
Citation: Tang, D.; Peng, X.; Wu, S.;

Tang, S. Autonomous Nanorobots as

Miniaturized Surgeons for Intracellular

Applications. Nanomaterials 2024, 14,

595. https://doi.org/10.3390/

nano14070595

Academic Editors: Eleonore Fröhlich

and Pablo Botella

Received: 13 February 2024

Revised: 6 March 2024

Accepted: 27 March 2024

Published: 28 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Review

Autonomous Nanorobots as Miniaturized Surgeons for
Intracellular Applications
Daitian Tang 1 , Xiqi Peng 1, Song Wu 1,* and Songsong Tang 2,*

1 Luohu Clinical Institute, School of Medicine, Shantou University, Shantou 515000, China;
21dttang@stu.edu.cn (D.T.); 13xqpeng@stu.edu.cn (X.P.)

2 Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology,
Pasadena, CA 91125, USA

* Correspondence: wusong@szu.edu.cn (S.W.); sstang@caltech.edu (S.T.)

Abstract: Artificial nanorobots have emerged as promising tools for a wide range of biomedical
applications, including biosensing, detoxification, and drug delivery. Their unique ability to navigate
confined spaces with precise control extends their operational scope to the cellular or subcellular level.
By combining tailored surface functionality and propulsion mechanisms, nanorobots demonstrate
rapid penetration of cell membranes and efficient internalization, enhancing intracellular delivery
capabilities. Moreover, their robust motion within cells enables targeted interactions with intracel-
lular components, such as proteins, molecules, and organelles, leading to superior performance
in intracellular biosensing and organelle-targeted cargo delivery. Consequently, nanorobots hold
significant potential as miniaturized surgeons capable of directly modulating cellular dynamics and
combating metastasis, thereby maximizing therapeutic outcomes for precision therapy. In this review,
we provide an overview of the propulsion modes of nanorobots and discuss essential factors to
harness propulsive energy from the local environment or external power sources, including structure,
material, and engine selection. We then discuss key advancements in nanorobot technology for
various intracellular applications. Finally, we address important considerations for future nanorobot
design to facilitate their translation into clinical practice and unlock their full potential in biomedical
research and healthcare.

Keywords: nanorobots; robust and controlled propulsion; enhanced intracellular delivery; intracellular
biosensing; organelle targeting

1. Introduction

In his seminal 1959 speech titled “There’s Plenty of Room at the Bottom”, physicist
Richard Feynman envisioned the manipulation of matter at atomic and molecular scales.
His ideas of ‘swallowing the surgeon’ inspired the development of tiny surgical robots
designed to be ingested [1,2]. These visionary concepts have challenged scientists to
explore the possibilities of fabricating nanoscale machines capable of controlled operation
within the human body [3–5]. However, the constraints imposed by the nanoscale limit
the incorporation of traditional electronic power and control systems into nanomachines.
Generating propulsive force at low Reynolds numbers and overcoming Brownian motion
represent primary obstacles in designing untethered nanorobots [6,7]. The rapid evolution
of nanotechnology has facilitated the emergence and advancement of nanorobots with
various designs and propulsion mechanisms.

Nanorobots are miniaturized machines at nanoscale that are capable of converting
local energy or external power to propulsive force for achieving effective propulsion [8–
11]. These nanorobots typically have a diameter of less than 1 µm with various shapes,
such as rod, sphere, helical, hollow, or other complex structures. The material compo-
sition may vary for different applications, including rigid metals, biocompatible poly-
mers, and 3D-printed resin [5,12,13]. Extensive efforts have been dedicated to developing
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nanorobots with various propulsion modes, including chemical propulsion [9,14–17], mag-
netic propulsion [4,18–21], ultrasound propulsion [22–24], and light propulsion [25–28].
These autonomous tiny machines enable controlled operations in narrow spaces or hard-to-
reach sites to accomplish complicated tasks [29–32]. These advancements have endowed
nanorobots with superior performance compared to traditional passive systems in biomed-
ical domains, such as biosensing, detoxification, and drug delivery [30,33–35]. As the
demand for precision therapy has prompted a shift in therapeutic targeting from tissues
to individual cells, the aim is to understand cellular mechanisms underlying diseases and
achieve enhanced therapeutic efficacy [32,36,37]. Autonomous nanorobots represent an
attractive platform for overcoming the constraints of traditional passive systems.

Passive systems utilized for intracellular applications mainly rely on diffusion-based
transport, encountering several challenges that impede their effectiveness [38]. For in-
stance, diffusion-based delivery commonly takes a longer time to reach the cell, leading
to low delivery efficiency and inadequate targeting. Passive particles struggle to rapidly
pass the biological barrier of the cell membrane due to the deficiency of external power
forces, thereby limiting the cellular internalization of loaded cargo. In contrast, nanorobots
capable of effective and steerable motion enable active and targeted seeking of the desired
cells [39–42]. Their capability of harnessing energy from the surrounding solution and an
external power source endows nanorobots with sufficient force to rapidly penetrate the
cell membrane [43,44]. The internalized nanorobots can leverage their controlled propul-
sion to rapidly interact with targeted proteins, molecules, and organelles for advanced
intracellular biosensing and drug delivery. Nanorobots act as miniaturized intracellular
surgeons to directly regulate cellular metabolism with minimal invasion. This advanced
nanomachine capable of cellular or subcellular access introduces next-generation robotic
medical devices for precision therapy, holding great potential for achieving maximized
therapeutic outcomes with minimized toxicity and healthcare costs.

In this review, we will first discuss the propulsion modes of nanorobots. The ma-
terial selection, structure design, and propulsion mechanisms will be discussed in each
propulsion mode (Figure 1). Then, we will review the reported intracellular applications of
nanorobots, including opening cell membranes, biosensing, detoxification, photo-based
therapy, drug delivery, and organelle targeting. We will provide detailed insights into the
construction of nanorobots, including surface modification techniques, and discuss the
enhancements enabled by nanorobots. Table 1 summarizes the representative examples
of nanorobots for intracellular applications. We will highlight various studies to describe
how the effective propulsion of nanorobots results in superior performance compared to
static counterparts. Finally, we will outline three key considerations regarding nanorobotic
designs to facilitate future advancements toward clinical trials.
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Table 1. Summary of representative nanorobots for intracellular applications.

Materials Size Propulsion
Mechanism Application Ref.

AuNW 4 µm in length and 200 nm in diameter US biosensing [45]

AuNW 1.7 µm in length and 400 nm in diameter US biosensing [46]

AuNW 2 µm in length and 400 nm in diameter US cargo delivery [47]

AuNW 4 µm in length and 200 nm in diameter US cargo delivery [48]

AuNW 4 µm in length and 200 nm in diameter US cargo delivery [49]

gallium 5.5 µm in length and 500 nm in diameter US photo-based
therapy [50]

RBC-PFC, AuNW, 2 µm in length and 400 nm in diameter US cargo delivery [51]

gold, polymer 10 pm in length, diameters of the two
openings are ~200 nm and ~800 nm US cell membrane

penetration [52]

Au/Ni/Si ~5 µm in length with tip diameters < 50 nm MF cargo delivery [53]

polymersomes, Au around 400 nm NIR biosensing [54]

SiO2-Co/Fe 2.4 µm in length and 250 nm in width MF biosensing [55]

Ni-carbon <2 µm in length MF cargo delivery [56]

Ni/Pt/Ni 200 nm in diameter and 1.5 mm in length MF cargo delivery [57]

Pt, polymer 500 nm H2O2 cargo delivery [58]

mesoporous silica NPs average diameter ~420 nm urea cargo delivery [59]

mesoporous silica NPs, gold average diameter of sub-100 nm urea cargo delivery [60]

carbon, Fe3O4 outer diameter of 10–15 nm, length of 1–5 µm MF cargo delivery [61]

cetyltrimethylammonium
bromide (CTAB) and

tetraethylorthosilicate (TEOS)
average diameter 344 ± 3 nm urease cargo delivery [62]

gold average diameter 171.53 + 1.40 nm H2O2 cargo delivery [63]

AuNW, red blood cell
membrane 2 µm in length and 400 nm in diameter. US cargo delivery [51]

Au-mesoporous silica Au 20nm, SiO2 80 nm H2O2 cargo delivery [64]

mesoporous silica 418 ± 21 nm urea cargo delivery [59]

Yb mof 41 ± 2 nm GOx-Cat cargo delivery [65]

mesoporous silica
nanoparticles, hemin diameter of about 630 nm ROS detoxification [66]

AuNS, SiO2

length (~13–94 nm), tail length (~0–510 nm),
and large tunable hollow diameter

(~100–240 nm)
NIR cargo delivery [67]

Au, MnO2 93.4 nm NIR biosensing [28]

polymersomes, Au around 400 nm NIR photo-based
therapy [54]

Pt, silica, black phosphorous diameter (450 nm) H2O2 detoxification [68]

calcium carbonate nanoparticle a diameter of 60.0 ± 5.0 nm H2O2 cargo delivery [69]

ZIF-67, DOX-TPP average size of 140.0 nm H2O2 organelle targeting [70]

PEG-Cys, MP, PEG average size 200 nm H2S organelle targeting [71]

mesoporous silica 67.8 nm to 80.6 nm NIR cell membrane
penetration [72]

gold nanowire 2 µm in length and 400 nm in diameter US biosensing [73]
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2. Propulsion Mechanisms

Tremendous efforts have been devoted to developing nanorobots with various propul-
sive engines. Breaking the geometric symmetry of robotic design is essential to achieve
directional and sufficient propulsive force [15,74,75]. Here, we mainly focus on four propul-
sion modes: chemical propulsion, magnetic propulsion, ultrasound propulsion, and light
propulsion. The motion mechanism and required robotic building entities will be discussed.

2.1. Chemical Propulsion

The chemical engines of nanorobots operate through chemical reactions between the
catalytic robotic body and the surrounding solution, converting chemical energy into an
effective driving force [16,76]. Noble metals have been widely adopted as nanorobotic
bodies in earlier studies, such as platinum [77] and silver [78]. Correspondingly, hydrogen
peroxide (H2O2) is commonly employed as the propulsion fuel. An oxygen molecule is
generated in the catalytic reaction rather than an oxygen bubble due to the insufficient
nucleation site at nanoscale, whereas other reaction products may vary depending on the
robotic compositions. For example, the oxidation electrochemical half-reaction occurs on
the Pt segment of bimetallic Pt/Au nanowire robots, producing hydrogen ions (H+) on
that side [79]. The electrokinetic flow of H+ toward the Au side for reduction half-reaction
generates an electrophoretic gradient to propel bimetallic nanorobots (Figure 2a). The
catalytic process can be altered by combining noble metals with inorganic entities. Taking
the Janus Pt/silica nanospheric robots as an example [34], H2O2 is decomposed on the
asymmetrically coated Pt side, yielding water and oxygen molecules (Figure 2b). The
uneven distribution of reaction products on the nanorobot surface induces a directional
flow toward lower concentration, creating self-diffusiophoretic locomotion for nanorobots.
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Figure 2. (a) Schematic illustration of the preparation and movement of a JAuNR-Pt nanorobot.
Reprinted with permission from [79]. Copyright © 2022, American Chemical Society. (b) Synthetic
procedure for Janus mesoporous silica nanoparticle (MSN) nanorobots, as well as subsequent drug
loading, lipid bilayer functionalization, transportation, and drug release. Reprinted with permission
from [34]. Copyright © 2014, John Wiley and Sons. (c) Schematic representation of the preparation of
lipase-powered nanorobots, whose motion is triggered by the catalytic decomposition of triacetin.
Reprinted with permission from [80]. Copyright © 2019, John Wiley and Sons. (d) Schematic
illustration of the preparation of a zwitterion-based nanomotor. Reprinted with permission from [81].
Copyright© 2019, Springer Nature. (e) Illustration of the synthetic process of a PCA nanorobot.
Reprinted with permission from [82]. Copyright © 2021, John Wiley and Sons.

The increasing demand from the biomedical community has led to the expansion
of catalytic engines beyond noble metals to include porous metal–organic frameworks
(MOFs) [83], polymers [84], and enzymes (e.g., catalase, urease, lipase) (Figure 2c) [80,85,86].
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Considering the potential toxicity of H2O2 fuel, catalytic systems that can utilize bioavail-
able fuels are highly preferable. An endogenous enzyme capable of biocatalytic decomposi-
tion of bioavailable fuel represents an attractive option for improving the biocompatibility
and adaptability of nanorobots in the biomedical field [87]. The enzyme engines [88], such
as urease or glucose oxidase (Gox), have been verified to provide an effective driving force
for nanorobots in the presence of biofluids containing urea or glucose, respectively [89].

The intracellular metabolic pathways also inspire the design of chemical-powered
nanorobots propelled by endogenous substrates. A typical metabolic pathway in mam-
malian cells involves the conversion of L-arginine into nitric oxide (NO) in the presence
of nitric oxide synthetases (NOSs) or reactive oxygen species (ROS) [90]. By leveraging
this biocatalytic process, Mao et al. designed hyperbranched polyamide-based nanorobots
with L-arginine coating (Figure 2d) [81]. L-arginine serves as propulsion fuel that can be
converted into NO in response to ROS, generating effective locomotion for nanorobots.
Additionally, L-cysteine is utilized as an enzyme-responsive fuel to construct self-powered
nanorobots based on zwitterionic polymers (Figure 2e) [82]. The overexpressed cystathio-
nine b-synthase (CBS) inside tumor cells enables the decomposition of L-cysteine into
hydrogen sulfide (H2S), inducing motion for nanorobots in the tumor microenvironment.

2.2. Ultrasound Propulsion

Ultrasound waves offer deep tissue penetration without causing damage [91]. This
non-invasive power with remote control has been widely applied in medical and clinical
fields [33]. As an external power source of nanorobots, an acoustic streaming force is
generated in the acoustic field to propel these tiny machines [92]. The most frequently used
building entity is a Au nanorod with a concave end fabricated using a membrane-template
electrodeposition method [93]. Au is first deposited within the cylindrical nanopore of
a polycarbonate (PC) membrane. Subsequently, the membrane template is dissolved to
release fabricated Au nanowires with concave ends (Figure 3a). The surface modification of
rod-like Au nanorobots can be facilely realized by reacting with thiol (-SH)-functionalized
chemical groups, such as amino or carboxyl, expanding their versatility for broader adap-
tions in biomedical domains. For example, Au nanorobots were modified with a carboxyl
group to facilitate the cell membrane coating for biodetoxification (Figure 3b) [93,94].
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coating for biodetoxification. Reprinted with permission from [94]. Copyright © 2018, American
Association for the Advancement of Science. (c) Scheme for the preparation of liquid metal gallium
nanorobots by the pressure-filter-template method. Reprinted with permission from [50]. Copyright
© 2018, American Chemical Society. (d) Schematic of fabrication and surface modification by amino-
propyltrimethoxysilane (APTMS) of the liquid metal gallium nanorobots. Reprinted with permission
from [95]. Copyright © 2018, American Association for the Advancement of Science.

The robotic composition constructed through template-assisted electrodeposition
protocol can be readily expanded to other materials. The layer-by-layer (LBL) technology
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was used to deposit poly(styrenesulfonate) (PSS) and poly (allylamine hydrochloride)
(PAH) into conical nanopores of a PC membrane. After dissolving the template, polymer-
based nanorobots with tubular cone shapes were formed, which could be propelled with
a small opening leading orientation upon the acoustic field. This template method was
slightly modified to deposit liquid metals, which have attracted significant interest in
biomedicine and soft electronics due to their low toxicity and superior fluidity. A droplet
of liquid metal, such as gallium, was first added to the surface of a porous PC membrane.
Afterward, pressure filtration was applied to squeeze liquid metal into nanopores, yielding
rod-like nanorobots (Figure 3c) [50]. Such liquid metal-based nanorobots enabled the
surface modification with aminopropyltrimethoxysilane (APTMS) to load the anticancer
drug carbonylated β-cyclodextrin (β-CD) (Figure 3d) [95]. The leukocyte membrane can be
further fused on the shell of liquid metal nanorobots to improve their biocompatibility and
cancer-targeting capability.

2.3. Magnetic Propulsion

One crucial aspect of achieving magnetic propulsion is the integration of magnetic
materials, such as iron (Fe), nickel (Ni), cobalt (Co), or iron oxide (Fe3O4), into the robotic
body [96]. External magnetic fields can propel and navigate nanorobots along a predefined
path [97]. This fuel-free propulsion with remote maneuverability allows precision control
of motile nanorobots to fulfill various missions in complex and dynamic environments [98].
The robotic structure design and motion mechanism are inspired by bacterial movement,
which relies on flagella rotation to propel them forward and backward [99]. A rotating
magnetic field is generated by an external actuation system to mimic the function of
rotating flagella. A typical magnetic actuation system consists of a power supply, data
acquisition controller, and magnetic components, which can be permanent magnets or
electromagnets [100].

The structure design of nanorobots may vary from different motion mechanisms. The
corkscrew-like motion requires a helical structure. The rotation along the helical axis can
be transformed into nonreciprocal translational locomotion (Figure 4a). A physical vapor
deposition approach named glancing angle deposition (GLAD) is proposed to fabricate
helical nanostructures with spherical heads and helical tails [101–103]. Then, the magnetic
layer was coated on the helical structure using techniques such as sputtering or e-beam. To
enhance the biocompatibility of magnetic materials, iron and platinum were co-deposited,
followed by an annealing process (Figure 4b) [103]. The resulting FePt helical nanorobots
exhibited superior biosafety when incubated with living cells.

The surface workers with flexible tails have also been designed to achieve robust
propulsion in response to an external magnetic field. Gao et al. designed a three-segment
nanowire robot composed of Au, Ag, and Ni prepared by template electrodeposition
(Figure 4c) [104]. The central Ag part was partially dissolved by H2O2, yielding a flexible
joint between the Au ‘head’ and the Ni ‘tail’. The magnetic Ni tail rotated upon an external
rotating magnetic field, resulting in the rotation of the Au part with different amplitude.
The broken systemic symmetry induced effective motion for nanorobots (Figure 4d). An-
other work reported a fish-like nanorobot with multi-segments, fabricated by sequential
electrodeposition of gold, silver, nickel, silver, nickel, silver, and gold (Figure 4e) [105]. The
two Au parts served as the head and caudal fin, respectively. The two nickel segments
formed the body, connecting to other parts through three flexible porous silver joints. The
oscillating magnetic field induced periodical bending of fish-like nanorobots, generating
travelling waves to propel nanorobots.
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2.4. Light Propulsion

Light propulsion offers a fuel-free method for propelling nanorobots, eliminating the
need for complex actuation systems and enabling remote spatial control in a non-invasive
manner [106]. The photoactive materials integrated with nanorobots respond to light
irradiation with different wavelengths coordinated with various motion mechanisms [107].

Photocatalytic materials can be activated by UV light and generate a photochemical
reaction [26]. A matchlike nanorobot was designed that consisted of a silica-coated Ag
nanowire and a spherical AgCl tail (Figure 5a) [108]. UV light illumination initiated
the photocatalytic decomposition of AgCl, generating self-diffusiophoretic propulsion for
nanorobots (Figure 5b). However, employing UV light as the power source faces constraints
in the biomedical field due to its limited tissue penetration depth and potential damage
and toxicity to normal tissue.

Near-infrared (NIR) light has longer wavelengths compared to visible and ultraviolet
light, allowing it to penetrate deeper into biological tissues. NIR light also shows good
biosafety and biocompatibility with minimal tissue absorption and low phototoxicity [27].
These merits make NIR light particularly well-suited for in vivo applications, enabling
the activation and manipulation of nanorobots deep within the body. Photothermal ma-
terials are employed to absorb NIR light and convert it into thermal energy. The Janus
structure of nanorobots is required to generate an asymmetric thermal gradient, inducing
self-thermophoretic motion. The photothermal effect of Au is widely used to prepare
NIR-powered nanomachines (Figure 5c). For example, the Au layer was unevenly coated
on the surface of spheric [28,54] or urchin-like [67] nanorobots (Figure 5d). Au-Pd nanoal-
loys were also assembled into flower-like nanorobots to provide a photothermal effect
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(Figure 5e) [109]. A spiky nanorobot was synthesized by coating Au nanotips onto the
magnetic nanoparticle (Figure 5f) [110].
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Copyright © 2019, American Chemical Society. (b) Schematic of the fabrication and self-propulsion
of match-like nanorobot consisting of silicon dioxide-coated silver nanowires and spherical AgCl
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anism of urchin-like nanorobot. Reprinted with permission from [67]. Copyright © 2022, Springer
Nature. (e) Synthesis of CuSiO3 flower-like nanorobots. Reprinted with permission from [109].
Copyright © 2024, John Wiley and Sons. (f) Schematic of preparation process of photomagnetically
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and Sons.

Researchers have also developed alternative materials besides Au to enlarge the op-
tions for photothermal engines. Copper sulfide exhibits strong absorption in the NIR-II
region with a distinct photothermal feature, which was encapsulated in Janus hydrogel
nanorobots to offer propulsive force under the irradiation of NIR-II light [111]. The pho-
tothermal effect of carbon, obtained by pyrolysis, was incorporated with a jellyfish-like
nanorobot [112]. Organic semiconducting polymer nanoparticles with the capability of
light-to-heat converting were also verified to couple with Janus nanorobots, inducing
effective propulsion upon NIR irradiation [113].

The vast family of photochemical and photothermal materials enables versatile designs
of light-actuated nanorobots. The NIR light with superior biocompatibility and tissue
penetration depth is preferable as the remote power source of nanorobots for broader
biomedical missions.

3. Intracellular Applications
3.1. Opening Cell Membrane

The cell membrane, also known as the plasma membrane, serves as a crucial selec-
tively permeable barrier enveloping the cell, separating its internal environment from its
external surroundings [114]. This lipid bilayer plays a critical role in maintaining cellular
homeostasis by controlling the passage of substances into and out of the cell. Endocytosis
controls the cellular internalization of nutrients, signaling molecules, and certain therapeu-
tic agents [115]. However, this natural process tends to be slow due to the involved complex
pathways, including fusion with the membrane and escape from lysosomes. It may cause
limited bioavailability of therapeutic agents and a longer curative course. By opening or
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permeabilizing the cell membrane, external cargo is allowed to rapidly enter the cytoplasm
to regulate and control cell metabolism, showing promising potential to accelerate disease
diagnosis and therapy [116–118]. Minimizing cellular damage to maintain cell viability is a
critical consideration in this operation.

Autonomous nanorobots with precise manipulation at nanoscale offer an attractive
tool to open cell membranes. These tiny machines reduce the contact area with cell
membranes, enabling minimized-invasive operation. Although the propulsive force of
nanorobots is unable to mechanically open the cell membrane, their capability of incorpo-
rating with an external power source offers a feasible route to harvesting sufficient energy
to percolate or penetrate the cell membrane. Xuan et al. developed an NIR light-driven
Janus mesoporous silica nanorobot with half-coated Au shells and a macrophage cell mem-
brane (Figure 6d) [72]. The photothermal effect of the Janus Au layer generated a heat
gradient upon NIR irradiation, leading to self-thermophoretic propulsion for nanorobots.
Furthermore, the modification of the macrophage cell membrane improved the specific
binding of active nanorobots with cancer cells.
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After adhesion with the cancer cell membrane, the photothermal effect of nanorobots
induced thermomechanical perforation of the cytomembrane, facilitating rapid internaliza-
tion of external agents (Figure 6e). In another study, Wang et al. reported a multilayer tubu-
lar nanorobot constructed using a gold nanoshell-functionalized polymer (Figure 6a) [52].
The nanorobots exhibited effective motion toward targeted cells under an acoustic field
(Figure 6b). When tubular acoustic-powered nanorobots interact with the cell membrane
on the side of a small opening (Figure 6c), NIR laser application induced cell membrane
poration within 0.1 s. The Au composition of nanorobots generated an instantaneous
photothermal effect, which was converted to sufficient photomechanical force to penetrate
the cell membrane. These demonstrated in vitro cell membrane opening techniques are
poised to provide crucial research support for the intracellular applications of nanorobots
in the biomedical domain.

3.2. Biosensing

Intracellular biosensing plays a crucial role in understanding cellular dynamics, mon-
itoring cellular responses to various stimuli, and advancing biomedical research and
applications. However, traditional passive sensor systems face significant challenges, in-
cluding slow endocytosis processes and off-targeted probes that fail to enter targeted cells
efficiently. To address these issues, steerable nanorobots with abundant surface modifica-
tion avenues have emerged as promising biosensors [119]. The controllable movement of
nanorobots enables active seeking and binding with targeted cells, enhancing their cellular
internalization and facilitating rapid detection of intracellular biomarkers [120].

A pioneering study reported the effective motion of Au nanorod robots inside living
cells upon an acoustic field without damaging cell viability [121]. This miniaturized
vehicle is further developed as an active intracellular biosensor by leveraging the versatile
modification methods of the robotic Au surface. Wang’s group designed a microRNA
(miRNA) sensor by modifying Au nanorod robots with graphene oxide through covalent
binding (Figure 7a) [45]. Then, a dye-labeled specific single-stranded DNA (ssDNA)
probe was absorbed on graphene oxide (GO) through π-stacking interaction, where the
fluorescence was quenched (Figure 7b).

The preferential binding of ssDNA with targeted miRNA led to detachment from the
GO surface and fluorescence recovery. Upon an acoustic field, the rapid movement of
nanorobots enables faster cellular internalization of this active sensor, resulting in highly
efficient hybridization between ssDNA and targeted miRNA inside cancer cells. The
intracellular “OFF-ON” fluorescence switch verified the accelerated biosensing process of
Au-based nanorobots. The loaded probe in this system can be readily expanded to other
sensor types. A similar approach was subsequently presented to detect mRNA transcripts
of human papillomavirus (HPV)-associated oropharyngeal cancer (OPC) by loading dye-
labeled ssDNA onto acoustic-powered Au/GO nanorod robots (Figure 7c–e) [73]. Such
nanorobots were also surface-modified with fluorescein-labeled DNA aptamers to detect
overexpressed AIB1 oncoproteins inside tumor cells [46].

Another external power source, light, is employed to provide robust energy for pro-
pelling nanorobotic biosensing platforms inside cells (Figure 7f). Lin et al. developed a
Janus nanorobot with asymmetric coating of Au and MnO2 nanosheets [28]. An miRNA-
responsive probe with hairpin DNA quadrangular nanostructure (hQN) was immobilized
on MnO2 nanosheets. After entering cells, intracellular glutathione was found to de-
grade MnO2, inducing the release of hQN. The interaction between hQN and targeted
miRNA initiated the catalyzed hairpin assembly (CHA), triggering a cascade fluorescence
amplification reaction (Figure 7g). Upon NIR irradiation, the nanorobots underwent
self-thermophoretic locomotion inside the cell, which enhanced their binding to targeted
miRNA with verified stronger fluorescence compared to other static groups.
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(i) MnO2@hQN, (ii) JN@MnO2@hQN nanorobots. Reprinted with permission from [28]. Copyright ©
2020, American Chemical Society.

3.3. Detoxification

The intricate cellular metastasis may involve the generation or elimination of toxic
substrates derived from both endogenous metabolites and exogenous environmental toxins.
This delicate balance is crucial for maintaining cellular health in normal conditions. The
overexpression of intracellular toxins may lead to cellular damage and dysfunction, thereby
contributing to the development and progression of pathological conditions. For example,
excessive reactive oxygen species (ROS) can induce oxidative stress, causing damage to
intracellular components and cellular signal dysregulation [122]. The elevated level of ROS
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has been implicated in various diseases, such as neurodegenerative diseases, cardiovascular
diseases, and cancer [123]. Endocytosis of passive agents to alleviate symptoms of toxication
usually requires a longer duration, leading to compromised therapeutic efficacy, particularly
in cases of urgent or acute intoxication [124]. Therefore, it is highly in demand to develop
advanced scavengers capable of rapidly detecting and neutralizing toxic contaminants to
restore normal cellular homeostasis.

Researchers have assessed the performance of motile nanorobots in decontaminating
intracellular ROS. One approach involved the development of hemin-loaded nanorobots
based on mesoporous silica nanoparticles acting as ROS scavengers (Figure 8a) [66]. Hemin
serves as the catalytic engine for decomposing ROS, generating random intracellular
motion for nanorobots (Figure 8b). Such effective propulsion enhanced the ROS scavenging
efficacy of nanorobots compared to static counterparts. Another strategy employed the
classic catalytic engine, Pt, to design nanorobotic ROS scavengers [68]. This nanorobot
was prepared by Janus-coating Pt on a silica surface (Figure 8c), followed by electrostatic
absorption of black phosphorous quantum dots (BPQDs). Incorporated BPQDs enhanced
the propulsion efficiency of the nanorobots compared to those without BPQDs, attributed
to increased oxygen abundance in the presence of BPQDs (Figure 8d). Additionally, BPQDs
possess intrinsic scavenging capabilities for eliminating superoxide radicals (O2

•−) and
hydroxyl radicals (•OH). These self-powered nanorobots demonstrated effective removal
of overexpressed ROS within cells.
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of HUVECs after treatment with hemin-NMSN nanorobots. Reprinted with permission from [66].
Copyright © 2020, Elsevier. (c) Synthetic procedure of Janus BPQD/Pt/AFSN nanorobots. Reprinted
with permission from [68]. Copyright © 2020, Elsevier. (d) Schematic of the intracellular motion of
Janus BPQD/Pt/AFSN nanorobots and their application for efficiently scavenging ROS to reduce
cellular oxidative stress. Reprinted with permission from [68]. Copyright © 2020, Elsevier.

These recent advancements demonstrate the significant potential of autonomous
nanorobots to serve as motile scavengers for the rapid elimination of toxic substances within
cells. With a wide range of options for nanorobotic engines and surface functionalization,
the scope of scavenging candidates can be expanded to include other toxins, such as reactive
nitrogen species and heavy metals.

3.4. Photo-Based Therapy

The versatile building entities and surface modifications bestow the capability of
nanorobots to leverage an external light source not only as the power engine but also as
the therapeutic tool [30]. Photo-based therapy has emerged as an advanced approach in
the biomedical community by using a remote light source with precise spatial control and
tunable wavelength [125]. The interaction of light with biological tissues, cells, or photo-
sensitive agents elicits specific physiological responses for disease treatment. For example,
photothermal therapy (PTT) employs light-absorbing agents like nanoparticles to convert
light energy into heat, inducing hyperthermia in targeted tissues and resulting in various
therapeutic effects [126]. Another widely reported therapeutic modality, photodynamic
therapy (PDT), relies on the photochemical reaction of photosensitizers [127]. Upon light
irradiation, photosensitizers can convert oxygen molecules to ROS, causing damage to
intracellular components and ultimately leading to cell apoptosis.

The small size and precise motion control of nanorobots enable rapid internalization
by targeted cells [128]. Nanorobots can serve as photo-responsive agents to induce pho-
totherapy at the cellular level, showing promising potential to maximize the therapeutic
outcomes of phototherapy while minimizing unwanted side effects to normal tissues. Wang
et al. presented a rodlike nanorobot composed of a liquid gallium core and solid gallium
oxide shell (Figure 9a) [50]. These nanorobots exhibited robust movement upon an acoustic
field due to the generated acoustic radiation force. The motility of nanorobots allows active
seeking of targeted cells, leading to enhanced binding and penetration to the cells. Upon
cellular internalization, the outer gallium oxide layer of nanorobots dissolved in acidic
endosomes, resulting in shape transformation from the rod to droplet and subsequent
fusion together (Figure 9b).

The inherent photothermal effect of liquid metal generated heat to kill cancer cells
upon NIR illumination (Figure 9c). Cao et al. designed a nanorobot that employs light
power as both a motion engine and a therapeutic tool [54]. The nanorobots were fabricated
by asymmetrically coating self-assembled aggregation-induced emission (AIE) polymer-
somes with a Au shell (Figure 9d). The light propulsion of nanorobots induced by the
photothermal effect of Au was enhanced by AIE polymersomes due to their capability
of absorbing NIR for energy transduction (Figure 9e). Additionally, these AIE polymer-
somes can respond to NIR to generate ROS. The robust propulsion of nanorobots upon
NIR irradiation enhanced their binding and percolation to targeted cells (Figure 9f). After
entering cells, the intracellular ROS level was elevated to induce cell apoptosis due to the
photodynamic feature of AIE polymersomes.
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Figure 9. (a) Schematic showing that acoustically propelled liquid metal gallium nanorobots actively
seek and target cancer cells, along with intracellular transformation, fusion, and photothermal
cancer cell therapy. Reprinted with permission from [50]. Copyright © 2018, American Chemical
Society. (b) CLSM image and TEM image of the HeLa cell containing the fused liquid metal droplets.
Reprinted with permission from [50]. Copyright © 2018, American Chemical Society. (c) CLSM
images illustrating the internalization of the nanorobot into a HeLa cell after 24 h. Scale bars, 10 µm.
Reprinted with permission from [50]. Copyright © 2018, American Chemical Society. (d) Design
of synergistic AIE-transduced phototherapeutic nanomotors. Reprinted with permission from [54].
Copyright © 2021, Springer Nature. (e) Schematic of NIR activation of nanorobots. Reprinted with
permission from [54]. Copyright © 2021, Springer Nature. (f) Confocal images showing highly
selective cell apoptosis using nanorobots with or without 200 s TP-NIR irradiation (nucleus: Hoechst,
blue/viable cells: calcein-AM, green/apoptotic cells: PI, red). Scale bars, 50 µm. Reprinted with
permission from [54]. Copyright © 2021, Springer Nature.

3.5. Drug Delivery

Traditional passive intracellular delivery commonly relies on natural endocytosis,
which experiences a long period and low delivery efficiency. Motile nanorobots with
enhanced intracellular internalization unlock an advanced biomedical vehicle to improve
drug delivery into the cytoplasm, holding great potential for overcoming these limitations
of passive delivery [38]. Considerable efforts have been devoted to designing nanorobotic
platforms with various propulsion modes for adaptation to complex and practical biological
environments [129]. The actuation mechanism can be mainly categorized into two types:
chemical propulsion and actuation by external power sources.

Regarding the chemical-powered nanorobots, ensuring the biocompatibility of the
propulsive fuel is paramount for their successful deployment at the intracellular level [17].
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Biocatalytic enzyme engines capable of harvesting propulsive energy from bioavailable
fuels offer a feasible route to constructing biocompatible nanorobots that obviate the
need for toxic fuels in early studies, such as H2O2. A urease-propelled mesoporous silica
nanorobot was designed for active intracellular payload delivery with pH-responsive
control (Figure 10a) [59].
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permission from [59]. Copyright © 2019, American Chemical Society. (b) The biocatalytic nanorobots
exhibit effective propulsion and cargo release at acidic pH. Reprinted with permission from [59].
Copyright © 2019, American Chemical Society. (c) Fabrication process of urease-powered Janus
nanorobot. Reprinted with permission from [60]. Copyright © 2019, Elsevier. (d) Schematic showing
self-powered Janus nanorobot actively binding with targeted cells in tumor tissues. Reprinted with
permission from [60]. Copyright © 2019, Elsevier. (e) Schematic of catalase-powered nanorobots
with glutathione-responsive cargo delivery. Reprinted with permission from [64]. Copyright © 2019,
Royal Society of Chemistry.

This nanorobot was first modified with benzimidazole-functionalized cargo, followed
by capping with cyclodextrin-modified urease. The formed complexes between benzimida-
zole and cyclodextrin-modified urease at neutral pH prevented cargo leakage of nanorobots
due to the bulky caps. The acidic pH could trigger disassembly of the outer complexation
to induce drug release (Figure 10b). The nanorobots exhibited effective propulsion in the
presence of urea fuel, enhancing their internalization into cancer cells. The acidic lysosome
facilitated the intracellular release of loaded drugs, such as [Ru(bpy)3]Cl2 or doxorubicin.
Similarly, the urease engine was also employed to construct nanorobots for intracellular
camptothecin (CPT) delivery [60]. In this design, hyaluronic acid (HA) and urease were
modified on opposite sides of Janus nanorobots, serving as the targeting component and
power source, respectively (Figure 10c). Given that H2O2 concentration is commonly
elevated in lesion tissues or cells [130], this fuel can be leveraged by a catalase engine to
provide sufficient driving force for nanorobots in biological environments (Figure 10d).
Sun et al. engineered a stomatocyte polymersome nanorobot loaded with catalase [131].
The biocatalytic propulsion of nanorobots in the presence of H2O2 was verified to enhance
their uptake by HeLa cells. Another catalase-powered nanorobot was prepared based on
Janus Au–mesoporous silica nanoparticles (Au–MSNPs) (Figure 10e) [64]. Here, the silica
surface was loaded with drug and subsequently immobilized with disulfide-linked oligo
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(ethylene glycol) (SS-OEG) chains acting as a responsive gate. This gate remained closed
without stimulation but opened in the presence of glutathione (GSH) to trigger drug release.
The effective motion of nanorobots in H2O2 solution was shown to enhance their cellular
internalization and further induce drug release in the presence of intracellular GSH.

The utilization of external power sources for nanorobots also offers distinct advantages
in enhancing their intracellular delivery [132]. Zhang et al. developed an acoustic-powered
Au nanowire robot for intracellular oxygen delivery (Figure 11a) [51]. This nanorobot was
surface-modified with red blood cell membrane-cloaked perfluorocarbon nanoemulsions
(RBC-PFC) capable of high oxygen carrying. The efficient propulsion of nanorobots under
an acoustic field augmented their cellular uptake and facilitated oxygen delivery to the
cytoplasm, thereby maintaining cell viability under hypoxic conditions (Figure 11b). The
Kong group reported a light-powered nanorobot with an urchin head and hollow tail
(Figure 11c) [67]. The head region comprised a thin SiO2 shell with half-coating of Au
nanostars, while the hollow tail allowed for the co-encapsulation of stimulus-responsive
phase-change materials (PCMs) and doxorubicin (DOX). The release of PCMs and DOX
could be triggered by the photothermal effect of Au under NIR irradiation. The biomimetic
nanospike surface nano-topology, coupled with the active mobility of the nanorobots,
worked synergistically to significantly enhance tumor penetration and cellular uptake for
triple-negative breast cancer therapy.

Nanomaterials 2024, 14, x FOR PEER REVIEW 17 of 25 
 

 

or doxorubicin. Similarly, the urease engine was also employed to construct nanorobots 
for intracellular camptothecin (CPT) delivery [60]. In this design, hyaluronic acid (HA) 
and urease were modified on opposite sides of Janus nanorobots, serving as the targeting 
component and power source, respectively (Figure 10c). Given that H2O2 concentration is 
commonly elevated in lesion tissues or cells [130], this fuel can be leveraged by a catalase 
engine to provide sufficient driving force for nanorobots in biological environments (Fig-
ure 10d). Sun et al. engineered a stomatocyte polymersome nanorobot loaded with cata-
lase [131]. The biocatalytic propulsion of nanorobots in the presence of H2O2 was verified 
to enhance their uptake by HeLa cells. Another catalase-powered nanorobot was prepared 
based on Janus Au–mesoporous silica nanoparticles (Au–MSNPs) (Figure 10e) [64]. Here, 
the silica surface was loaded with drug and subsequently immobilized with disulfide-
linked oligo (ethylene glycol) (SS-OEG) chains acting as a responsive gate. This gate re-
mained closed without stimulation but opened in the presence of glutathione (GSH) to 
trigger drug release. The effective motion of nanorobots in H2O2 solution was shown to 
enhance their cellular internalization and further induce drug release in the presence of 
intracellular GSH. 

The utilization of external power sources for nanorobots also offers distinct ad-
vantages in enhancing their intracellular delivery [132]. Zhang et al. developed an acous-
tic-powered Au nanowire robot for intracellular oxygen delivery (Figure 11a) [51]. This 
nanorobot was surface-modified with red blood cell membrane-cloaked perfluorocarbon 
nanoemulsions (RBC-PFC) capable of high oxygen carrying. The efficient propulsion of 
nanorobots under an acoustic field augmented their cellular uptake and facilitated oxygen 
delivery to the cytoplasm, thereby maintaining cell viability under hypoxic conditions 
(Figure 11b). The Kong group reported a light-powered nanorobot with an urchin head 
and hollow tail (Figure 11c) [67]. The head region comprised a thin SiO2 shell with half-
coating of Au nanostars, while the hollow tail allowed for the co-encapsulation of stimu-
lus-responsive phase-change materials (PCMs) and doxorubicin (DOX). The release of 
PCMs and DOX could be triggered by the photothermal effect of Au under NIR irradia-
tion. The biomimetic nanospike surface nano-topology, coupled with the active mobility 
of the nanorobots, worked synergistically to significantly enhance tumor penetration and 
cellular uptake for triple-negative breast cancer therapy. 

 
Figure 11. (a) The fabrication process for gold nanowire robots with red blood cell membrane-
cloaked perfluorocarbon nano-emulsions (Motor-PFC). Reprinted with permission from [51]. Cop-
yright © 2019, American Chemical Society. (b) Schematic and fluorescent images of nanorobot-
based active O2 intracellular delivery system. Intracellular hypoxic stress is indicated by green flu-
orescence marker. Scale bars: 100 µm. Reprinted with permission from [51]. Copyright © 2019, 

Figure 11. (a) The fabrication process for gold nanowire robots with red blood cell membrane-cloaked
perfluorocarbon nano-emulsions (Motor-PFC). Reprinted with permission from [51]. Copyright ©
2019, American Chemical Society. (b) Schematic and fluorescent images of nanorobot-based active
O2 intracellular delivery system. Intracellular hypoxic stress is indicated by green fluorescence
marker. Scale bars: 100 µm. Reprinted with permission from [51]. Copyright © 2019, American
Chemical Society. (c) Schematic of the site-selective super-assembly process of nanorobots with
urchin head/hollow tail nanostructures (UHHTN) and the process for triple-negative breast cancer
(TNBC) treatment with UHHTN nanorobots. Reprinted with permission from [67]. Copyright © 2023,
Springer Nature.

3.6. Organelle Targeting

Cells are the basic unit of life for all life forms. Cellular activities are sustained and ma-
nipulated by the subsystem of organelles, such as the nucleus, lysosomes, mitochondrion,
endoplasmic reticulum, and Golgi apparatus. The intracellular dynamics and functions of
organelles regulate the metabolic status at the cellular level, further altering the homeostasis
of living organisms. The organelle dysfunction can directly induce diverse diseases (e.g.,
cancer) [133]. Thus, treating organelles as the therapeutic target shows promising potential
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to improve the targeting and curative efficacy of prevalent pathologies [134]. However,
the present organelle-level targeting heavily relies on passive targeting mechanisms by
leveraging the intrinsic features of organelles, such as acidic lysosome lumen and high
mitochondrial membrane potential. The motility deficiency of internalized cargo constrains
their binding efficiency with specific organelles, leading to compromised benefits in clinical
trials. Nanorobots capable of steerable motion in confined spaces are expected to introduce
a new generation of robotic devices to achieve organelle targeting for precision therapy.

The Wu group fabricated mitochondrial-targeted nanorobots by encapsulating the
mitochondriotropic drug doxorubicin-triphenylphosphonium (DOX-TPP) inside zeolitic
imidazolate framework-67 (ZIF-67) nanoparticles (Figure 12a) [70].
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Figure 12. (a) Schematic of the fabrication of ZIF-67@DOX-TPP nanorobots. Reprinted with permis-
sion from [70]. Copyright © 2023, The American Association for the Advancement of Science. (b) The
intracellular mitochondrial-targeted motion of nanorobots, enabling mitochondrial-targeted drug
delivery to effectively inhibit cancer growth and metastasis. Reprinted with permission from [70].
Copyright © 2023, The American Association for the Advancement of Science. (c) Schematic of the
treatment strategy for PD by nanorobots. (d) The synthetic process for nanorobot-based H2S donor
PCM. Reprinted with permission from [71]. Copyright © 2024, Elsevier.

The overexpressed H2O2 inside tumor cells was leveraged as propulsion fuel (Figure 12b).
The catalytic ZIF-67, serving as the power engine, decomposed intracellular H2O2 to pro-
vide sufficient propulsive force for nanorobots in the cytoplasm. Mitochondria play a
pivotal role in modulating cellular dynamic processes, such as calcium regulation, adeno-
sine triphosphate (ATP) production, and cell apoptosis [135]. Mitochondria have been
considered a subcellular therapeutic target because their dysfunction can result in a variety
of pathologies, including inflammation, cancer growth and metastasis, and neurodegener-
ation [136]. The nanorobots exhibited effective propulsion inside tumor cells rather than
normal cells due to the lack of sufficient H2O2 fuel. The loaded lipophilic and cationic TPP+

leads to mitochondrial-targeted propulsion for nanorobots, enhancing drug accumulation
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around mitochondria to damage and dysregulate this organelle. This active mitochondria-
targeted behavior of nanorobots was demonstrated to upgrade the suppression of tumor
growth and metastasis. In another work, mitochondrial-targeted nanorobots were prepared
to act as H2S donors for the treatment of Parkinson’s disease (Figure 12c) [71]. The robotic
body was constructed by a free radical polymerization reaction between polyethylene
glycol (PEG) modified with L-cysteine derivative (PEG-Cys) and 2-methacryloyloxyethyl
phosphorylcholine (MPC). Endogenous enzymes such as cystathionine β-synthase (CBS) in
brain neurons or 3-mercaptopyruvate sulfurtransferase (3-MST) in mitochondria catalyzed
the decomposition of L-cysteine, generating H2S to propel the nanorobots towards mito-
chondria within neural cells (Figure 12d). This active mitochondrial-targeted H2S delivery
effectively eliminated ROS and alleviated the damage to neurons, thereby improving the
therapeutic efficacy of Parkinson’s disease in a mouse model.

These works demonstrate that biocatalytic reactions between a robotic body and
endogenous components create sufficient propulsive force to overcome constraints in
narrow cytoplasm. The loaded chemotactic drug navigates these self-powered nanorobots
toward targeted organelles with enhanced drug accumulation. The targeted organelle can
be readily expanded from mitochondria to other organelles, such as endoplasmic reticulum
and Golgi apparatus, for treating broader prevalent pathologies and diseases.

4. Conclusions and Outlook

In this review, we have first discussed four propulsion modes of nanorobots, iden-
tifying the propulsion mechanisms, robotic structures, and material selections involved
in each mode. Detailed examples from previous works have been listed to show how the
constituent materials react with the surrounding solution or respond to external power
fields to obtain a robust driving force. Catalytic reactions between the robotic body and
the surrounding fuel and Janus structure are essential to achieve chemical propulsion. The
Au nanorod robot with a concave end is the most prevalently used building entity for
acoustic-powered nanorobots. Bacterial flagella inspire the use of helical structure and a
soft tail with magnetic layer coating, enabling effective motion in response to a rotating
magnetic field. Light propulsion requires the incorporation of photochemical or photother-
mal materials into the robotic body. Next, we identified six main aspects of intracellular
applications, illustrating the material and propulsion choices and highlighting the advan-
tages of nanorobots in each context. The effective and steerable motion of nanorobots can
overcome the constraints in complicated biological environments to actively target and
reach desired sites for accomplishing biomedical missions. These tiny machines can open
the cell membrane with the assistance of an external power source. Their robust locomotion
enables accelerated cellular internalization to induce rapid transport of biosensor probes
and therapeutic cargo into the cytoplasm. Additionally, the internalized nanorobots can
serve as toxin scavengers or organelle-targeted vehicles to directly modulate cell metas-
tasis and organelle functions. The autonomous nanorobots introduce a new generation
of active medical tools with expanded operation scope in the cellular or subcellular level.
The unlocked profound dimension enables nanorobots to act as miniaturized surgeons as
envisioned in science fiction movies to specifically target and regulate cellular dynamics
and metabolism for precision therapy.

Despite these considerable efforts devoted by worldwide researchers, the develop-
ment of nanorobots at cellular-level operations is still in the early stages. The current
challenge mainly lies in the following aspects: (1) Improving the biocompatibility and
biodegradability of nanorobots; (2) achieving effective intracellular propulsion with simpli-
fied equipment and without introducing toxic substrates; and (3) real-time visualization
of nanorobot operations inside cells. Here, we discuss three points to propose potential
solutions for addressing these challenges (Figure 13), aiming to suggest research directions
for future nanorobot development in intracellular applications.
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(1). Material Selection

Traditional metal or inorganic materials, such as Pt or SiO2, cannot meet the rigorous
biosafety requirements of practical biomedical applications. Biocompatible and biodegrad-
able materials are highly preferable in building nanorobots for intracellular applications.
Additionally, exogenous counterparts may evoke immune clearance and cellular dysregu-
lation. Endogenous components emerge as ideal candidates for constructing nanorobots,
offering inherent biocompatibility, biodegradability, and biological functionality, includ-
ing cell and organelle targeting. An illustrative example is coating nanorobots with cell
membranes, which enhances their biocompatibility and functionality.

(2). Propulsion Mode

Chemical propulsion obviates the requirement of an external field, avoiding the com-
plexity associated with actuation equipment. The employment of biocatalytic engines
with coordinated bioavailable fuel is expected to fabricate a fully biocompatible nanorobot.
Enzyme engines, such as catalase, urease, and Gox, are attractive options. However, the
chemical motion of nanorobots is usually defined as enhanced diffusion, whose robust-
ness may not be comparable with an external power source. The potential toxicity and
tissue penetration depth are the main considerations when using external power sources.
Meanwhile, a simplified actuation system is crucial to lowering the barriers to propelling
nanorobots. Biological propulsion that utilizes the motility of intracellular motile proteins
or molecules is another promising approach to designing self-powered nanorobots for
intracellular applications [137]. This propulsion mode is expected to leverage the cellular
machinery energy to propel nanorobots. On the other hand, the combination of various
propulsion modes offers a promising avenue to enhance motion performance and the adap-
tation of nanorobots in dynamic and complex environments [138]. These hybrid-powered
nanorobots capable of controllable propulsion behavior, such as speed up or down, di-
rectional reversal, or shape reconfiguration, hold considerable potential to expand their
versatility in practical intracellular applications.

(3). Real-Time Imaging

The imaging tool is essential to visualize and track the movement, localization, and
distribution of nanorobots within live cells. This enables the assessment of cellular uptake,
intracellular trafficking pathways, and subcellular targeting of nanorobots with high spatial
and temporal resolution. Various imaging tools can be considered potential candidates,
such as photoacoustic (PA) imaging, ultrasound imaging, magnet resonance imaging
(MRI), fluorescence microscopy, confocal microscopy, two-photon microscopy, and super-
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resolution microscopy. The use of imaging tools requires consideration of the small size
of nanorobots and the tissue penetration depth for future in vivo applications. Real-time
imaging enables feedback-guided control and manipulation of nanorobots within live
cells, allowing researchers to dynamically adjust experimental parameters, interventions,
or stimuli based on observed responses or outcomes. This closed-loop feedback system
enhances the precision and effectiveness of intracellular nanorobot applications.
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