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Abstract: Serotonin-based nanomaterials have been positioned as promising contenders for constructing
multifunctional biomedical nanoplatforms due to notable biocompatibility, advantageous charge proper-
ties, and chemical adaptability. The elaborately designed structure and morphology are significant for
their applications as functional carriers. In this study, we fabricated anisotropic bowl-like mesoporous
polyserotonin (PST) nanoparticles with a diameter of approximately 170 nm through nano-emulsion
polymerization, employing P123/F127 as a dual-soft template and 1,3,5-trimethylbenzene (TMB) as
both pore expander and emulsion template. Their formation can be attributed to the synchronized
assembly of P123/F127/TMB, along with the concurrent manifestation of anisotropic nucleation and
growth on the TMB emulsion droplet surface. Meanwhile, the morphology of PST nanoparticles can be
regulated from sphere- to bowl-like, with a particle size distribution ranging from 432 nm to 100 nm,
experiencing a transformation from a dendritic, cylindrical open mesoporous structure to an approxi-
mately non-porous structure by altering the reaction parameters. The well-defined mesopores, intrinsic
asymmetry, and pH-dependent charge reversal characteristics enable the as-prepared mesoporous
bowl-like PST nanoparticles’ potential for constructing responsive biomedical nanomotors through
incorporating some catalytic functional materials, 3.5 nm CeO2 nanoenzymes, as a demonstration. The
constructed nanomotors demonstrate remarkable autonomous movement capabilities under physiologi-
cal H2O2 concentrations, even at an extremely low concentration of 0.05 mM, showcasing the 51.58 body
length/s velocity. Furthermore, they can also respond to physiological pH values ranging from 4.4 to 7.4,
exhibiting reduced mobility with increasing pH. This charge reversal-based responsive nanomotor
design utilizing PST nanoparticles holds great promise for advancing the application of nanomotors
within complex biological systems.

Keywords: polyserotonin nanoparticles; mesoporous; anisotropic; nanomotor; pH responsiveness

1. Introduction

The diminutive size, expansive surface area, and diverse functional attributes of
micro/nanomotors (MNMs) confer a broad spectrum of applications and manipulation
capabilities within microenvironmental interactions, nano-bio-interfaces, and cellular con-
texts [1–5]. Particularly in the biomedical field, intelligent MNMs have the potential to
revolutionize drug delivery, cancer treatment, and in vivo imaging [6–8]. Designing and
synthesizing responsive MNMs are effective strategies to achieve their intelligent func-
tionalities. Notably, the utilization of pH diversity within organisms as a characteristic
signal for biorecognition has garnered substantial attention, leading to the prominence
of pH-responsive MNMs [9–11]. The current paradigm of smart responsiveness involves
MNMs autonomously reacting to external stimuli or environmental changes. Among
these, harnessing the pH gradient in the physiological milieu for navigation and motion
control of MNMs represents a novel and intelligent approach [12–16]. This mainly involves
the modification of pH-responsive media such as polymers or catalytic materials with
pH-dependent activities on the MNM surface, and the motion direction and enhancement
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are predominantly achieved through alterations in the reactions of pH-responsive media
and substrate [17–19]. However, while loading pH-responsive media onto nanomotors
enhances their adaptability to varying pH environments, it tends to occupy active sites on
the nanomotor surface, potentially impeding the loading of fuel by MNMs. Additionally,
the introduction of a pH-responsive medium may complicate the structure to some extent
and pose potential challenges in terms of biocompatibility. Consequently, the development
of carriers with inherent responsiveness emerges as a solution.

Serotonin, a neurotransmitter and biogenic amine ubiquitous in living organisms, is
a type of bioactive molecule possessing a molecular structure akin to dopamine [20–24].
Consequently, serotonin-based nanoparticles (polyserotonin, PST) share biochemical proper-
ties quite similar to polydopamine involving biocompatibility, photothermal properties, and
easy functionalization [25,26]. In addition, it exhibits a distinctive attribute of pH-regulated
surface charge due to the protonation of surface amine groups under acidic conditions lead-
ing to an increase in surface positive charges. This enables PST nanoparticles to possess
pH-dependent degradation properties and drug delivery capacities, conferring distinct ad-
vantages for biomedical applications. However, current research on PST nanoparticles is still
in its infancy with monodisperse nanoparticles primarily achieved by self-polymerization
of serotonin monomer molecules under basic conditions [27,28]. This restricts its further
application, especially serving as a functional carrier.

In this study, anisotropic bowl-like mesoporous PST nanoparticles were elaborately
fabricated by an interface-directed emulsion polymerization approach, inspired by the
synthesis of polydopamine (PDA) [29–31]. The monomer, serotonin, was utilized alongside
P123/F127/TMB, which formed stable composite micelles acting as nucleation sites. The
serotonin monomer was further self-assembled on these composite micelles under alkaline
conditions. Precise control over the soft stencil ratios of P123/F127 facilitated the forma-
tion of micelles with different sizes, driven by weakly interacting van der Waals forces
between P123, F127, and TMB. This resulted in a series of pore structure transformations,
transitioning from dendritic spherical structures to mesoporous bowl-like configurations.
Utilizing mesoporous bowl-shaped PST as a carrier, CeO2 nanoenzymes were electro-
statically adsorbed onto the carrier’s surface, capitalizing on its low symmetry and large
opening structure. The resulting CeO2@PST nanomotors enhanced diffusive motion at the
physiological H2O2 concentrations. Furthermore, their unique charge reversal property
endows the CeO2@PST nanomotors with the property of regulating surface hydrophilic-
hydrophobic states, thus enabling adaptable motion in the physiological pH regions. The
utilization of carriers possessing variable surface charges presents a promising approach,
providing an alternative strategy for the fabrication of nanomotors capable of adaptable
motion in complex physiological microenvironments.

2. Materials and Methods
2.1. Materials

Serotonin hydrochloride (5-HT), Pluronic P123 and F127, 1,3,5-trimethyl benzene (TMB),
ammonia solution (25–28%), tetramethylammonium hydroxide (TMAOH), Ce(NO3)3•6H2O,
and sodium citrate were purchased from Sigma-Aldrich (St. Louis, MO, USA). The catalase
assay kit was purchased from Beyotime Biotechnology. Ethanol and hydrogen peroxide were
purchased from TCI (Shanghai) Development Co., Ltd., Shanghai, China. All reagents were used
without further purification. Deionized (DI) water was used in all experiments.

2.2. Synthesis of PST Nanoparticles

The PST with a bowl-shaped structure was synthesized based on the dual-soft-template
method. In a typical synthesis, P123 (25 mg), F127 (75 mg), 5-HT (150 mg), and TMB (0.8 mL)
were mixed in the solvent of deionized water (7.5 mL) and ethanol (2.5 mL). The mixture was
formed in an emulsion solution by ultrasonication (360 W) for 10 min. Then, ammonia (0.6 mL)
was quickly added to the emulsion solution. After 18 h of magnetic stirring (600 r/min), the
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product of PST was collected by centrifugation (10,000 r/min) and then washed with water
several times. Finally, it was dried in an oven at 60 ◦C.

2.3. Synthesis of CeO2 Nanoenzymes

In a standard methodology, a solution of TMAOH (50 mL, 50 mM) was introduced
into a solution containing Ce(NO3)3•6H2O (0.434 g) and sodium citrate (0.516 g) within
a 250 mL glass bottle. The resulting mixture underwent stirring (600 r/min) at room
temperature (RT) for 21 h. Subsequently, the reaction mixture was transferred to a three-
necked round-bottom flask and subjected to reflux at 100 ◦C for a duration of 4 h. The
product was collected by centrifugation (10,000 r/min) for 20 min.

2.4. Synthesis of CeO2@PST Nanomotors

The PST (1 mg) was completely dispersed in a phosphate buffer solution (PBS) at
pH 6.5, followed by the addition of CeO2 (1 mg). Magnetic stirring (600 r/min) was
conducted for 24 h at room temperature to obtain the CeO2@PST nanomotors, which were
further isolated through a process of differential centrifugation (8000 r/min), ensuring
thorough washing with pure water.

2.5. Motion Tests of the CeO2@PST Nanomotors

The nanomotors’ motion was studied in solutions with varying concentrations of H2O2
or at different pH levels of the H2O2 solution. For each trial, the motors were dispersed in
an aqueous solution and placed on a glass slide. Subsequently, the nanomotors suspended
in the H2O2 solution were deposited onto the droplet for observation. Recordings were
made using an optical microscope equipped with a high-resolution charge-coupled device
(CCD) digital camera.

2.6. Characterizations

Transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) images
were acquired using an FEI F200 microscope from the United States. Dynamic light
scattering (DLS) measurements were performed utilizing a NanoBrook 90Plus Zeta instru-
ment (San Jose, CA, USA). Motion videos and images were captured employing a Leica
DM 3000B optical microscope sourced from Germany. Fourier transform infrared (FT-IR)
spectroscopy analyses were carried out on a NEXUS 670 FTIR spectrometer within the
range of 400 cm−1 to 4000 cm−1 using KBr pellets. X-ray photoelectron spectroscopy (XPS)
measurements were conducted utilizing an ESCALAB MKII photoelectron spectrometer
equipped with a standard Al anode. N2 adsorption–desorption isotherms were generated
using a Micromeritics ASAP 2020M automated sorption analyzer. Contact angles (CA)
were measured employing the optical contact angle measuring instrument DSA100S from
Hamburg, Germany, manufactured by KRUSS.

3. Results and Discussion
3.1. Preparation and Characterization of Anisotropic Mesoporous Bowl-like PST Nanoparticles

The fabrication of mesoporous bowl-like PST nanoparticles involved using serotonin
as the monomer seed, P123/F127 as a dual-soft-template, and TMB as both a pore expander
and an emulsion template. TEM images reveal a mesoporous bowl-like structure with
uniform morphology at low magnification (Figure 1A), showcasing a prominent open
structure at higher magnification, adorned with conspicuous columnar holes on the surface
(Figure 1B). The hydrated particle size of the as-prepared PST nanoparticles was approxi-
mately 170 nm (Figure 1C). In Figure 1D, the FTIR spectra of serotonin monomer and PST
exhibit absorption peaks at 1330 cm−1 for the representative amine groups of serotonins.
The analysis also shows intermolecular hydrogen bonding of the phenolic hydroxyl group
of the benzene ring, shifting to a lower wavenumber at 3264 cm−1. Simultaneously, the
peak of the C=C double bond of the benzene ring at 1660 cm−1 increased in intensity,
indicating the polymerization of serotonin from monomer to polyserotonin. The zeta
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potential in Figure 1E of PST is scrutinized under physiological pH conditions, showing
near neutrality at pH 7.4. The gradual positive charge enhancement occurs with decreasing
pH, reaching +60 mV at pH 4.4, signifying surface amine group protonation and positive
surface charge acquisition under acidic conditions. The corresponding pore size distribu-
tion exhibits multiple peaks between 2 nm and 7 nm, affirming the mesoporous nature
of PST (Figure 1F). The specific surface area measures approximately 66.13 m2/g. The
characterization of representative samples confirms the successful synthesis of anisotropic
bowl-shaped mesoporous PST nanoparticles.
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Figure 1. (A) Low and (B) high magnification TEM images, and (C) the particle size distribution
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3.2. Structural Evolution and Formation Mechanism of Anisotropic Mesoporous Bowl-like
PST Nanoparticles

In order to find out the formation mechanism, we first studied the effect of the weight
ratio of P123 and F127 on the structure evolution of the as-prepared PST nanoparticles
(Figure 2A,B and Figure S1). As depicted in the TEM images, adopting varying P123/F127
ratios yields distinct morphological features in the mesopores of the prepared materials.
When the ratio is maintained at 3:1, a distinct spherical configuration with dendritic
mesopores is observed, characterized by a particle size of approximately 432 nm. The
surface area is determined to be 53.59 m2/g, with the predominant pore size distribution
falling within the range of 3 nm to 10 nm. Subsequently, at a ratio of 2:1, a transformation
occurs towards a more mesoporous spherical structure with a partial bowl structure,
accompanied by a reduction in pore size with peaks observed at 2.5 nm. Correspondingly,
the surface area diminishes significantly to 41.58 m2/g. A further reduction in the ratio to
1:1 results in a noteworthy reduction in particle size, manifesting a mesoporous bowl-like
structure and spherical structure with a diameter of approximately 221 nm. The pore
size distribution exhibits peaks at 2.5 nm, 4.5 nm, and 7.8 nm, accompanied by a surface
area reduction to 39.72 m2/g. In the absence of P123 incorporation during the synthesis
procedure, a nearly non-porous bowl-like configuration was obtained, accompanied by
an unattainable characterization of pore size distribution. The particle size is decreased
to be approximately 100 nm. These results indicate that the weight ratio of P123 and F127
greatly impacts the assembly process of serotonin, thereby determining the structure of the
as-prepared PST nanoparticles.
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nanoparticles with different P123/F127 weight ratios. Bar = 200 nm.

In addition, the inquiry into the formation mechanism was also conducted through
meticulous control of various factors throughout the synthesis process. Initially, the impact
of TMB amounts on particle formation was systematically investigated (Figure 3A). A
noteworthy increase in the mesoporous bowl structure’s opening size was observed with
increasing the amount of TMB. Beyond 1.2 mL of TMB addition, a distinctive 2D plate
structure emerged. During the preparation process, TMB exhibited dual functionality by
contributing to the formation of surface mesoporous pores and acting as an emulsion tem-
plate for the formation of bowl-like structures. The increased addition of TMB facilitated
TMB droplets to function as templates, inducing micelle growth on the TMB droplets while
concurrently forming composite micelles. Subsequently, the influence of ammonia amounts
on the formation of bowl-shaped nanoparticles was scrutinized (Figure 3B). The quantity
of ammonia significantly impacted both the uniformity and size of the particles. Ammonia
functioned as a catalyst, influencing the rate of serotonin monomer polymerization. Opti-
mal uniformity, with particle sizes below 200 nm, was achieved when 0.6 mL of ammonia
was added. This underscored the stringent requirement of an alkaline environment for
the polymerization of serotonin monomers. The exploration extended to solvent ratios,
with controlled water/ethanol ratios of 1:1, 2:1, 3:1, and 1:0 (Figure 3C). The solvent ratios
demonstrated a discernible effect on both particle size and uniformity. Particularly, at a sol-
vent ratio of 3:1, the particles exhibited a substantial decrease in size, indicating heightened
stability in this configuration. In the absence of ethanol as a solvent, the formation of the
mesoporous bowl structure was precluded, and the resultant particle size exhibited marked
non-uniformity. This emphasizes that ethanol addition facilitated the expansion of the
hydrophobic volume within composite micelles, fostering a more stable micelle structure.
The adept manipulation of ethanol proportion was revealed as an effective strategy to
control the particle size and the formation of mesopores.
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In view of the above results, the formation mechanism of anisotropic bowl-like
mesoporous PST nanoparticles was proposed. The interplay between TMB and soft tem-
plates generated a microemulsion system containing composite micelles (P123/F127/TMB)
through van der Waals forces. Monomer seeds interacted with TMB on the micelle surface
through π-π stacking forming pore structures. Subsequently, utilizing TMB droplets as
emulsion templates, composite micelles undergo island-like growth on the surface of TMB
droplets, thereby forming a bowl-shaped structure. The P123/F127/TMB amalgamation
orchestrates the assembly of micelles at the interfaces, culminating in the simultaneous
self-assembly and polymerization of monomer seeds on the micelles. The reaction begins
with the oxidation of serotonin to serotonin-quinone, which then undergoes branching
reactions to produce cross-linked polymers, forming PST nanoparticles [25]. P123 and
F127 assume roles as soft templates, actively engaging in the formation of composite mi-
celles and exerting influence over their size. P123 and F127, both amphiphilic polymers
comprising hydrophilic polyethylene oxide (PEO) chains and hydrophobic polypropylene
oxide (PPO) chains, differ in the length of their hydrophilic chains, with P123 exhibiting
shorter chains and a smaller molecular weight. With a fixed total mass of P123 and F127,
an elevated proportion of P123 corresponds to a greater number of participating molecules
in composite micelle formation. The resulting larger micelles accommodate a higher TMB
content, diminishing the liquid template’s TMB concentration and fostering the creation
of three-dimensional spherical structures with augmented particle sizes. Conversely, de-
creasing the proportion of P123 reduces the number of involved molecules, resulting in
smaller composite micelles. The surplus TMB in the system contributes to the formation of
emulsion templates, serving as interfaces for co-assembly with composite micelles. This
collaborative effort engenders bowl-like particles characterized by diminished mesoporous
apertures. Notably, the augmentation of P123 enhances the surfactant’s filling parameter,
harmonizing the effective micelle assembly in the emulsion and thereby steering the struc-
tural evolution of mesoporous PST nanoparticles. The observed variability in products
attests to the substantive impact of soft template properties on mesoscopic structures.
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3.3. Synthesis and Characterization of CeO2@PST Nanomotors

Good biocompatibility, well-defined mesopores, intrinsic asymmetry, and a unique
pH-dependent charge reversal characteristic enable the anisotropic mesoporous bowl-like
PST nanoparticles to serve as an excellent carrier for constructing responsive nanomo-
tors. CeO2 nanoenzymes, with a well-dispersed particle size of approximately 3.5 nm,
were incorporated into the as-prepared PST nanoparticles through electrostatic attraction.
Their catalase (CAT)-like catalytic activity was employed to provide driving forces for
the obtained nanomotors. The morphology and composition of the CeO2 nanoenzymes
were characterized by TEM, DLS, and XPS, respectively, as shown in Figures S2–S4. TEM
and DLS characterizations reveal that CeO2 nanoenzymes exhibit a spherical morphology
with uniform particle size and good dispersion. XPS analysis elucidates the valence state
composition of surface cerium ions, indicating the coexistence of Ce3+ and Ce4+ states on
the surface. This suggests that the CeO2 nanoenzymes possess CAT-like catalytic activity.
Their CAT-like activity was assessed through the Michaelis–Menten constants (Km) value
of 32.75 mM, indicating robust catalytic efficacy (Figures S5 and S6).

The morphology of the constructed nanomotors (CeO2@PST) was characterized by
TEM. As shown in Figure 4A, a perceptible roughening surface and a partially filled porous
structure were observed compared to that of PST nanocarriers. The infrared peaks of
CeO2@PST show the presence of characteristic peaks of PST at 1330 cm−1 and 1660 cm−1 in
its backbone. Combined with the Ce elemental analysis obtained from EDS mapping, it can
be concluded that CeO2 nanoenzymes are uniformly distributed in CeO2@PST nanomotors
(Figure 4B). The enhanced Ce-O lattice stretching and bending vibrations at 1049 cm−1

and 880 cm−1 further attest to the effective CeO2 loading (Figure 4C). The reduction in
particle size compared to the PST carriers from 170 nm to 146 nm could be attributed
to the degradation of PST during the weak acidic process of nanoenzyme modification
(Figure 4D).
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3.4. Autonomous Movement of CeO2@PST Nanomotors at the Physiological H2O2 Concentrations

Hydrogen peroxide (H2O2) is a widely employed fuel that possesses the capacity to propel
MNMs. The driving force typically arises from its asymmetrically catalytic decomposition on
the surface of MNMs, generating an asymmetric oxygen concentration gradient. This induces
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the surficial osmotic flow to drive the motion of MNMs. However, despite H2O2 being an
endogenous substance in organisms within a concentration range from a few micromoles to
dozens or even a hundred micromoles in tumor microenvironments [32–34], the millimole
concentrations required by many MNM systems can give rise to biological toxicity, limiting
their applications, particularly in biomedicine. Consequently, developing MNMs that can be
propelled at a concentration below 100 µM is significant for their further applications.

The Inherent structural asymmetry of the as-prepared CeO2@PST nanomotors, result-
ing from their bowl-like carriers, induces asymmetric oxygen generation and establishes
an oxygen concentration gradient across the particles, thereby contributing to their au-
tonomous motion. The effect of H2O2 concentrations on their motion behaviors is shown
in Figure 5. Comparative analysis with H2O2-free conditions reveals distinctive diffusion
patterns in the nanomotor trajectories at 5 s (Figure 5A), indicating a notable increase in
diffusion with elevated H2O2 concentrations. This enhanced diffusion property aligns
consistently with motion velocity analysis, mean squared displacement (MSD), and diffu-
sion coefficient assessments (Figure 5B–D). Thus, the incorporation of CeO2 nanoenzymes
onto the asymmetric bowl-shaped PST carriers imparts the nanomotor with the requisite
propulsive force for autonomous movement. In the context of the physiological microen-
vironment, where H2O2 concentrations vary in accordance with the organism’s inherent
physiological nature, levels can range to 0.1 mM in disease microenvironments. Notably, at
a concentration of 0.1 mM H2O2, the nanomotors demonstrate a remarkable autonomous
speed of 7.766 µm/s, calculated as 51.58 body length/s velocity, accompanied by an en-
hanced diffusion coefficient of 1.622 µm2/s. This substantiates the capability of nanomotors
to autonomous movement in response to the physiological concentrations of H2O2. Mean-
while, along with the increase in fuel concentration, the nanomotors exhibit enhanced
diffusive motility, suggesting their fuel-dependent motility.
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3.5. Responsive Motion Behaviors of CeO2@PST Nanomotors in the Physiological pH Regions

The pH value in physiological environments is variable and commonly utilized as
a signal cue for the design of intelligent responsive delivery systems. For instance, the
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tumor microenvironment exhibits acidity (pH 6.5–6.8) lower than that of normal tissues
(pH 7.15–7.45), while the pH of endosomes/lysosomes is even lower (pH 4.5–5.0) [35,36].
Benefiting from the pH-dependent charge reversal characteristics of the PST carriers, the as-
prepared CeO2@PST nanomotors potentially exhibit pH responsiveness. The investigation
of their responsiveness to pH values ranging from 4.4 to 7.4 contributes to advancing their
potential applications. Upon incorporating surface-negatively charged CeO2 nanoenzymes,
the surface positive charges in PST carriers are partially neutralized. Consequently, the
CeO2@PST nanomotors display a negative zeta potential (−10 mV) at pH 7.4, escalating to
+35 mV at pH 4.4 (Figure 6A). This observation indicates that the CeO2@PST nanomotors
exhibit pH-dependent charge reversal characteristics. In general, the heightened positive
surface charges induce an increase in surface energy, effectively attracting the negatively
charged water molecules. This augmentation in mutual attraction facilitates enhanced
water spreading on the surface, resulting in a reduced water contact angle. Evaluation of
these properties through contact angle testing reveals hydrophobicity on the nanomotor
surface at pH 7.4, evidenced by a contact angle of 105.2◦. As the pH decreased, the surface
transitioned to a significantly hydrophilic state at pH 4.4, with the contact angle decreasing
to 17.8◦ (Figure 6B). The surface hydrophilic–hydrophobic state can greatly impact the
interaction between nanoenzymes loaded on the nanomotor surface and the catalytic
substrate, which is evidenced by the oxygen generation curves shown in Figure 6C. The
as-prepared CeO2@PST nanomotors exhibit the highest hydrophilicity at pH 4.4, thereby
demonstrating the fastest oxygen generation. As the pH value increases, a transmission
from hydrophilicity to hydrophobicity leads to a decrease in oxygen generation. This
undoubtedly influences the propulsion of the nanomotors.
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nanomotors at different pH conditions, characterized by (D) time-lapse trajectories in 5 s, (E) average
moving velocities, and (F) diffusion coefficients.

The motion behaviors of the as-prepared CeO2@PST nanomotors were investigated
under varying pH values within the physiological range. As shown in the trajectory graphs,
the nanomotors display a significantly expanded displacement at acidic pH values, indicat-
ing their enhanced diffusion (Figure 6D). With an increase in pH from 4.4 to 7.4, a distinct
reduction in mobility is characterized by the narrowed trajectory range, the decreased
velocity, and the diffusion coefficient, underscoring the substantial impact of surface charge
variations on their motion behaviors (Figure 6E,F). This trend is consistently reflected in the
MSD curve (Figure S7). Evaluation of motion velocity and diffusion coefficient at different
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pH levels reveals a significant increase of 1.279 µm/s and 1.288 µm2/s, respectively, at
pH 4.4 compared to pH 7.4.

The observed responsive motor behavior in diverse pH environments may be at-
tributed to alterations in surface properties, specifically changes in surface charge influenc-
ing hydrophilic and hydrophobic characteristics. Under acidic conditions, the enhanced
hydrophilic state facilitates efficient contact between nanoenzymes and catalytic substrates,
resulting in heightened reaction substrates, increased catalytic product generation, ampli-
fied driving forces, and a conspicuous enhancement in diffusive movement. This aligns
with the concept that increased catalytic product generation corresponds to greater driving
forces. For CeO2@PST under different pH conditions, TEM and FTIR characterization were
carried out, both of which corroborated that only the surface charge of the particles changed
under the conditions of pH change (Figures S8 and S9). Essentially, the pH-responsive
motion behavior of the nanomotor intricately links to the dynamic shift in surface charge
properties. The inversion of surface charge can effectively dictate the nanomotor’s transi-
tion to distinct motion behaviors within disparate pH environments, thereby enhancing
the adaptability of the nanomotor’s motion in complex settings.

4. Conclusions

In this study, we present a structure-controlled strategy for fabricating anisotropic
mesoporous bowl-like PST nanoparticles and reveal their formation mechanism based
on dual-soft template composite micelle assembly and simultaneous interface-induced
anisotropic growth. In the preparation, TMB acts as both the pore swelling agent and the
emulsion template. Its amount along with the weight ratio of P123 and F127 is essential
for obtaining the anisotropic mesoporous bowl-like structure. Through the manipula-
tion of the reaction conditions, we successfully transform the morphology of PST from
a dendritic mesoporous spherical, cylindrical mesoporous bowl-like structure to an ap-
proximately non-porous bowl-like structure. The as-prepared anisotropic mesoporous
bowl-like PST nanoparticles were employed to construct nanomotors by incorporating
CeO2 nanoenzymes. The as-prepared nanomotors exhibit autonomous motion behaviors
under physiological H2O2 concentrations relying on their instinct asymmetry of the bowl-
like structure and the CAT-like catalytic activity. They also demonstrate pH-responsive
motion behavior deriving from the pH-dependent charge reversal characteristic of the
PST nanoparticles, which influences the surface hydrophilicity of the nanomotors. The
employment of the carriers with environment-dependent surface charges offers an alterna-
tive approach for constructing intelligent MNMs capable of adapting to diverse delivery
scenarios, further promoting their potential applications.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/nano14060519/s1, Figure S1. N2 adsorption/desorption isotherms of
PST nanoparticles at different P123/F127 mass ratios. Figure S2. TEM images of CeO2 nanoenzymes.
Figure S3. The particle size distribution curve of CeO2 nanoenzymes. Figure S4. X-ray photoelectron
spectroscopy (XPS) analysis of the valence composition of cerium ions on CeO2 nanoenzymes. Figure S5.
The Lineweaver-Burk linear fitting for CeO2 CAT-like enzymatic activity analysis. Figure S6. The activity
curve of CeO2 nanoenzymes. Figure S7. MSD values of the CeO2@PST nanomotors moving under
different pH conditions. Figure S8. TEM images of CeO2@PST nanomotors at different pH conditions.
Figure S9. FTIR spectra of the CeO2@PST nanomotors at different pH conditions.
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