Resonance Rayleigh Scattering and SERS Spectral Detection of Trace Hg(II) Based on the Gold Nanocatalysis

Huixiang Ouyang^{1,2}, Chongning Li¹, Qinye Liu¹, Guiqing Wen¹, Aihui Liang^{1*}, Zhiliang Jiang^{1*}

¹Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China; ² Guangxi Colleges and Universities Key Laboratory of Regional Ecological Environment Analysis and Pollution Control of West Guangxi, College of Chemistry and Environment Engineering, Baise University, Baise 533000, China

Figure S1 RRS spectra of the AgNPs-HAuCl4-H2O2 nanocatalytic system

(a)4.48 μ mol/L HAuCl₄+0.67mmol/L HCl+3.33mmol/L H₂O₂; (b)a+3.3ng/mL AgNPs; (c)a+6.6ng/mL AgNPs; (d)a+13.3ng/mL AgNPs; (e)a+33.2 ng/mL AgNPs; (f)a+99.5 ng/mL AgNPs; (g)a+133ng/mL AgNPs; (h) a+57ng/mL AgNPs; (i) a+265ng/mL AgNPs.

Figure S2 RRS spectra of the Hg²⁺-AuNPc-HAuCl₄-H₂O₂ system

(a)38ng/mL AuNP_b +4.48 μ mol/L HAuCl₄+0.67mmol/L HCl+3.33mmol/L H₂O₂, 15 min at room temperature; (b)a+0.013 μ mol/L Hg²⁺; (c)a+0.17 μ mol/L Hg²⁺; (d)a+0.67 μ mol/L Hg²⁺; (e)a+0.83 μ mol/L Hg²⁺; (f)a+1.17 μ mol/L Hg²⁺; (g)a+1.33 μ mol/L Hg²⁺; (h)a+3 μ mol/L Hg²⁺; (i)a+6 μ mol/L Hg²⁺; (j)a+12 μ mol/L Hg²⁺.

Figure S3 SERS spectra of the AuNPb-HAuCl4-H2O2-RhS system

Figure S4 SERS spectra of the AuNPb-HAuCl4-H2O2-VBB system

Figure S5 SERS spectra of the AuNPb-HAuCl4-H2O2- Safranin T system

Figure S6 The color change of the AuNPb-HAuCl4-H2O2 system

 $\label{eq:alpha} (a) \ 4.48 \mu mol/L \ HAuCl_4+0.67 mmol/L \ HCl+3.33 mmol/L \ H_2O_2; \ (b) \ a+19 \ ng/mL \ AuNP_b; \ (c) \ a+95 \ ng/mL \ AuNP_b; \ (d) \ a+285 ng/mL \ AuNP_b; \ (e) \ a+380 \ ng/mL \ AuNP_b; \ (f) \ a+760 \ ng/mL \ AuNP_b.$

Figure S7 Absorption spectra of the AuNPb-HAuCl4-H2O2 system

(a) 4.48 μ mol/L HAuCl₄+0.67mmol/L HCl+3.33mmol/L H₂O₂ (b) a+9.5ng/mL AuNP_b; (c) a+38ng/mL AuNP_b; (d) a+133ng/mL AuNP_b; (e) a+190 ng/mL AuNP_b; (f) a+380ng/mL AuNP_b.

Figure S8 Absorption spectra of the AuNPc-HAuCl4-H2O2 system

(a) 4.48 μ mol/L HAuCl₄+0.67mmol/L HCl+3.33mmol/L H₂O₂ (b) a+38ng/mL AuNP_c; (c) a+57ng/mL AuNP_c; (d) a+85.5ng/mL AuNP_c; (e) a+133 ng/mL AuNP_c; (f) a+152ng/mL AuNP_c; (g) a+190ng/mL AuNP_c; (h) a+228ng/mL AuNP_c

Figure S9 Absorption spectra of the AgNPs-HAuCl4-H2O2 system

(a) 4.48 μ mol/L HAuCl₄+0.67mmol/L HCl+3.33mmol/L H₂O₂ (b) a+13ng/mL AgNPs; (c) a+60ng/mL AgNPs; (d)a+100ng/mL AgNPs; (e)a+166 ng/mL AgNPs; (f)a+265 ng/mL AgNPs;

Figure S10 Absorption spectra of the Hg²⁺-AuNPc-HAuCl₄-H₂O₂ system

 $\label{eq:2.1} \begin{array}{l} (a) \ 38ng/mLAuNP_{c} + 4.48 \mu mol/L \ HAuCl_{4} + 0.67 mmol/L \ HCl + 3.33 mmol/L \ H_{2}O_{2} \ \ (b) \ a + 0.5 \mu mol/L \ Hg^{2+}; \ \ (c) \ a + 0.83 \mu mol/L \ Hg^{2+}; \ \ (d) \ a + 1.00 \mu mol/L \ Hg^{2+}; \ \ (e) \ a + 1.33 \mu mol/L \ Hg^{2+}; \ \ (f) \ a + 2.00 \mu mol/L \ Hg^{2+}; \ \ (g) \ a + 2.33 \mu mol/L \ Hg^{2+}; \ \ (h) \ a + 2.67 \mu mol/L \ Hg^{2+}. \end{array}$

С

Figure S11. The TEM images for AuNP $_{b}(a),$ AuNP $_{c}(b)$ and Ag NPs (c).

Figure S12 Effect of HCl concentration

 $2.24 \mu mol/L\ HAuCl_{4}\text{-}\ HCl-3.33 mmol/L\ H_2O_2\ \text{-}152 ng/mL\ AuNP_b;$

Figure S13 Effcet of HAuCl4 concentration

HAuCl₄- 0.67mmol/L HCl-3.33mmol/L H2O2-152ng/mL AuNPb.

Figure S14Effcet of H2O2 concentration

4.48µmol/L HAuCl4- 0.67mmol/L HCl-H2O2-152ng/mL AuNPb.

Figure S15 Effcet of temperature

4.48µmol/L HAuCl4- 0.67mmol/L HCl-3.33mmol/L H2O2-152ng/mL AuNPb;

Figure S16 Effcet of heating time

4.48µmol/L HAuCl4- 0.67mmol/L HCl-3.33mmol/L H2O2-152ng/mL AuNPb;

Figure S17 Effect of RhS SERS probe concentration

 $4.48 \mu mol/L\ HAuCl_{4}\text{-}\ 0.67 mmol/L\ HCl-3.33 mmol/L\ H_2O_2\text{-}190 ng/mL\ AuNP_b\text{-}RhS;$

Figure S18 Effect of VBB SERS probe concentration

4.48µmol/L HAuCl₄- 0.67mmol/L HCl-3.33mmol/L H2O2-190ng/mL AuNPb-VBB;

Figure S19 Effect of safranine T SERS probe concentration.

4.48µmol/L HAuCl₄- 0.67mmol/L HCl-3.33mmol/L H2O2-190ng/mL AuNPь- safranine T.

 $\label{eq:Figure S20 Working curve for RRS detection of $AuNP_b$$ 4.48 μmol/L HAuCl_{-0.67}mmol/L HCl_{-3.33}mmol/L H_2O_{2}-AuNP_b$.$

Figure S21 Working curve for SERS detection of AuNPc 4.48µmol/L HAuCl4-0.67mmol/L HCl-3.33mmol/L H2O2-AuNPc.

Figure S22 Working curve for SERS detection of AgNP 4.48µmol/L HAuCl₄-0.67mmol/L HCl-3.33mmol/L H₂O₂-AgNP.

Figure S23 Working curve for SERS detection of AuNP_b with RhS probe 4.48µmol/L HAuCl₄-0.67mmol/L HCl-3.33mmol/L H₂O₂-AuNP_B-6.97µmol/L RhS.

Figure S24 Working curve for SERS detection of AuNPb with VBB probe 4.48µmol/L HAuCl4-0.67mmol/L HCl-3.33mmol/L H2O2-AuNPb-1.3µmol/L VBB

Figure S25 Working curve for SERS detection of AuNPb with safranine T probe 4.48µmol/L HAuCl4-0.67mmol/L HCl-3.33mmol/L H2O2-AuNPb-6.7mmol/L safranine T.

Figure S26 Working curve for RRS detection of Hg²⁺. 4.48μmol/L HAuCl₄+0.67mmol/L HCl+3.33mmol/L H₂O₂-38ng/mL AuNP_B-Hg²⁺

Figure S27 Working curve for SERS detection of Hg²⁺.

4.48µmol/L HAuCl₄+0.67mmol/L HCl+3.33mmol/L H2O2-38ng/mL AuNPB-1.3µmol/L VBB -Hg^2+ $\,$

Sample	Hg ²⁺ content	Added Hg ²⁺	Found Hg ²⁺	Recoery	RSD	AAS
	(nmol/L)	(nmol/L)	(nmol/L)	(%)	(%)	(nmol/L)
Tap	13.8	10	10.2	102	5.2	13.4
River	16.8	10	9.70	97.0	4.8	17.2
Pond	21.5	10	9.85	98.5	4.5	23.1

Table S1 Results for the determination of Hg^{2+} in water samples (n=5)