Figure 4b,c). In these SPs, crystallographic planes are visibly mismatched
at the grain boundaries (see Figure 4b,c and Supplementary videos 2 and 3). The monocrystalline
grains correspond in size to the PPs and/or SPs of the first 4 samples (Figure 4b,c and Supplementary
videos 2 and 3). With this lattice mismatch across boundaries, we suspect that these polycrystalline SPs
were formed by magnetic interactions rather than colloidal ones. In fact, magnetic interactions have
to be taken into account as soon as: (a) some individual MNPs are large enough to be ferrimagnetic
(diameter larger than roughly about 26 nm in the case of γ-Fe2O3 IONPs) [49] or (b) suspensions of
superparamagnetic IONPs with interparticle interactions. Actually, the dT distribution of samples 2 to
6 (Figure S2) showed a fraction of IONPs larger than 26 nm (see Figure S2 for fraction’s values), which
indicated the presence of ferrimagnetic IONPs (although their suspension behaves superparamagnetic
as observed in the hysteresis curves, Figure S7). In fact, coalescence of two colliding IONPs could
still yield monocrystalline SPs, if at least one colliding IONP re-aligns to match the crystallographic
orientation at the joint interface leading to more favorable energy state. This would only be possible if
at least one colliding IONPs is small (i.e., PP), because the frequency of rotation of IONPs is inversely
proportional to their size [50]. On the contrary, the attractive magnetic interactions of colliding
IONPs would give polycrystalline SPs, because the magnetic interactions would be prevalent over the
colloidal ones and therefore the approaching IONP could not reorient to match the lattice. These all
suggest that rather magnetic and colloidal interactions would be responsible for polycrystalline and
monocrystalline SPs, respectively (Figure 4).
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2.4. MRI Relaxivity

Given the high Ms, Vm and surface crystallinity of our IONPs needed for high MRI relaxivity,
we measured their longitudinal (T1) and transversal (T2) relaxation times in a clinical 3 T magnetic
resonance (MR) scanner, as well as their relaxivities (r1 and r2), which are defined as the slope
of the inverse of T1 and T2, respectively, as a function of the concentration of the contrast agent
(see the obtained values of r2, r1, and r2/r1 in Tables S4 and S5). The inverse of T, e.g., the
relaxation rate R, linearly depends on the IONP concentration only for homogeneously dispersed
particles; thus, only a limited range of IONP concentrations were considered: 0.5 to 20 µgFe·mL−1.
The hydrodynamic diameters, dH, of IONPs measured at similar concentrations as for the relaxivity
measurements (see Table 1 and Figure S8) indicate that there are typically few IONPs per agglomerate
as compared to the corresponding dT, which does not completely exclude the presence of magnetic
interactions. For samples 2–6, the found R1 and R2 values were linearly dependent on the concentration
(see Figure S9). Hence, a contribution of the interparticle interaction in the measured concentration
range can be considered as negligible. Thus, differences in relaxivities between samples 2 to 6 with
similar dT can be approximated to originate from differences in the intrinsic natures of their IONPs.

Even though the relaxivities are a complex function of numerous parameters [34], the transverse
relaxivity (r2) is proportional to Ms

2 [51,52]. This expected increase of r2 along with Ms
2 was observed

only for the first 4 monocrystalline samples, while for polycrystalline samples 5 and 6 a discrepancy
between the trends in r2 and Ms

2 can be noticed (Figure 5a,b). In fact, Ms cannot increase above
the value in bulk γ-Fe2O3. In addition, an increase of the particle’s size (i.e., a decrease in surface
area) [53] and/or clustering [54] strongly affects r2 as well as r2/r1, primarily due to the higher local
magnetic moment and consequential dipolar interactions [34]. Therefore, we also plotted r2 and Ms

2

as a function of dT and dC (Figure S10); as observed above, Ms
2 follows the same trend as r2 for the

first 4 samples. Moreover, r2 increases with increasing IONPs’ size in the first three samples, which
is characteristic for the “motion averaging regime” (MAR) valid for relatively small homogeneously
dispersed particles [53], but breaks down for larger particles [53], as we also see. Figure 5b further
shows that samples with similar sizes, such as samples 2 to 5, have different r2 and Ms

2, which
can be associated to the observed morphology changes between IONPs’ samples, as previously
shown [16,55,56]. Namely, more rectangular and faceted IONPs in sample 3, which hence have the
lowest t, i.e., the largest relative Vm (99% of V), i.e., the highest value of Ms, have consequently one of
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the highest values of r2. It could be expected that r2 decreases for the large polycrystalline IONPs in
sample 6 (which is out of the MAR regime), as observed by others [16]. Instead, the highest r2 value
was found in sample 6. In fact, 24.6% of IONPs in this sample were above 26 nm (i.e., ferrimagnetic).
This strongly suggests the presence of dipolar interactions known to result in an increase of r2 [34,54],
which could explain the observed increase of r2 in sample 6.

1 
  

Figure 5. (a) MRI transverse relaxivity (r2) as a function of square of corresponding saturation
magnetization (Ms) shows increase except for the samples 5 and 6 (marked red); (b) r2 in blue and
(Ms)2 in red, given versus samples of IONPs along with the increased duration of the HT treatment.
Insert shows the relaxivity ratio (r2/r1) versus samples.
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Previous studies have found that an increase in the particle’s size (i.e., a decrease in surface area)
is associated with a decrease in their r1 values, which agrees with our results (see Figure S11); sample 1
with the largest specific surface area, SSA, of 170.33 m2·g−1 (see Table 1) has the largest r1. Among the
other samples (2–6), sample 3 with rectangular faceted IONPs had one of the largest r1 values. This
is in agreement with reports of Gao’s group [16,55] that r1 is larger for IONPs with metal-exposed
surfaces such as (100) and (111), which are the typically-exposed low-energy surfaces in γ-Fe2O3.

Among the highest reported r2 values is 958 mM−1·s−1 found in cobalt ferrite (Co0.5Fe2.5O4

composition) at 0.5 T [56]. Among IONPs, the r2 relaxivity of: 835 mM−1·s−1 (r2/r1 = 139) at 3 T
was reported for mesoscopic IONP clusters having significant dipolar interactions within the porous
matrix [19]; 761 mM−1·s−1 at 3 T was reported for cubic IONPs of 22 nm [15]; 679.3 mM−1·s−1 at 7 T was
reported for octapod IONPs [55]; 675 mM−1·s−1 at 3 T was reported for worm-like IONP clusters [20];
or 509 mM−1·s−1 at 7 T was reported for 16 nm cubic IONPs [57]. Otherwise among commercialized
IONPs, the r2 relaxivity was 189 mM−1·s−1 (r2/r1 = 19.5) [58] for Resovist (Bayer Schering Pharma AG,
Berlin, Germany, commercially-abandoned in 2009). Since T2-weighted applications require contrast
agents with both high r2 and high r2/r1, our results (the r2 of up to 1189 mM−1·s−1 and r2/r1 of up to
195) show that our IONPs have properties beneficial for T2 contrast agents.

2.5. Specific Absorption Rate

Furthermore, we evaluated the heating potential of our IONPs by measuring SAR, i.e., the
rate of heat dissipation per unit mass of MNPs, which is essentially determined by three material’s
properties: Néel and Brownian relaxation times (related to spin and particle relaxation, respectively),
and hysteresis losses. The highest SAR values were found for MNPs which are ferromagnetic and with
hard magnetic phase or exchange coupling between phases [14,59–61]. However, for nanomedicine,
superparamagnetic and soft magnetic phase MNPs are favored over ferrimagnetic and hard magnetic
phase, since the latter foster thrombosis and agglomeration [62]. This preferred magnetic state was
shown for our IONPs (see Figure S7 for M(H) curves, and Table S2 for Hc and Mr at 300 K). For our
superparamagnetic IONPs’ suspension, we measured higher SAR values in water than in agar gels,
in which IONPs are fixed and cannot rotate, confirming the expected contribution of the Brownian
relaxation in addition to the Néel contribution (see Figure S12).

SAR values were obtained by using the formula:

SAR =

(
CpH2O

mFe2O3

)
·
(

dT
dt

)
, (2)

where mFe2O3 is the concentration of IONPs (in gram of γ-Fe2O3 per liter), CpH2O is the specific heat
capacity of water, and dT

dt is the slope of the linear part of the heating curve (see the examples in
Figures S12–S14). The increase in temperature with time (heating curve) was measured minimum
three times, which showed good reproducibility (see Figure S13). The heating curves of one sample
at different IONPs concentrations (see Figure S14) gave the same SAR values suggesting no strong
interparticle interactions at the measured concentrations, as also seen above from the dependence of
the relaxation rate on the IONP concentration.

Since SAR depends on parameters of the alternating magnetic field, frequency f and amplitude H,
we measured SAR at different values of f and H. For instance, Figure 6a shows SAR values measured
at H of 23.9 kA·m−1 and at frequencies ranging from 200 to 600 kHz. As expected, SAR increased
with increasing frequency, an increase that is more pronounced for larger IONPs, as also observed by
others [63]. Besides the correlation of SAR with f and H individually, their product f·H is important
for clinical applications and must not exceed 5 × 109 A·m−1·s−1 for a safe clinical treatment by
hyperthermia depending on the exposed volume [59]. Figure 6b shows SAR vs. the f·H product, where
the vertical dashed line indicates the given clinical boundary for f·H.

The variation of SAR is typically plotted versus dT (see insert in Figure 7). From the theory
for superparamagnetic MNPs, for constant f and H, SAR should increase with the TEM size until a
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maximum, followed by a decrease [59,64,65]. We indeed observed this behavior for the first 5 samples,
but SAR increased again in sample 6 (see Figure S15 for SAR vs. dT at other f·H values). One would
expect that an increase in diameter of IONPs coupled with the formation of grain boundaries
in polycrystalline sample 6 would lower SAR, as already reported [66]. Instead, an increase in
SAR of sample 6 can be explained by dipolar interactions, which were already observed for these
polycrystalline IONPs and which are known to enhance SAR values [67,68]. We have to note that an
abrupt jump in SAR values was observed between samples 1 and 2, as for r2. Taking into account the
“peanut-shaped” morphology of IONPs in sample 2, these IONPs can be viewed as short magnetic
chains consisting of minimum two units and a chain formation is known to increase r2 and SAR [67,69].

In order to compare SAR values measured at different fields, Pankhurst introduced the intrinsic
loss power (ILP) as SAR normalized to f·H2 [70], which applies only to superparamagnetic MNPs in
the Néel relaxation model, small field amplitudes, etc. [59,65,70]. While we report the ILP vs. f·H in
Figure S16, with sample 6 giving the highest ILP value of 3.1 nH·m2·kg−1 (SAR = 403 W·gFe2O3

−1,
f·H = 5.47 × 109 A·m−1·s−1), we note that this model cannot be applied to our system because of its
limited validity, which is often neglected, as stressed by Dutz and Hergt [46].Nanomaterials 2017, 7, 225  11 of 18 
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Outside of the clinically applicable conditions (at 571 kHz and 23.9 kA·m−1,
f·H = 13.64 × 109 A·m−1·s−1), SAR values of our samples were up to 856.7 W·gFe2O3

−1

(or 1225.1 W·gFe
−1). However, close to the clinically relevant conditions (at f·H = 5.47 × 109 A·m−1·s−1),

the measured SAR was up to 403 W·gFe2O3
−1 (or 576.3 W·gFe

−1). In comparison, among
numerous other previous studies of SAR of engineered IONPs at f·H close to the clinical limit
(~5 × 109 A· m−1 s−1), SAR of 2560 W·gFe

−1 has been reported for octahedral IONPs of 40 nm [18],
while SAR of ~1000 W·gFe

−1 has been reported for 27 nm IONPs, both synthesized by a non-aqueous
route [71]. Otherwise, among natural products, Alphandéry has reported SAR of 875 W·gFe

−1 at
comparable f·H (5.86 × 109 A·m−1·s−1) for magnetosomes obtained from AMB-1 magnetotactic
bacteria [72]. Nevertheless, previous SAR values for engineered IONPs synthesized by an aqueous
route are far below these values.

3. Materials and Methods

3.1. Synthesis of Iron Oxide Nanoparticles (IONPs)

IONPs were synthesized by our novel CP + HT method with previously optimized part of
synthesis parameters [24]. Briefly, aqueous solutions of FeCl3·6H2O and FeCl2·4H2O were prepared
at room temperature with the relative fraction of Fe(II) in total Fe amount (R) of 0.5. Afterwards,
6 M Ammonia solution was mixed instantaneously with the solution of iron salts under vigorous
stirring resulting in the immediate CP process. Note that this CP step was not performed under inert
atmosphere, and thus, fast mixing without air bubbles was essential in order to avoid oxidation of
Fe(II) before co-precipitation happens. The obtained suspension was instantaneously transferred into
a sealed autoclave for the HT treatment (without stirring, since the agitation during aging broadens
the size distribution) [73] at 120 ◦C for different durations: 0, 6, 12, 15, 18 and 24 h; corresponding
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sample names are 1–6, respectively. The resulting particles were washed from ammonia several times
with double distilled water (ddH2O) until pH 7.5, centrifuged (Beckman Coulter; Avanti J-26 XP;
Nyon, Switzerland, 5 min, 5000 RCF) in order to remove possible remaining molecules of ammonia
and resuspended in 25.7 mL of 0.35 M Fe(NO3)3 and 17.4 mL of 2 M HNO3 for oxidation in an oil
bath at 120 ◦C for 30 min. The system was allowed to cool to room temperature, the remaining
liquid was discarded, and 100 mL of double-distilled water (ddH2O) was added to the slurry, which
was immediately dispersed. The suspension was washed with ddH2O and dialyzed (Spectra/Por®;
Spectrum Labs, Breda, The Netherlands, 12–14 kDa) against 10 mM HNO3 for 48 h by changing the
dialysis solution every 10–12 h, and finally, the obtained stable suspensions were stored at 4 ◦C.

3.2. Characterisation of IONPs

Transmission Electron Microscopy (TEM) micrographs of IONPs on carbon grids with 200 Copper
meshes (Plano GmbH) were taken with a Philips CM12 microscope (Amsterdam, The Netherlands)
with a LaB6 source operated at 120 kV accelerating voltage. Images were recorded with a
Gatan 1024 × 1024 pixels MultiScan CCD camera (München, Germany). The long and short
ferrets of 500 IONPs were measured manually from randomly taken TEM micrographs using the
DigitalMicrograph software (Gatan Inc., München, Germany). The equivalent diameters were
subsequently calculated as being the hypothetical diameters of spherical nanoparticles with areas
equivalent to the rectangular areas obtained from the long and short ferrets. To assess morphology,
aberration-corrected high-resolution TEM micrographs of IONP on lacey carbon grids were taken
with an FEI Titan Themis 60–300, primarily operated at 80 kV and with a monochromated incident
beam to reduce effects of chromatic aberration, recorded on a CMOS-based FEI CETA 4 k × 4 k camera
(FEI, Gräfelfing, Germany).

For all samples, the hydrodynamic diameters and the zeta potentials of 1 mL IONPs’ suspension
at concentration of 0.05 mgFe·mL−1 at pH 4 were measured at room temperature in acrylic cuvettes
(Sarstedt, Nümbrecht, Germany) with a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK).
The reported values were the average of 3 × 12 measurements. For all samples the iron concentration
was determined by ICP-EOS. For this purpose 80 µL of as-synthesized IONPs was mixed with 920 µL of
6 M HCl. After three days, 500 µL of this solution was diluted in 2.5 mL H2O and measured. ICP-EOS
was performed with ICP-EOS 9000 (Shimadzu, Duisburg, Germany). The Brunauer–Emmett–Teller
(BET) specific surface areas SSA (m2·g−1) were determined from N2 adsorption isotherms (Gemini 2375,
Micromeritics, Verneuil-en-Halatte, France).

Fourier transform IR (FTIR) spectra of IONPs powders were obtained with the Perkin Elmer
Spectrum One spectrometer (series: 69288, Perkin Elmer, Schwerzenbach, Switzerland) in ATR mode.
Transmittance from 4600 to 400 cm−1 was given as the average of measured 8 scans for each curve
with a resolution of 4.00 cm−1. X-ray Photoelectron Spectroscopy (XPS) measurements were carried
out using a PHI VersaProbe II scanning XPS microprobe (Physical Instruments AG, Meylan, France).
Analysis was performed using a monochromatic Al Kα X-ray source of 24.8 W power with a beam
size of 100 µm. The spherical capacitor analyzer was set at 45◦ takeoff angle with respect to the
sample surface. The pass energy was 46.95 eV yielding a full width at half maximum of 0.91 eV for
the Ag 3d 5/2 peak. Curve fitting was performed using the PHI Multipak software (Blue Scientific,
Cambridge, UK).

Hyperthermia measurements at frequencies f = 229, 248, 264, 314, 352, 440, and 575 kHz and field
intensity of 30 mT were carried out on a commercial equipment (DM100, nB Nanoscale Biomagnetics,
Zaragoza, Spain). Samples 5 and 6 were measured as prepared, and the other samples after 1/3
dilution, so the γ-Fe2O3 concentration in the measured suspensions was similar and around 6 g/L in
all the heat treated samples. Sample 4 was also measured after gelification in a 22 wt. % gelatin medium
to cancel Brownian contribution to the SAR, and in a liquid suspension after a 1/2 dilution to observe
the effect of the γ-Fe2O3 concentration on SAR. For SAR measurements at a frequency of about 100 kHz,
and several field intensities ranging from 2 to 42 mT was used homemade equipment. In short, SAR
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measurements were performed with a signal generator (input signal of 7.2 Vpp) connected to an HAS
4014 linear amplifier. The output signal was driven by a matching transformer of ratio N1/N2 = 11:3.
The secondary load was provided by a RLC tank circuit where R = 1 Ω at a resonant frequency of
97.771 kHz: C = 20 nF for f = 100 kHz and C = 5 nF for f = 200 kHz. The inductance was provided
by a magnetic circuit with MnZn ferrites and a gap of 13 mm. One of the ferrite tips had 10 turns
wired to sense the magnetic flux going out of the tip and crossing the gap. The secondary current was
measured with a Rogowsky current probe (Power Electronic Measurements Ltd, Nottingham, UK).
The magnetic field constant and the maximum secondary current amplitude were 1.348 mT/A and
20 A, respectively. The sample was inserted into plastic cuvettes placed in the ferrite gap and a second
cuvette containing H2O was used as a reference to measure the heat produced by the ferrite nucleus.
The temperatures of the sample and of the reference cuvette were measured with a GaAs temperature
sensor (Neoptix Reflex, Ville de Québec, QC, Canada) immersed in the sample and connected to T1
optical fibers with temperature accuracy of ±0.2 K (acquisition rate of 1 Hz). When the temperatures of
both the reference and the sample were stable, the temperatures of both probes were recorded during
successive periods of time: (i) 30 s with the field off, (ii) 120 s with the field on and (iii) 420 s with
the field off. Three runs were performed for each sample. The SAR (W·gFe2O3

-1) was subsequently
calculated by the above given Equation (2). The SAR values with respect to the mass of γ-Fe2O3 in the
sample were obtained from the derivate of a second order equation fitted to the T(t) curves. All the
SAR measurements were repeated at least twice on minimum one device.

4. Conclusions

We have studied the structure and the properties of IONPs in aqueous synthesis without ligands
with a mild HT treatment as a function of the duration of this treatment. The obtained results revealed
the HT durations at which coalescence, recrystallization and the change in the growth mechanism
from the solely colloidally driven into also magnetically driven one occurs. The morphology, structure
and crystallinity, and thus properties of IONPs were controlled by: (1) the aqueous environment which
provides a driving force for coalescence and for the exposure of low energy surfaces through interfacial
energy minimization; (2) the absence of capping agents which creates this high-energy interface and
allows for surface recrystallization; and (3) the low temperature treatment which permits crystal
structure ordering. As a result, the IONPs with favorable multiple properties are obtained at the HT
duration when monocrystalline SPs are recrystallized into rectangular shape with nearly defect-free
surfaces and diameters, which correspond to the superpara-ferrimagnetic transition. This approach in
the challenging control over properties of IONPs can be applied, as well, on the aqueous synthesis
(without capping agent(s)) of other compounds as long as PPs are formed prior to the HT treatment.
In this way, we have obtained γ-Fe2O3 IONPs with SAR values of up to 1225.1 W·gFe

−1 over a range
of field parameters, but also with a relaxivity r2 of up to 1189 mM−1·s−1 and a r2/r1 ratio of up to 195.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/7/8/225/s1,
additional TEM micrographs, the empirical size distributions, XRD patterns, crystallite diameters, FTIR spectra,
XPS spectra, M(H) curves, hysteresis curves at two temperatures, values of the saturation magnetization, coercivity,
remanent magnetization and effective anizotropy constant, thickness of a magnetically dead layer, magnetic
volume, relative non-magnetic volume, relaxivities, distributions of hydrodynamic diameters, the transversal
relaxation rates as a function of the IONPs concentration, the longitudinal relaxivity vs. TEM diameter, heating
curves (in liquid and solid, repetitions, at different concentration of IONPs), SAR with the growth of IONPs, ILP
vs. f ·H product, and 3 videos made by HRTEM.
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