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Abstract: The Laser Direct Synthesis and Patterning (LDSP) technology has advantages in terms of 

processing time and cost compared to nanomaterials-based laser additive microfabrication 

processes. In LDSP, a scanning laser on the substrate surface induces chemical reactions in the 

reactive liquid solution and selectively deposits target material in a preselected pattern on the 

substrate. In this study, we experimentally investigated the effect of the processing parameters and 

type and concentration of the additive solvent on the properties and growth rate of the resulting 

metal film fabricated by this LDSP technology. It was shown that reactive metal ion solutions with 

substantial viscosity yield metal films with superior physical properties. A numerical analysis was 

also carried out the first time to investigate the coupled opto-thermo-fluidic transport phenomena 

and the effects on the metal film growth rate. To complete the simulation, the optical properties of 

the LDSP deposited metal film with a variety of thicknesses were measured. The characteristics of 

the temperature field and the thermally induced flow associated with the moving heat source are 

discussed. It was shown that the processing temperature range of the LDSP is from 330 to 390 K. A 

semi-empirical model for estimating the metal film growth rate using this process was developed 

based on these results. From the experimental and numerical results, it is seen that, owing to the 

increased reflectivity of the silver film as its thickness increases, the growth rate decreases gradually 

from about 40 nm at initial to 10 nm per laser scan after ten scans. This self-controlling effect of LDSP 

process controls the thickness and improves the uniformity of the fabricated metal film. The growth 

rate and resulting thickness of the metal film can also be regulated by adjustment of the processing 

parameters, and thus can be utilized for controllable additive nano/microfabrication. 

Keywords: laser direct write; flexible electronics; reactive silver ink; laser direct synthesis and 

patterning; additive microfabrication 

 

1. Introduction 

The development of rapid and cost-effective nano/microfabrication processes for electric circuitry 

on flexible substrates has gained significant attention as a pathway to low cost, large area, flexible and 

wearable electronics [1]. Conventional micro-fabrication processes (such as photolithography) require 

complex, sophisticated and expensive equipment, and the process often employs toxic chemicals as 

etchants and developers. In addition, a general microfabrication process is not suitable for use on 

flexible material, because the corrosion resistance of most flexible materials is not high and they are 

also intolerant to the elevated temperatures often encountered in a standard photolithography 

process. In addition, the manufacture of circuit patterns using photolithography often requires the 
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use of a mask to transfer the pattern to the substrate. It is very difficult to make changes to a mask 

once it has been prepared, and this places further limitations on a process which is already very 

expensive and time-consuming. This has resulted in much attention being given to the development 

of low cost micro-electromechanical manufacturing technology that can be used for the manufacture 

of microscale electronics on a flexible substrate as required, the design of which can be very easily 

and quickly changed [2,3]. 

In recent years, the research and technology development of processes using nanomaterials has 

attracted the attention of many researchers owing to several unique properties of the nanomaterial, 

especially on the size dependent melting temperature reduction [4]. The characteristics of low 

melting temperature nanomaterials has been successfully applied in several non-conventional 

nano/microfabrication techniques such as laser direct writing [5,6], inkjet printing [7,8], 

nanoimprinting [9], the low temperature welding of nanowire percolations [10], and the low 

temperature sintering of nanoparticles [11,12]. The main objectives of the development of advanced 

microscale manufacturing processes by the use of nanomaterials are the realization of large area, fast, 

non-vacuum and mask-free microscale manufacturing technology with a high degree of design 

flexibility. Nevertheless, the requirement of nanomaterials in these techniques significantly limits the 

application of such approach due to the costly and complex process of nanomaterial synthesis, as 

well as the instability of most nanomaterials in a normal environment. Therefore, low temperature, 

nanoparticle-free processes that are compatible to flexible substrates are more ideal for fabricating 

flexible electronics [13]. In this study, we applied and revised a laser direct synthesis and patterning 

(LDSP) technology [3,14] to replace microfabrication that involves masks, vacuum systems and 

nanomaterials. In the process, a transparent and particle-free silver ion reaction solution is applied on the 

surface of a polymer substrate (polyimide film). The beam from a continuous wave (CW) laser, focused 

on the surface of the substrate to achieve rapid and localized heating, is guided by a galvanometer 

scanning system. Silver ions are selectively reacted and precipitated on the substrate surface to form the 

circuit pattern. This process, which can be carried out at normal room temperature and pressure, is 

cheaper than other micro-fabrication processes and there is no need for the synthesis of expensive 

nanomaterials. Our experiments have produced excellent stabilized silver nano-microstructure patterns 

on polymer substrates. In this study, we further experimentally investigated the effect of the additive 

solvent on the resulting silver nanostructure. In addition, from the experimental results, we found 

the transient thermal effect near the laser focal spot to be of vital importance. However, reports on 

the analysis of the transport characteristics of the laser thermal additive nano/microfabrication 

processes are still rather limited [6,15–18], and the fluid flow effects were often neglected. Especially 

for the LDSP, our literature survey revealed no published studies of the opto-thermo-fluidic transport 

phenomena coupled with chemical reaction rate analysis in this process. However, as also to be 

shown in the results of this study, the thermally induced fluid flow is very important to the growth 

rate and stability of laser additive microfabrication in reactive liquid environment [19,20]. To address 

this deficiency in theoretical study we conducted experiments and numerical simulation to 

investigate the effects of process parameters on the growth rate of the resulting silver nanostructures. 

One important goal was to further the understanding of the impact of various processing parameters 

(laser power, scanning speed and solution concentration etc.) on LDSP fabrication. It is emphasized 

that the results of this experimental and numerical investigation were aimed to serve as reference for the 

subsequent improvement of LDSP technology and other advanced laser additive nano/microfabrication 

processes with similar configurations and physics. 

2. Experimental 

The silver ion solution (ink) used in this study was prepared based on the procedure discussed 

in the referenced articles. [14,21]. In brief, 1 g of silver acetate (silver acetate, anhydrous 99%, Alfa 

Aesar, Lancashire, UK) was dissolved in 2.5 mL of aqueous ammonium hydroxide (28%–30%, JT 

Baker, Center Valley, PA, USA), followed immediately by stirring and the addition of 0.2 mL of 

formic acid (88%, JT Baker, Center Valley, PA, USA). The ink was allowed to settle for 12 h in 

refrigerator at about 4 °C to allow the larger silver particles to precipitate on the bottom of the 
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container. Note that the addition of formic acid results in an exothermic reaction and should be 

carried out in an ice bath to prevent an excessively fast reaction which will affect the concentration of 

the silver ion solution. The prepared silver ion solution is a clear liquid as shown in Figure 1 and the UV-

Vis absorbance spectrum measurement (Genesys 10S UV-Vis Spectrophotometer, Thermo Scientific, 

Waltham, MA, USA), also shown in the figure, confirms that the ion solution is free of silver 

nanoparticles. Note that the slight negative values shown in the spectra are due to the resolution limit 

of the spectrophotometer. This silver ion solution is mixed with ethylene glycol (JT Baker, Center 

Valley, PA, USA) or propylene glycol (JT Baker, Center Valley, PA, USA) at 1:1 (by volume) to prepare 

the processing solution for the LDSP. It is emphasized, as will be seen in the results and discussion 

section, that the addition of proper glycol solvent is essential to the attainment of stable results and 

good quality silver patterns. 
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Figure 1. (a) The silver ion reaction solution used in this study; and (b) The absorbance spectrum of 

the silver ion solution and its mixture (1:1) with ethylene glycol or propylene glycol. 

A polyimide sheet (100 μm thick) was cleaned by rinsing with acetone, ethanol, isopropanol and 

methanol, consecutively. After air dried, the top surface of the sheet was treated with oxygen plasma 

(Atmospheric Pressure Plasma Cleaner, APPC103C, Solar Energy Tech. Inc., Taiwan. Output voltage: 

10,000–50,000 V. Output frequency: 4–5 MHz) for 10 s to improve adhesion of the silver to the 

polyimide surface [14,19]. The polyimide sheet was then held on a vacuum suction sample holder to 

ensure a flat surface. A small amount of the processing solution was prepared and dispensed to form 

a liquid film that covered the surface of the polyimide sheet. Typically, a layer about 2 mm thick was 

enough to prevent the processing solution from drying out during the experiment. The laser light 

source used in the experiment was a green (λ = 532 nm) CW laser. A beam expander was used to 

enlarge the collimated beam to enhance focusing. A laser galvanometer scanner (SCANLAB 

hurryScan®  II-7, SCANLAB AG, Munich, Germany) was used to focus and guide the laser beam, 

according to a programmed pattern, onto the substrate surface. The experimental LDSP system is 

shown in Figure 2. The polyimide substrate absorbs the irradiated laser light and converts it to heat. 

The processing solution near the polyimide surface, and in the path of the beam, is heated and a 

highly localized reaction takes place to yield silver which is directly deposited on the substrate 

surface. After the laser scanning process is completed, the polyimide surface is rinsed with deionized 

water and then ethanol to remove unreacted silver ink [22]. 
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Figure 2. Experimental apparatus of laser direct synthesis and patterning (LDSP). 

To evaluate the electrical property of the resulting silver pattern, silver patterns of 1 mm (width) 

× 10 mm (length) were fabricated using the setup described. Note that the width of single line scan is 

approximately 50 μm. Therefore, to fabricate a silver line pattern with 1 mm width, the laser scans 

were repeated in a zig-zag fashion with a 50 μm line-to-line pitch. More details for the resolution and 

line width can be found in our previous report [14]. The electrical resistance of the silver lines was 

measured with an impedance measuring instrument (Hioki RM3544-01, range 30 mΩ–3 MΩ, accuracy ± 

0.02%, HIOKI E.E. Corporation, Nagano, Japan). A white light interferometer (Zygo NV7100, 

resolution 0.1 nm, Zygo Corporation, Middlefield, CT, USA) was used to measure the thickness of 

the silver lines. In addition, to formulate the numerical simulation model, a lab-constructed and 

validated hemispherical radiation measurement system (facility in Prof. Yu-Bin Chen’s Lab in the 

Department of Mechanical Engineering, National Cheng Kung University, Tainan City, Taiwan) [23] 

(wavelength range: 400–1800 nm, resolution: 20 nm) was used to measure the reflectivity and 

transmissivity of the silver microstructure. 

3. Numerical Simulation 

COMSOL®  Multiphysics finite element software (COMSOL Inc., Burlington, MA, USA) was 

used for numerical simulation to elucidate the influence of process parameters on the transport 

phenomena in the vicinity of the focused laser spot during the LDSP process, and also to investigate 

their coupled opto-thermal-fluidic effects on the silver film formation reaction. The simulation 

domain is shown in Figure 3. The size of the simulation domain was determined by the confirmation 

(from the test results) that it would not affect the simulation results, i.e., there would be no edge 

effects. The standard continuity, momentum, and energy equations for slightly compressible fluid 

(where the fluid density is a function of temperature) flow were solved to obtain the temperature and 

fluid velocity distributions considering the buoyancy effects in the reaction fluid associated with the 

temperature gradient induced by heat from the moving laser beam. The heat source Qabs 

corresponding to the absorbed energy of the moving laser spot with a speed U is given as [16,24]: 

Q𝑎𝑏𝑠 = (1 − 𝑅)𝛾𝐼0𝑒𝑥𝑝 [− (
𝑥 − 𝑈𝑡

𝜔
)

2

− (
𝑦

𝜔
)

2

− 𝛾𝑧] (1) 

where R is the reflectivity, γ is the absorption coefficient, I0 is the laser intensity and ω is the size of 

the laser beam on the substrate surface. 

As will be discussed later, a semi-empirical model for the temperature dependent growth rate 

of the silver line thickness was then developed using the numerical simulation results for temperature 

and the experimental results for silver line thickness of the benchmark case (ethylene glycol based 

solution, laser power: 200 mW, scanning speed: 20 mm/s). It should be pointed out that the reflectivity 

of the substrate increases with the thickness of the silver line. Therefore, a correlation for the 
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reflectivity of the substrate surface covered by a silver film with different thicknesses was determined 

from the representative measured results (to be shown later). The correlation for the reflectivity with 

respect to the silver film thickness was then incorporated in the numerical analysis to determine the 

absorption of irradiated laser light by the polyimide substrate which will vary depending on the 

thickness of the silver. Testing of the stability of the numerical solution to mesh size was performed 

with element (grid) numbers of 793,938, 1,783,174, 3,103,532, 8,599,826 and 9,399,321, respectively. It 

was found that, in the computed results, the maximum temperature on the substrate surface (at the 

center of the laser beam) begins to converge and stabilized with a number of elements greater than 

8,599,826 and a mesh system with this number of elements was therefore used for the subsequent 

simulations. 

 

Figure 3. A schematic of the simulation domain used in the current study. 

4. Results and Discussion 

4.1. Experimental Results 

Figure 4 shows a comparison of the surface structure of silver lines fabricated from reactive ion 

solutions mixed with ethylene glycol or propylene glycol at 1:1 (by volume). The laser power was 200 mW 

at a scan speed of 20 mm/s, and 10 scans were used in both cases. It can be seen that the surface of the 

silver deposited from solution in the propylene glycol case is smoother and less fragmentary than 

that from the ethylene glycol mixed solution. This is possibly due to the viscosity of propylene glycol 

(42cp at STP) which is higher than that of ethylene glycol (16cp at STP). In our previous study [14], it 

was found that the morphology of the metal line fabricated by LDSP is seriously affected by the ratio 

of the added ethylene glycol to aqueous ammonium hydroxide, where an increase in the ratio of 

ethylene glycol results in straighter and more well-defined silver lines. This was attributed to the 

higher boiling point and viscosity which inhibits vaporization and reduces flow of the reaction 

solution near the laser focus point. Since ethylene glycol and propylene glycol have a similar boiling 

temperature, we conclude that the improvement in structure (smoother and less porous) of the silver 

lines is the result of the higher viscosity of propylene glycol. 

The line width resolution is significantly affected by the concentration of the reactive ion solution 

as previously investigated and reported [14]. Generally, to attain a silver line with better resolution 

and line width control, a reactive ion solution with higher ethylene glycol (EG) concentration should 

be used. However, this would decrease the growth rate of the silver line in consequence. Thus, in the 

current study, we used the reactive solution with ink to EG ratio equals to 1:1. It should also be 

pointed out that the line edges fabricated by the LDSP process are wider, thicker and rougher, owing to 

the deceleration of the laser scans close to the edges as was illustrated in our previous experiment report 

[22]. One possible method to resolve this issue is adjusting the laser power at locations where the 

scanning speed is accelerating or decelerating. In the current study, however, we focused on 

investigating the transport phenomena and line properties in the section with stable processing 

parameters. 
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Figure 4. SEM images of the silver film fabricated from the reaction solution with (a) ethylene glycol, 

(b) propylene glycol. 

Figure 5a,b show the variations in thickness and electrical resistance of the silver lines with 

respect to the number of scans. The electrical resistance decreases with an increase in film thickness 

as the number of scans goes up until the values become saturated with more than ten laser scans. 

These results are similar to those were reported for the EG based solution where the resistance of the 

silver lines fabricated using LDSP is saturated after about ten scans [14]. Thus, other measurements 

on the line thickness, reflectivity and element ratio analysis in the current study were conducted for 

silver lines up to ten laser scans. The electrical resistance of silver lines fabricated with propylene 

glycol additive is less than that with ethylene glycol if fewer scans (less than 7) are conducted. The 

results of energy dispersive X-ray spectrometry (EDS) (Carl Zeiss AG Corporate, Oberkochen, 

Germany) of the silver lines fabricated from these two reactive solutions are shown in Figure 5c. It 

can be seen that there is more silver in the deposit made with using the propylene glycol solution 

than in the one made with ethylene glycol solution. Therefore, the propylene glycol based processing 

solution yields silver lines with better physical properties. However, the propylene glycol based 

solution changes color to light yellow and then to gray within one hour of mixing at room 

temperature, while the ethylene glycol based solution is very stable for days. The change of color for 

the propylene glycol mixed solution indicates the presence of silver particles, and this was confirmed 

with UV-Vis spectrometry (cf. Figure 1b) which showed a strong absorption peak between 400 and 

550 nm that corresponds to the presence of silver nano/micro particles [25]. These changes in optical 

and chemical properties have a serious effect of the stability of silver pattern synthesis, and so we 

used ethylene glycol based solutions for the remainder of our investigation in this study. 

It should be noted that the LDSP process is in the liquid surroundings, and thermally induced flow 

with chemical reactions greatly affects the growth rate, morphology and uniformity of the silver line 

surface, especially in the early laser scans where the processing temperature is high. Therefore, the 

variation in the electrical resistance is large for silver line with small number of laser scans. With increasing 

the number of laser scans, the part that with thinner silver layer thickness would absorb more laser 

light owing to its smaller reflectivity than the thicker part. This phenomenon could therefore be used 

to self-adjust the thickness of the resulted silver lines with more laser scans. Nevertheless, the rough 

nanostructured surface of the silver lines could be useful for applications where a thin layer of materials 

with a large surface area is preferred. For example, in the electrodes for dye-sensitized and organic solar 

cells, a nanostructured electrode could significantly improve the conversion efficiency [26]. 

Furthermore, from Figure 5c, it is seen that the oxidation of the silver line fabricated by LDSP is not 

significant. This result could be attributed to the fact that LDSP is processed in a reducing environment 

where the reactive ion solution contains EG and formic acid. From the measured results of line thickness 
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and resistance shown in Figure 5, the silver line fabricated with EG to ink solution of 1:1, 200 mW laser 

power and 10 scans is approximately 7.5 μΩ·cm. 
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Figure 5. (a) Thickness and (b) Electrical resistance of the silver films with respect to the number of 

laser scans; (c) EDS results for the silver lines with 10 scans. 

Figure 6 shows the resulted silver lines and a demonstration of silver patterns on flexible 

polyimide (PI) film made by LDSP with the EG based processing solution. Note that the width of 
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silver line in this study was about 50 μm, which will be used in the later analysis. It is emphasized 

again that this LDSP technique does not require photomasks or nanoparticles. Silver patterns in any 

shape can be rapidly fabricated on polymer substrates. During the LDSP process, silver patterns with 

micro porous may form as was shown in Figure 4. The liquid processing solution could fill and mend 

those pores/voids under subsequent laser scanning. Adding solvent with high boiling point such as 

ethylene glycol helps to minimize vaporization of the aqueous ammonium hydroxide based ion 

solution. Therefore, using appropriate processing solution and well controlling processing 

parameters are critically important to attain good electrical and mechanical properties in the LDSP 

process. To further understand the transport phenomena during the LDSP process, we conducted 

numerical analysis and will discuss the results in the following section. 

  
(a) (b) 

Figure 6. Silver lines fabricated on polyimide film substrate using LDSP (with ethylene glycol (EG) based 

solution): (a) microscopic picture of the silver line; (b) a demonstration of silver patterns on the flexible PI 

substrate. 

4.2. Numerical Simulation Results 

The variations on the silver line thickness and reflectivity of the silver film with respect to the 

number of laser scans are shown in Figure 7. For each number of laser scan, five samples were 

prepared for measurement. Noted again that a white light interferometer was used to measure the 

film thickness and a hemispherical radiative property measurement system was used to measure the 

reflectivity as previously stated. A silver ion reactive solution using ethylene glycol at a ratio of 1:1 

(volumetric) was used, the laser power was fixed at 200 mW and scanning speed was 20 mm/s. The 

curves shown in Figure 7a,b represent the fitted results for silver film thickness and reflectivity. These 

fitted curves have a coefficient of determination (R2) higher than 0.96 which indicates a reasonably 

good fit to the data. The initial reflectivity of the polyimide substrate at 532 nm was about 0.075. This 

goes up with the number of laser scans as the thickness of the silver film increases, and saturates at 

about 0.68 when the number of scans reaches 10. From these fitted results, a correlation between the 

reflectivity and the silver film thickness was obtained as: 

𝑅 = 0.075 + 0.74(1 − exp(−0.0072 ∗ δ)) (2) 

Using the curve-fitted silver film reflectivity in Equation (2), the peak temperature at the center 

of the moving laser spot, defined as the processing temperature Tp, was calculated from the numerical 

simulation for each laser scan. Figure 8a shows the processing temperature for the first scan with 

respect to time in the scan path (with a scan speed of 20 mm/s). It can be seen that the processing 

temperature reaches a steady value of approximately 387 K at a location 0.4 mm from the starting 

point. Figure 8b shows the simulated temperature profile on the polyimide surface. These results 

indicate a typical quasi-static thermal field for a moving heat source at constant speed and intensity [24]. 

Since the length of the scanned silver line was 10 mm, and the thickness of the silver was measured 

in a region near the center (~5 mm from the start), the quasi-static maximum temperature was adopted as 

the representative processing temperature. 
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Figure 7. (a) Thickness of the silver film; (b) Reflectivity for 532 nm wavelength light versus number 

of laser scans (symbols: experimental data, lines: fitted curves). 
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Figure 8. (a) The processing temperature for the first scan with respect to time along the scan path; 

(b) The simulated temperature profile on the polyimide surface. 
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The change in silver film thickness between each pair of consecutive scans (Δξ) was determined 

from Figure 7a, and the growth rate of the silver film ( 𝑟̇) was determined using the following 

equation: 

𝑟̇ =
∆ 𝜉 

𝜏𝑐ℎ

 (3) 

where the characteristic time (τ𝑐ℎ) is defined as: 

τ𝑐ℎ =
𝑠𝑖𝑙𝑣𝑒𝑟 𝑙𝑖𝑛𝑒 𝑤𝑖𝑑𝑡ℎ 

𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑎𝑠𝑒𝑟 𝑠𝑐𝑎𝑛𝑛𝑖𝑛𝑔
 (4) 

Figure 9 shows the variation of film growth rate with respect to the processing temperature. A 

correlation of film growth rate and the processing temperature (Tp) was then proposed: 

𝑟̇ = −667 + 3.5𝑇𝑝 − 0.0045𝑇𝑝
2 (Tp unit: K) (5) 

It should be noted that the filled dots in Figure 9 were obtained using the fitted curve in Figure 7a. 

From Figure 9, it can be seen that the growth rate of the silver film increases with a rise in temperature, 

which increases the rate of silver ion reduction. However, the increase in the silver growth rate with 

temperature then slows down at high temperature. It should also be noted that the growth rate cannot 

be adequately described by an Arrhenius type of reaction rate model where the growth rate would 

then increase exponentially with a rise in temperature. This is possibly due to the fact that the current 

LDSP process is in a liquid fluidic environment and during the pattern writing process, there is strong 

convective heat and mass transport near the focused laser spot on the substrate. Figure 10 shows the 

velocity and temperature distribution near the laser focal spot. There is significant fluid flow due to 

a strong buoyancy effect, while the heat for chemical reaction is confined in the vicinity above the 

substrate surface. As a result, the rate of silver deposition on the substrate may be adversely affected 

by the thermally-induced convective flow away from the substrate surface, the magnitude of which 

increases with a rise in temperature. 
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Figure 9. Variation of the silver line growth rate (in thickness) with respect to the processing 
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(b) 

Figure 10. The velocity (arrows) and temperature (color surface) distribution near the laser focal spot, 

(a) Side view; (b) 3D view. 

To illustrate the usefulness of the current analysis and proposed model for estimating the growth 

rate of the silver film fabricated by LDSP, simulations for a laser scanning speed of 30 mm/s were 

made to determine the film thickness after each scan. The computed processing temperature, silver 

film growth rate, film reflectivity and the accumulated silver film thickness are listed in Table 1. The 

computed silver line thickness for five, seven and 10 laser scans were compared with experimental 

results. It can be seen that the computed silver film thickness in each case is close to the measured 

results. However, it should be noted that the current analysis is valid for an LDSP process carried out 

within the temperature range investigated, i.e., between 350 and 380 K. Working outside this range might 

result in the temperature being too low for the formation of a silver film or so high that the substrate would 

suffer thermal damage. It should also be emphasized that these results and the methodology presented 

here comes from the first investigation of transport characteristics of a LDSP process. The growth rate of 

the silver film indeed depends upon coupled thermo-fluidic transport with a chemical reaction, and 

can be regulated by adjustment of these parameters. It is shown that the proposed semi-empirical 

model can predict the silver film growth rate in an LDSP process using the parameters of laser power, 

scanning speed and number of scans. Furthermore, owing to the increased reflectivity of the silver 

film as its thickness increases, the growth rate decreases gradually to about 10 nm per laser scan after 

ten scans. It should be noted that this self-controlling effect corresponding to the coupled optical 

properties and reaction rate of LDSP process can be utilized to control the thickness and uniformity 

of the metal film. 

It should be noted that, based on the experimental and numerical results for the LDSP process, to 

attain a growth rate higher than 10 μm/s, the processing temperature should be higher than 340 K.  

In addition, the reactive solution contains a small amount of formic acid. Therefore, a suitable polymer 

substrate for applying the LDSP should be selected with taking these limitations into consideration. 

Furthermore, in the current configuration of the LDSP process, the laser wavelength should be selected so 

T V 

100 μm 

T (K) V (mm/s) 

100 μm 

T (K) V (mm/s) 
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the substrate can absorb the laser energy effectively to provide the heat for chemical reaction. It should 

also be pointed out that the growth rate of the silver pattern in the current status is less than 25 μm/s and 

the maximum line thickness achieved is about 250 nm owing to the increased reflectivity of the formed 

silver lines to the irradiated laser light. This self-limiting effect could restrict the application of LDSP from 

fabricating electronic devices that require thick metal patterns. Methods to improve the LDSP technique 

to address these aforementioned limitations are currently under investigation. 

Table 1. Evaluation for the proposed model for laser direct synthesis and patterning (LDSP) process 

analysis processing parameters: (laser power: 200 mW, scanning speed: 30 mm/s, processing solution: 

ethylene glycol based solution (at a volumetric ratio 1:1). 

Number 

of Scans 

Reflectivity 

(Fitted Curve in 

Figure 7b) 

Processing 

Temperature (k) 

(Numerical Results) 

Growth Rate (μm/s) 

(Equation 3) 

Accumulated Silver 

Film Thickness (nm)  

[ ]: Experimental 

Results 

1 0.075 373.5 19.9 33.1 

2 0.23 360.4 16.7 61.0 

3 0.34 351.6 13.8 83.9 

4 0.41 345.7 11.4 102.9 

5 0.46 341.4 9.5 118.7 [150.7 ± 12.9] 

6 0.50 338.5 8.1 132.2 

7 0.53 336.1 6.9 143.6 [152.7 ± 10.9] 

8 0.55 334.4 6.0 153.6 

9 0.57 333.0 5.3 162.3 

10 0.58 331.8 4.6 170.0 [182.9 ± 15.5] 

5. Conclusions 

In this study, the effects of the type and concentration of the additive solvent on the properties and 

growth rate of silver film fabricated by LDSP technology were investigated experimentally. It was 

shown that the reactive solution mixed with propylene glycol, which has higher viscosity, yields 

silver films with better physical properties than that from the solution mixed with ethylene glycol. 

However, it was observed that significant amount of silver nano/micro particles form within an hour 

in the propylene glycol based solution. To ensure a stable result, the use of an ethylene glycol based 

processing solution is recommended. A numerical analysis was also carried out to investigate the 

coupled opto-thermo-fluidic transport phenomena and the effects on the silver film growth rate.  

A semi-empirical model for estimating the silver film growth rate of the LDSP process was developed 

based on the experimental and numerical results. The proposed model was used to predict the silver 

film growth rate at different laser scanning speeds. The numerical results agree reasonably well with 

the experimental results. The proposed empirical model and analysis are clearly useful for the 

evaluation of the process parameters for metal film growth rate in processes of this kind. 
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