Controllable charge transfer in Ag-TiO₂ composite structure for SERS application

Yaxin Wang¹, Chao Yan¹, Fan Zhang¹, Shuang Guo¹, Renxian Gao¹, Lei Chen¹, Yang Liu¹, Yongjun Zhang^{1,*}, Jinghai Yang^{1,2}

- Key Laboratory of Functional Materials Physics and Chemistry, Jilin Normal University, Ministry of Education, Siping136000, PR China;
- ² Key Laboratory of Excited State Physics, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun130033,PR China;
- * Correspondence: E-mail: yjzhang@jlnu.edu.cn;

Academic Editor: Dr. Yuying Zhang and Dr. Wei Xie Received: date; Accepted: date; Published: date

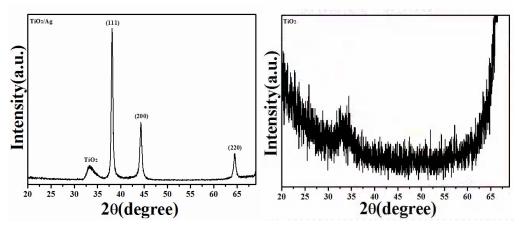
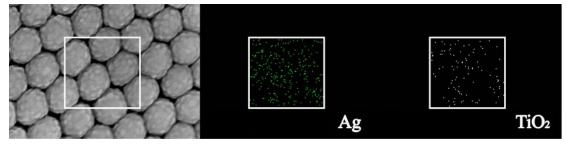



Figure S1: XRD pattern of TiO₂/Ag bilayr and monolayer TiO₂ deposited on PS200 nm template

In figure S1, the diffraction peaks at 38.1° , 44.2° and 64.4° correspond to the (1 1 1), (2 0 0) and (2 2 0) lattices in Ag with face-centered cubic structure according to JCPDS card No.04-0783, respectively. However, the broadened peak about 33° indicates titanium dioxide is amorphous, which is also confirmed by the XRD pattern of amorphous TiO₂.

Figure S2: The element analysis mapping of bilayer TiO_2 (10 nm) /Ag (10 nm) nanocap arrays by SEM. The green and pink colors are corresponding to Ag and TiO_2 composition respectively

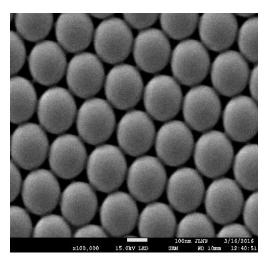


Figure S3: SEM of PS200 nm template