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Abstract: Due to its excellent electrical conductivity, high transparency in the visible spectrum, and
exceptional chemical stability, indium tin oxide (ITO) has become a crucial material in the fields
of optoelectronics and nanotechnology. This article provides a thorough analysis of growing ITO
thin films with various thicknesses to study the impact of thickness on their electrical, optical, and
physical properties for solar-cell applications. ITO was prepared through radio frequency (RF)
magnetron sputtering using argon gas with no alteration in temperature or changes in substrate
heating, followed with annealing in a tube furnace under inert conditions. An investigation of the
influence of thickness on the optical, electrical, and physical properties of the films was conducted.
We found that the best thickness for ITO thin films was 100 nm in terms of optical, electrical, and
physical properties. To gain full comprehension of the impact on electrical properties, the different
samples were characterized using a four-point probe and, interestingly, we found a high conductivity
in the range of 1.8–2 × 106 S/m, good resistivity that did not exceed 1–2 × 10−6 Ωm, and a sheet
resistance lower than 16 Ω sq−1. The transparency values found using a spectrophotometer reached
values beyond 85%, which indicates the high purity of the thin films. Atomic force microscopy
indicated a smooth morphology with low roughness values for the films, indicating an adequate
transitioning of the charges on the surface. Scanning electron microscopy was used to study the actual
thicknesses and the morphology, through which we found no cracks or fractures, which implied
excellent deposition and annealing. The X-ray diffraction microscopy results showed a high purity of
the crystals, as the peaks (222), (400), (440), and (622) of the crystallographic plane reflections were
dominant, which confirmed the existence of the faced-center cubic lattice of ITO. This work allowed
us to design a method for producing excellent ITO thin films for solar-cell applications.

Keywords: indium tin oxide; thin films; RF magnetron sputtering; third generation solar cells

1. Introduction

Transparent conducting oxide (TCO) materials are widely used to transmit light
through materials and conduct electricity. To produce these materials, metal oxides are
used, which include tin oxide (SnO2), aluminum oxide (Al2O3), indium oxide (In2O3) [1],
and zinc oxide (ZnO) [2,3]. There are many uses and applications of TCOs, such as
display devices like flat-panel screens and touchscreens [4]; smart windows, in which the
transparency can be controlled through applying a voltage and, hence, the heat and light
transmitted through the window can be controlled [5]; and optoelectronic devices such as
light-emitting diodes (LEDs) and photodetectors [6]. ITO films are of crucial importance
in optoelectronic devices and solar cells. ITO is mainly used as the front electrode in
photovoltaic applications [7] due to its high conductivity and transparency ranges, which
make it a favorable choice for fabrication. Several studies have investigated the different
properties of ITO and how they can be optimized using different growth techniques and

Nanomaterials 2024, 14, 565. https://doi.org/10.3390/nano14070565 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano14070565
https://doi.org/10.3390/nano14070565
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-3347-9682
https://orcid.org/0000-0002-6456-9955
https://doi.org/10.3390/nano14070565
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano14070565?type=check_update&version=1


Nanomaterials 2024, 14, 565 2 of 12

conditions. In particular, in third-generation solar cells like perovskites and dye-sensitized
solar cells, several attempts have been made to increase the efficiency of lab-built ITO to be
used as a front electrode through different approaches. Although ITO has many optical,
electrical, and physical advantages in the field of optoelectronic devices and photovoltaics,
the high manufacturing costs and scarcity of indium and tin supplies hinder the long-term
viability and scalability of its usage in third-generation solar cells.

The growth technique can contribute to material savings through reducing the amount
of wasted material during the synthesis process. Radio frequency (RF) magnetron sputter-
ing is a favored method for the growth of ITO films, as it provides high uniformity and
precision when it comes to the microstructure growth and the ratios of indium and tin,
which can be accurately specified for the sputtering targets. Unlike liquid and chemical
approaches to creating ITO, which create a large amount of wasted materials, RF magnetron
sputtering can create thousands of highly transparent and uniform thin films using one
sputtering target. Many studies have focused on the creation of ITO thin films with RF
magnetron sputtering. In a study by Vinh Ai Dao et al. [8], they heated the substrates in the
deposition process and used an oxygen flow. Their results showed proper ITO parameters
and, when they used a temperature of 200 ◦C, the heterojunction silicon solar-cell efficiency
reached 16%. In another study by M.G. Sousa et al. [9], they compared their created ITO
glass with and without the use of hydrogen pressure within the chamber and with only
argon but an RF power of 250 W. This also resulted in adequate properties for the ITO to be
used in solar-cell applications. In a study by F. Kurdesau et al. [10], they used oxygen in the
chamber alongside argon. Another recent study by Amalraj P. A et al. [11] investigated the
effects of the film thickness and RF power on the optical and electrical properties of ITO
films. Shumin Y. et al. [12] prepared four different ITO targets in their lab with different
crystallinities and studied the effects of the crystallinity of ITO targets on the properties of
the ITO films. In the study of D. Kudryashov et al. [13], they found that, with argon gas, the
best power at room temperature was only 50 W, and they tested a thickness of 100 nm with
different parameters that resulted in the appropriate parameters for solar-cell applications.
A study published after 2020 mostly tackled ITO growth within other layers (e.g., Cu) in
RF magnetron sputtering [14]. Recent published studies focused on variations in power
and growth temperature, using different gases or only argon gas (the latter was quite rarely
used). For this reason, we studied indium tin oxide films grown using the radio frequency
magnetron sputtering technique with varying thicknesses, in order to study the effect of
thickness on the film’s properties using argon gas alone. Our approach had interesting
results which contribute to the existing scientific literature.

2. Materials and Methods
2.1. Preparation of ITO Samples Using PVD

In this study, we used PVD (MiniLab ST060M R&D Magnetron Sputtering and Ther-
mal Evaporation System, Moorfield Nanotechnology Limited. Cheshire, United Kingdom.)
with load lock in the Environment and Sustainability Institute (ESI) solar lab to create films
with different thicknesses using radio frequency sputtering. The ITO target was bought
from Kurt J. Lesker, Sussex, United Kingdom, and had an indium to tin oxide ratio of
90/10 wt% In2O3/SnO2. The argon gas that was pumped to the chamber was of 99.99% pu-
rity and the silica low-iron glass substrates with a 4 mm thickness and 2 × 2 cm dimensions
were obtained from Cornwall Glass Manufacturing, Plymouth, United Kingdom. The PVD
was only run on the radio frequency magnetron sputtering system. The substrates were
cleaned with acetone for 30 min, IPA for 30 min, and then deionized water for 30 min, all in
an ultrasonic bath, and then dried in ambient air. The evacuation pressure of the chamber
was less than 4 × 10−3 mbar. The ITO layers were manufactured in the radio frequency
magnetron sputtering system chamber with a pressure set point of 5 × 10−3 mbar. The
ITO sputtering during deposition was performed with an RF power of 70 W. The rotation
speed for the substrate holder base was 20 a.u. and the Ar flow was 20 sccm. There was
no increase in temperature on the base while growing the ITO films. Films with different
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thicknesses were grown: 50 nm, 100 nm, 150 nm, 200 nm, 250 nm, and 300 nm. As soon
as the samples were manufactured, the samples were annealed at 500 ◦C for 2 h, with
the temperature increasing at a rate of 5 ◦C per minute, in a tube furnace with a nitrogen
gas flow (30 L/min) and they were left inside the furnace to cool to room temperature for
another 2 h. Figure 1 illustrates the fabrication process with the different parameters used
to grow the samples.
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Figure 1. The fabrication process of ITO samples.

2.2. Characterization Techniques

A four-point probe was used to study the films’ electrical properties, as our main pur-
pose was to find the thickness that resulted in the best electrical characteristics to be used
as a front electrode. After choosing the best thickness in the context of optimal electrical
properties, the optical characterization of the samples before and after annealing was per-
formed through measuring the spectral dependence of the transmission (T(k)) of deposited
ITO layers within the visible wavelength range (300–800 nm) using a spectrophotometer;
through this, we calculated the absorbance and found the bandgap. Moreover, the samples’
physical properties were examined using X-ray diffraction (XRD) (Bruker D8 advanced
XRD, Bruker, Billerica, MA, USA); atomic force microscopy (AFM) (Bruker Innova AFM,
Bruker, Billerica, MA, USA), after staining the samples with a thin carbon layer; and later,
scanning electron microscopy (SEM) (Tescan Vega 3, Tescan, Brno, Kohoutovice Czech
Republic). We have included the before and after annealing measurements in order to
understand the influence of annealing on the optical and electrical properties.

3. Results and Discussion
3.1. X-ray Diffraction Microscopy Measurements

Figure 2 shows the X-ray diffraction microscopy results for the films with different
thicknesses before annealing. Almost all identifiable peaks lost some of their intensity,
indicating that the ITO films had only a minimal amount of crystallinity before the annealing
process. They had an amorphous quality for the most part. However, as the layer thickness
increased, crystalline characteristics started to become more apparent.

Following annealing, the X-ray diffraction patterns (Figure 3) were characterized
by prominent peaks that unmistakably signified an increase in crystallinity. Because
charge carriers are given organized paths within the lattice structure of ITO, facilitating
charge mobility, this phenomenon has implications for improving conductivity. The (222),
(400), (440), and (622) peaks are the prominent peaks for the faced-center cubic lattice of
ITO crystallographic plane reflections [15–17]. The other peaks ((211), (411), (431), (521),
(611), (444), and (800)) represent other planes’ reflections. As the thickness increased, the
preferential crystal orientation changed to the (400) plane, as the grain strain increased
towards this plane due to interstitial oxygen and indium vacancies.
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The formation of strain results from both external elements like dislocations and
extended defects within the crystalline lattice, as well as intrinsic point defects like vacancies
and site disorder. The calculated lattice constants showed a notable agreement with known
reference values (JCPDS card No. 71-2194) [18–20].

3.2. Atomic Force Microscopy

Atomic force microscopy (AFM) measurements were used to gain an understanding
of the surface morphology of the indium tin oxide (ITO) films. The experiment aimed to
gain a thorough understanding of the complex interactions between the films’ electrical
characteristics and their underlying physical characteristics. The goal was to identify the
relationship between the surface morphology and the distinctive qualities of the ITO films.
Figure 4 shows a variety of unique samples of ITO films with different thicknesses. The
images all have dimensions of 10 µm × 10 µm. During the analysis of these images, an
important observation became apparent. The mean value of the peaks and valleys deter-
mined over the total surface area was measured and recorded as the average roughness.
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This helped us to identify broad differences in the properties of the overall profile height.
The square root of the distribution of surface height is known as the root mean square
roughness (RMS R), which is thought to be more sensitive than the average roughness. It
displays the profile heights’ standard deviation. In particular, each film had RMS R values
that were consistently lower than the nominal criterion of 0.3 nm. This overall pattern was
a reliable predictor of the crystallinity of the ITO material under the growth conditions of
our experiment [10,21,22]. Similar RMS roughness results were found using magnetron
sputtering (0.546 nm) [23] and another deposition technique (0.293 nm) [24]. Alternatively,
we can see higher RMS roughness values found by Rita M. Carvalho et al. [25] and oth-
ers [26–28] ranging between 3.9 nm up to 24.8 nm. We attribute these rough ITO surfaces to
high temperatures used during growth and annealing as, in one method, they used thermal
evaporation which can induce the formation of indium oxide on the surface, creating a
clear variation; to the lack of annealing in proper and inert conditions; to the deposition
parameters that included the distance between the target and the substrate; and to the gas
pressure in the chamber and the sputtering power. Our low RMS roughness values can be
attributed to the growth method in a vacuum which hindered the oxidation and formation
of rough layers in inert conditions. Moreover, using an inert gas in the annealing method
contributed to smoother films as indium tends to oxidize at high temperatures which can
increase the formation of random indium oxide particles on the surface.
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A recognizable pattern was revealed through further analysis of the RMS R values. In
particular, values between 0.2571 nm and 0.2645 nm gradually emerged as the ITO layer’s
thickness rose, covering the thickness range of 50 nm to 150 nm. However, after reaching
a thickness of 200 nm, this pattern underwent a noticeable shift. The measured RMS R
levels started to decrease at this point, going from 0.2411 nm to 0.2256 nm for thicknesses
of 200 nm to 300 nm. We suggest that this phenomenon can be attributed to the natural
transition taking place at the surface, which signaled the emergence of a more refined and
smooth ITO film and an increase in grain sizes. The changes shown in Figure 4 resemble
this perceptible growth, as the sharpness of the tip ends changed to a more curved layout
while simultaneously showing an expansion in the grain dimensions. From our experiment,
we can conclude that all the layers had optimal RMS R values and crystalline amorphous
structures, which tended to have higher roughness and lower conductivity values. With
increased roughness, we acquired a higher conductivity which was a result of the tips being
closer to one another which helped in the transitioning of charges on the surface.

In summary, our utilization of atomic force microscopy in the analysis of the ITO
films unveiled the intricate relationships between surface morphology, crystallinity, and
electrical conductivity [29]. The low RMS R values signified the crystalline nature of the
ITO films that were produced under our experimental conditions. The distinct trend of
roughness value vs. thickness further solidifies this notion.
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3.3. Four-Point Probe

Figure 5a–c show the electrical properties of the ITO films with different thicknesses
before and after annealing. It is essential to understand the electrical properties to determine
the quality of the deposited ITO [30].
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Conductivity is one of the most important properties of an ITO thin film layer in
third-generation solar-cell devices. In our films, we found that the conductivity values
decreased with increasing thickness and then sharply increased after reaching 200 nm prior
to annealing; this can be explained as thicker layers having higher conductivity due to
reduced scattering sites and defects. However, thick layers tend to have poor crystallinity.
On the other hand, after annealing, the films showed better conductivity values as the grain
size increased; therefore, there was less boundary scattering [8], and the recrystallization
reduced crystal defects and improved the electron mobility in the lattice [31] with better
results at 50 nm and 100 nm (between 1.8–2 × 106 S/m). It is important to consider that
the optimal conductivity for ITO used in optoelectronic materials and solar cells should
not be less than 1 × 104 S/m [32]. Another important property for suitable ITO thin films
in third-generation solar-cell devices is resistivity. Figure 5b illustrates the resistivity of
the ITO samples with different thicknesses before and after annealing. Prior to annealing,
the films had a high resistivity which was attributed to the low mobility of charge carriers.
Nevertheless, the resistivity was quite stable post-annealing and was in the optimal range
for solar-cell applications. A good resistivity for ITO for solar-cell applications is less than
1–2 × 10−6 Ωm [33,34]. In our results, we obtained values of 4 × 10−7 to 9 × 10−7 Ωm,
indicating an optimal quality for the created films. It can be seen that the lowest and optimal
resistivity was measured from the films with thicknesses of 50 nm and 100 nm. Figure 5c
shows the pre- and post-annealing sheet resistance values of the samples. Annealing plays
an important role in reducing the values of sheet resistance [35] which, in turn, is highly
affected by the resistivity and the thickness of the layer. From the figure, we can observe that
annealing improved the sheet resistance (Rsh). Equation (1) links these variables together:
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Rsh =
ρ

t
(1)

where ρ is the resistivity of the thin film and t is the thickness of the thin film. It is expected
that with increased thickness, we will have lower sheet resistance values. Nonetheless,
the lower sheet resistance of these samples was also associated with a slightly lower
conductivity and higher resistivity. Therefore, the optimal thickness based on the electrical
properties was 100 nm. We could also opt for 50 nm but the film with this thickness showed
a high sheet resistance that might affect the layers grown on the ITO and the efficiency of the
solar device. We can conclude that annealing plays an important role in the improvement
of ITO thin films [36].

3.4. Scanning Electron Microscopy

Scanning electron microscopy (SEM) was performed to confirm the actual thickness
of each layer and to study the influence of the morphology on the optical, electrical, and
mechanical properties of the films.

We can see, from the images in Figure 6 and measurements, that the thickness of
the films was accurate; this suggests high-precision growth using the radio frequency
magnetron sputtering machine: the 50 nm film was measured as 51.6 nm, the 100 nm
film was measured as 103.1 nm, and the 150 nm film was measured as 154.6 nm. The
analysis revealed a shared characteristic among all the films: a uniform surface structure
composed of nucleation sites pointed by white arrows in the figure that decreased in size as
the thickness increased; this is because the Volmer–Weber island growth mode shifted to a
Frank–van der Merwe mode, which is a transition from a 3D growth mode to a 2D growth
mode, when the thickness was increased and the nodes and clusters were transformed into
layers. This smoothness, which was free from both empty spaces and fractures, created
good conductivity as fractures can contribute to extremely irregular electrical voltages on
the surface [37,38].
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The final and most important property of ITO, which enables it to be installed or built
into solar devices as the front electrode, is the transparency of the ITO film grown on the
glass substrate. Initially, the silica low-iron glass substrate had a transmittance value of
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94%. As can be seen in Figure 7, the transparency values prior to annealing were all below
85% [33,39,40], which are very poor transparency values due to the darker color of the
ITO and the reflective properties it had before annealing. Furthermore, the post-annealing
transparency (Figure 8) increased significantly in all samples with the best values observed
in the films with thicknesses of 50 nm, 100 nm, and 150 nm with transparency values of
89%, 86.16%, and 86.92% at wavelengths of 635 nm, 560 nm, and 550 nm, respectively. This
result indicates that these are highly transparent films that can be used for third-generation
solar-cell applications [41]. Again, annealing the ITO samples was proven to improve the
transmittance due to increasing the charge carrier numbers, with a better crystal quality and
a decrease in grain boundary scattering as the grain sizes increased with temperature [42].
Although the 150 nm and 50 nm thicknesses showed better transparency values, they had a
lower electrical quality compared to the 100 nm film.
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Through our examination of the results, we found that the best thickness was 100 nm
in terms of physical, electrical, and optical properties. Thus, we calculated the absorbance
(A) of this sample using the transmittance data and Equation (2):

A = 2 − log(T%) (2)

Figure 9 illustrates the resulting absorbance which was in the range of 0.1 to 0.2 Abs.u,
indicating a highly favorable range [43,44], as the lowest absorbance possible is desirable
for the application of electrodes in third-generation solar cells [7,45–47]. We used the
absorbance to determine the bandgap using a Tauc plot, as shown in the inset of Figure 9.
The resulting bandgap was 3.44 eV [48,49]. We validated the bandgap using the methods
used by Jose C.S. Costa et al. [50] and Dariush Souri et al. [51] which indicated that the
ITO film had highly transmittance and required the lowest energy from a photon to create
voltage in any solar-cell circuit [52–55].
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To provide more insights into our work, Table 1 summarizes the significant results of
this study and compares them to those of previous studies.

Table 1. A comprehensive comparison between this work and previous studies.

Ref. Year Gas Type Thickness
(nm)

Annealing
Temp (◦C)

Electrical
Properties

Transparency
(%)

Band Gap
(eV)

Morphological
Properties

F. Kurdesau
et al. [10] 2006 Argon–

Oxygen 300–500 - - 80–85 -

SEM:
small-grained

(10–20 nm)
structure

Vinh Ai Dao
et al. [8] 2010 Argon 100 ± 5 100 - 87–90 3.67–3.83 -

D Kudryashov
et al. [13] 2013 Argon ~100 - Resistivity:

5.4 × 10−4 Ω·cm 80–90 - Smooth surface

A. P. Amalathas
et al. [11] 2016 Argon 75–225 - Average resistivity:

9.4 × 10−4 Ω·cm Over 75 3.831–4.003

AFM: surface
roughness

increased with
thickness

Shumin Yang
et al. [12] 2020 Oxygen ~150 300 - 89.02–90.7 3.60–3.67 -

This work 2024 Argon 100 500 Resistivity range:
1–2 × 10−4 Ω·cm 86.16–89.0 3.44 Low RMS

roughness values
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4. Conclusions

In our recent research conducted at the ESI labs, we explored the growth of indium tin
oxide (ITO) thin films using RF magnetron sputtering with argon gas. This approach is rel-
evant for optoelectronic applications, particularly for third-generation solar cells. Through
the various film thicknesses tested, we discovered that the films exhibited exceptional
physical, electrical, and optical properties. However, the optimal thickness was identified
as 100 nm. This particular thickness was distinguished by its remarkable transparency,
exceeding 86%; low absorbance, ranging between 0.1 to 0.2 Abs.u; good bandgap energy of
3.44 eV coupled with superior electrical conductivity reaching about 1.86 × 106 S/m; and
low resistivity values of approximately 5.3 × 10−7 Ω m. These characteristics are crucial
for ensuring the efficiency of optoelectronic devices used in the field of third-generation
solar cells. Our SEM analysis confirmed that the surface morphology of these films was
crack-free and validated the thicknesses achieved. Additionally, the ATM assessments
indicated a uniform and gradual growth of the thin films with excellent RMS roughness
values. Furthermore, the XRD analyses provided insights into the crystalline structure
of the films, affirming their suitability for third-generation solar-cell applications. This
research underscores the efficiency of RF magnetron sputtering in creating high-quality
ITO films, with the 100 nm film particularly demonstrating promising properties for future
technological innovations and competing with commercial ITO.
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