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Abstract: Flexible electronics is a cutting-edge field that has paved the way for artificial tactile systems
that mimic biological functions of sensing mechanical stimuli. These systems have an immense poten-
tial to enhance human–machine interactions (HMIs). However, tactile sensing still faces formidable
challenges in delivering precise and nuanced feedback, such as achieving a high sensitivity to emulate
human touch, coping with environmental variability, and devising algorithms that can effectively
interpret tactile data for meaningful interactions in diverse contexts. In this review, we summarize
the recent advances of tactile sensory systems, such as piezoresistive, capacitive, piezoelectric, and
triboelectric tactile sensors. We also review the state-of-the-art fabrication techniques for artificial
tactile sensors. Next, we focus on the potential applications of HMIs, such as intelligent robotics,
wearable devices, prosthetics, and medical healthcare. Finally, we conclude with the challenges and
future development trends of tactile sensors.

Keywords: tactile sensors; mechanism; fabrication techniques; HMIs; robotics

1. Introduction

Tactile perception is essential for tool use, communication, and interaction, and is
a key means for humans to learn, remember, understand, and comprehend the world.
Human tactile perception and recognition are mainly achieved by assessing the intensity,
distribution, and pattern of stimulus events applied to the skin [1–5]. The specific process is
as follows: after the mechanical receptors on the skin receive external stimuli, these are then
encoded into nerve impulses. These pulses are processed by neurons and synapses using
primary functions such as adaptation, filtering, amplification, and memory, and are then
transmitted to the cerebral cortex, resulting in high-level functions such as classification,
recognition, and perceptual learning. Such a complex tactile system enables humans to
perceive tactile features and patterns through touch and interaction, and to complete com-
plex interactive tasks, such as fine grasping, texture discrimination, and object recognition.
Endowing artificial intelligence systems, such as robots, wearable devices, and prosthetic
limbs, with tactile recognition functions can greatly improve both their ability to interact

Nanomaterials 2024, 14, 465. https://doi.org/10.3390/nano14050465 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano14050465
https://doi.org/10.3390/nano14050465
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-4126-6812
https://orcid.org/0000-0003-3128-0175
https://orcid.org/0000-0002-5269-5532
https://doi.org/10.3390/nano14050465
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano14050465?type=check_update&version=1


Nanomaterials 2024, 14, 465 2 of 30

with unstructured environments, as well as their cognitive ability and intelligence level
when manipulating unknown objects, and can help them complete more complex and fine
tasks [6–11].

With the rapid development of functional materials, the research of tactile sensors
has made great progress. Tactile sensors are not only used in the field of intelligent
robots, but also can be used in clinical diagnosis, health monitoring, rehabilitation training,
education, entertainment, and other fields [6,7,10,12]. The ideal artificial tactile device
should have “skin-like” properties or even surpass the characteristics and functions of skin,
such as being thin, flexible, stretchable, achieving morphological fusion (i.e., adapting the
shape and structure at the interface of objects), high sensitivity, fast response ability, and so
on [13,14]. The determination of these characteristics depends on reliable material synthesis,
novel device structure design, and advanced fabrication techniques. Biologically, through
perceiving neurons transmitting information received from mechanical receptors to the
somatosensory cortex, the human brain processes these multidimensional signals through
an energy-efficient and fault-tolerant computational process. Therefore, humans tend to
remember frequent mechanical stimuli and establish sensory memory, short-term memory,
and long-term memory, as well as human reflex responses to these stimuli. Neural plasticity,
i.e., the evolutive ability of the brain throughout an individual’s lifetime, plays a key role in
information processing [15–17]. Inspired by the neural system and its plasticity, researchers
have developed neuromorphic electronic devices, including artificial synapses and artificial
neurons [18–22], in which memristors can act as the building blocks of compute-in-memory
for processing sensory information, to break through von Neumann architecture, and be
given access to obtain a high operation speed and a low power consumption [6,23–25].
Artificial tactile sensors with memristor arrays can functionally mimic the neuromorphic
intelligent interactions between human stimuli receptors and the central nervous system,
such as threshold relaxation, non-adaptation, and sensitization, to sense and process
touch information. In addition, the electrical connection between tactile sensors and
neuromorphic devices can be used to mimic intelligent sensing and develop a tactile
sensor that can communicate with the central nervous system, achieving a higher level of
intelligent sensing.

However, there are still many application limitations of existing tactile sensors. Exist-
ing tactile sensors are far from reaching the resolution, sensitivity, and flexibility of human
skin, which leads to information reception errors and the inability to accurately execute
tasks when used for intelligent artificial systems [26–29]. Meanwhile, the rigidity of tactile
sensors limits their applications on curved object surfaces, and then, an external power
supply is required to drive the tactile sensors to work normally. This greatly increases both
the energy consumption and the complexity of the system. Typically, the tactile sensors
are spatially separated from the neuromorphic devices, limiting the development and
application of highly integrated intelligent sensing networks [27,30–33]. Therefore, research
into a biomimetic neuromorphic tactile sensing system coupled with intrinsic sensing
mechanisms may be an effective solution.

The architecture of this review paper is customized based on Figure 1 as follows: we
summarize the advances of tactile sensors based on four types of mechanisms in the first
part. Next, state-of-the-art fabrication techniques are discussed, including inkjet printing,
3D printing, 4D printing, and transfer printing. Part three focuses on the current and future
application domains of intelligent robotics, wearable devices, and prosthetics. For the
last part, we draw conclusions and present prospects with a wrap-up on the main theme
presented in the review.
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Figure 1. Schematic illustration of tactile sensors from mechanisms, fabrications, and applications.
(a) Reproduced with permission from Ref. [34]. Copyright 2023, Springer Nature. (b) Reproduced
with permission from Ref. [35]. Copyright 2018, Springer Nature. (c) Reproduced with permission
from Ref. [36]. Copyright 2022, American Chemistry Society. (d) Reproduced with permission
from Ref. [37]. Copyright 2021, Wiley. (e) Reproduced with permission from Ref. [38]. Copyright
2021, Science. (f) Reproduced with permission from Ref. [39]. Copyright 2023, Spinger Nature.
(g) Reproduced with permission from Ref. [40]. Copyright 2022, Spinger Nature. (h) Reproduced
with permission from Ref. [41]. Copyright 2020, Spinger Nature. (i) Reproduced with permission
from Ref. [42]. Copyright 2023, Spinger Nature. (j) Reproduced with permission from Ref. [43].
Copyright 2021, Elsevier. (k) Reproduced with permission from Ref. [44]. Copyright 2023, Springer
Nature. (l) Reproduced with permission from Ref. [45]. Copyright 2011, Springer Nature.
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2. Mechanisms for Designing Tactile Sensors

Tactile sensation is one of the ubiquitous perception techniques in the human’s activity
that collects information, such as stress, strain, shear stress, and vibration, of objects or
other specific things via physical touch to help people adapt or respond to stimulus from
the external environment. Flexible tactile sensors could be classified into four models based
on different working principles, including piezoresistive, capacitive, piezoelectric, and
triboelectric, which transform stimulus into electric signals, as shown in Figure 2.
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Figure 2. (a) The basic procedure of the synaptic current activated by external stimuli in the biological
tactile system. (b) Schematic illustration of four typical working principles of flexible tactile sensor,
(i) piezoresistive, (ii) capacitive, (iii) piezoelectric, and (iv) triboelectric.

2.1. Piezoresistive Tactile Sensors

Piezoresistive tactile sensors primarily rely on the piezoresistive effect of materials, that
is, converting mechanical signals into electrical signals via changes in materials’ resistivity,
contact resistivity, and quantum tunneling effects, and have gained widespread attention
due to their simple structure, low energy consumption, and broad sensing range. So far,
researchers have extensively studied high-performance piezoresistive tactile sensors on
materials such as metal-based materials and carbon nanomaterials and structures like mesh
and serpentine structures. As shown in Figure 3a, Chen et al. [46] developed a flexible
piezoresistive sensor using a sensing layer composed of silver nanowires (AgNWs) and
Polyvinylidene Fluoride (PVDF) composites, showcasing a unique pilotaxitic 3D porous
architecture with evenly distributed AgNWs. This structure results from the synergistic
effect of the N-Methyl pyrrolidone solvent and a water-based coagulation bath acting on
the AgNWs/PVDF precursor. The sensor demonstrates exceptional sensitivity, measuring
0.014 kPa−1 in the 0 to 30 kPa pressure range and 0.009 kPa−1 for pressures from 30 to
100 kPa. In Figure 3b, Liu et al. [47] designed an ultra-sensitive flexible pressure sensor
featuring carbon nanotubes (CNTs)/graphene on a porous Polydimethylsiloxane (PDMS)
substrate. The substrate’s uniform microporous structure is created through microwave
heating, offering a vast surface area for the application of conductive nanomaterials. This
design results in remarkable pressure sensitivity, achieving approximately 300.31 kPa−1

in the 0 to 50 kPa range and 52.51 kPa−1 for pressures between 50 to 200 kPa. Apart from
the material, the microstructure of the device significantly influences the performance of
piezoresistive tactile sensors. As shown in Figure 3c, Arias et al. [48] produced a high-
performance biomimetic skin pressure sensor using a mesh-molded periodic microstructure
fabricated by peeling off from polystyrene (PS) template, in which a conductive layer of
carbon nanotubes was uniformly spray-coated onto the inversely micro-structured PS
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template. And then, a layer of PDMS precursor was cast over it. This induced a low
operating voltage of 1 V, high sensitivity of 20.9 kPa−1, and low detection limit of 7.4 Pa. In
addition, Yeo et al. [49] introduced a flexible and stretchable wireless strain sensing system,
involved in a highly adaptable strain sensor based on carbon nanomaterials and silicone
elastomer, designed to control a robotic earthworm’s movements through a feedback loop
in Figure 3d. This serpentine-shaped strain sensor shows stretchability of 100% and gauge
factor of 38 and can help monitor normal movements of the robotic earthworm under the
aid of nanomembrane interconnectors and wireless electronics. These specific materials
and structures can pave an effective pathway for piezoresistive tactile sensors with high
sensitivity, high accuracy, and low detection limits, making them very attractive for future
advancement of human–machine interfaces.
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Figure 3. (a) Sectional view of porous AgNWs/PVDF composite (i) with the sensitivity under various
pressure ranges (ii). Reproduced with permission from Ref. [46]. Copyright 2022, American Chemical
Society. (b) SEM image of the porous PDMS with CNTs/graphene layer (i). (ii) Sensitivities of the
flexible pressure sensor when coating by CNTs/graphene, CNTs, and graphene layers. Reproduced
with permission from Ref. [47]. Copyright 2022, American Chemical Society. (c) SEM images of
PDMS/CNT microstructures (ii) molded by the stainless-steel mesh (i), which was treated as a
frame for PDMS/CNT microstructure. Reproduced with permission from Ref. [48]. Copyright 2020,
Wiley. (d) Schematic illustration of the soft robotic earthworm, which was moving through a cylinder
array (i). (ii) Photograph of serpentine piezoresistive strain sensors. Reproduced with permission
from Ref. [49]. Copyright 2020, American Chemical Society.

A typical neuromorphic tactile sensory system consists of a resistive pressure sensor
and a neuromorphic device, corresponding to the mechanical receptor and the neuromor-
phic information processing in the biological system [50–54]. The most widely studied
resistive pressure sensing unit is PDMS coated with a conductive layer. For example,
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Zhu and Chen et al. [55] created a low-error resistive neuromorphic tactile system (0.4%)
that consisted of a carbon nanotube-based micro-structured resistive pressure sensor, an
ionic wire, and an electrolyte-gated tungsten oxide transistor, as shown in Figure 4a. The
pressure sensor’s resistance changes when external force is applied, which cause the volt-
age drop on the ionic wire. This affects the voltage pulse that goes to the neuromorphic
transistor and leads to different channel modulation outcomes of the transistor. The ion
migration produces a strong electric field that modulates the PSC by changing the carrier
density within the channel. When the pressure is constant, more ions gather at the interface,
increasing the PSC amplitude. When the pressure is removed, the voltage drop of the ionic
wire drops quickly, the ions will slowly move back to their balance position, and the PSC
will slowly go back to the initial level. The system can use the electrical response to external
stimuli/release signals to recognize and extract the tactile features of the application.
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Figure 4. Schematic illustration of the fabrication of neuromorphic tactile systems. (a) The NeuTap
concept design. (i) The fusion of spatial and temporal pattern recognition within the tactile perception-
feedback loop. (ii) The structure of a sensory neuron’s function. (iii) The illustrative details for the
intricate working process and components of the NeuTap system. Reproduced with permission from
Ref. [55]. Copyright 2018, Wiley. (b) The structure of an artificial afferent nerve system involves
pressure sensors, an organic ring oscillator, and a synaptic transistor for signal transduction, in
which the single ring oscillator is connected to a synaptic transistor. The architecture allows for the
integration of multiple ring oscillators, each linked to a cluster of pressure sensors, converging on a
solitary synaptic transistor. Reproduced with permission from Ref. [56]. Copyright 2018, Science.

Moreover, Bao and Lee et al. [56] integrated a carbon nanotube-based pressure sensor,
a ring oscillator, and an organic electrochemical transistor (OECT) to construct an artificial
afferent nerve, as shown in Figure 4b. In this system, the pressure signal could be converted
into a voltage signal with frequency characteristics by the ring oscillator, which was used
to simulate the mechanical receptor and the artificial nerve fiber. The electrical signal
from the artificial nerve fiber is converted into PSC by the OECT neuromorphic transistor.
By analyzing the frequency information of the electrical signals from multiple resistive
mechanical receptors, the artificial afferent nerve could be used to achieve shape recognition,
motion detection and braille recognition in simple scenarios. Moreover, the PDMS-based
stretchable neuromorphic tactile system can exhibit all-round perception with only 50%
loss compared with the initial value under tension.
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2.2. Capacitance-Based Tactile Sensors

A capacitive tactile sensor is a mechanical receptor based on capacitance with pressure
sensing function and memory with signal processing function, which can realize various
functions of signal transduction and information processing [57–62]. The capacitance of the
pressure sensor changes with the applied pressure and is converted into a pulse electrical
signal, which is transmitted to the presynaptic end of the second neuromorphic transistor
through the gate. When the presynaptic end receives the pulse signal, the migration of ions
in the dielectric layer affects the accumulation state of charges in the organic semiconductor
channel, thus modulating the postsynaptic current (PSC) flowing between source and
drain. The characteristics of the PSC response depend on the amplitude, frequency, and
duration of the applied pressure. Therefore, by detecting the changes of PSC in the system,
dynamic pressure signals, time-varying signals and comprehensive tactile information can
be collected and analyzed. A pioneering study integrated an organic field-effect transistor
(OFET) that could sense transient pressure stimuli with another capacitive tactile OFET, and
constructed a capacitive tactile device based on dual OFETs [59,63], as shown in Figure 5.
Figure 5a describes one sensor with its unique layered design including a micro-structured
graphene base, a PDMS middle layer, and a smooth graphene top layer, which could
quickly react to pressure changes faster than human skin and traditional sensors [59]. Its
quick response and recovery times were attributed to the design that efficiently alters
capacitance with pressure changes, offering rapid and reliable sensory feedback, which
made it more responsive than conventional tactile sensors limited by slower, viscoelastic
responses. In Figure 5b, the dual-organic-transistor-based tactile perception element (DOT-
TPE) system, designed to simulate human tactile perception, integrates synaptic OFETs
with OFET-based pressure sensors [63]. This system translates tactile stimuli into electrical
signals through pressure sensors, which are then processed by synaptic OFETs for cognitive
tactile emulation. It features a suspended-gate OFET for pressure detection and a synaptic
OFET for signal processing, effectively mimicking human touch sensitivity. Upon applying
pressure, the device’s capacitance changes, leading to conductivity modulation and the
generation of electrical spikes that are analyzed for dynamic tactile information. Testing
with dynamic pressure cycles (40–100 Pa) showed that the device’s output current peaks
with each stimulus, demonstrating its capability to replicate human tactile sensation.

Nanomaterials 2024, 14, x FOR PEER REVIEW 7 of 31 

 

 

2.2. Capacitance-Based Tactile Sensors 

A capacitive tactile sensor is a mechanical receptor based on capacitance with pres-

sure sensing function and memory with signal processing function, which can realize var-

ious functions of signal transduction and information processing [57–62]. The capacitance 

of the pressure sensor changes with the applied pressure and is converted into a pulse 

electrical signal, which is transmitted to the presynaptic end of the second neuromorphic 

transistor through the gate. When the presynaptic end receives the pulse signal, the mi-

gration of ions in the dielectric layer affects the accumulation state of charges in the or-

ganic semiconductor channel, thus modulating the postsynaptic current (PSC) flowing 

between source and drain. The characteristics of the PSC response depend on the ampli-

tude, frequency, and duration of the applied pressure. Therefore, by detecting the changes 

of PSC in the system, dynamic pressure signals, time-varying signals and comprehensive 

tactile information can be collected and analyzed. A pioneering study integrated an or-

ganic field-effect transistor (OFET) that could sense transient pressure stimuli with an-

other capacitive tactile OFET, and constructed a capacitive tactile device based on dual 

OFETs [59,63], as shown in Figure 5. Figure 5a describes one sensor with its unique layered 

design including a micro-structured graphene base, a PDMS middle layer, and a smooth 

graphene top layer, which could quickly react to pressure changes faster than human skin 

and traditional sensors [59]. Its quick response and recovery times were attributed to the 

design that efficiently alters capacitance with pressure changes, offering rapid and reliable 

sensory feedback, which made it more responsive than conventional tactile sensors lim-

ited by slower, viscoelastic responses. In Figure 5b, the dual-organic-transistor-based tac-

tile perception element (DOT-TPE) system, designed to simulate human tactile percep-

tion, integrates synaptic OFETs with OFET-based pressure sensors [63]. This system trans-

lates tactile stimuli into electrical signals through pressure sensors, which are then pro-

cessed by synaptic OFETs for cognitive tactile emulation. It features a suspended-gate 

OFET for pressure detection and a synaptic OFET for signal processing, effectively mim-

icking human touch sensitivity. Upon applying pressure, the device’s capacitance 

changes, leading to conductivity modulation and the generation of electrical spikes that 

are analyzed for dynamic tactile information. Testing with dynamic pressure cycles (40–

100 Pa) showed that the device’s output current peaks with each stimulus, demonstrating 

its capability to replicate human tactile sensation. 
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permission from Ref. [59]. Copyright 2019, American Chemical Society. (b) The structure design of
the DOT-TPS (i). (ii) Equivalent circuit of the DOT-TPS. (iii) The relative changes of Ipost and the
response time for DOT-TPS when applying different pressures. Reproduced with permission from
Ref. [63]. Copyright 2017, Wiley.

2.3. Piezoelectric Tactile Sensors

Specific materials with non-centrosymmetric structure (such as piezoelectric ceram-
ics, Wood’s structure and piezoelectric polymers) will induce piezoelectric potential after
applying pressure. The piezoelectric potential can be transmitted to the neuromorphic
terminal, and a piezoelectric neuromorphic tactile system can be constructed to perceive spa-
tiotemporal tactile information [36,64–69]. As shown in Figure 6a, a piezoelectric graphene
artificial tactile system consisting of sensing, transmission and processing units was con-
structed by combining piezoelectric nanogenerators (PENG) and electrolyte-gated graphene
transistors [70]. During mechanical deformation, the dipoles in the piezoelectric polymer
were aligned in a uniform direction, inducing the generation of piezoelectric potential and
promoting PENG to work as a self-powered mechanical receptor [71]. Under the influence
of the piezoelectric potential, the ions in the electrolyte or dielectric would migrate and redis-
tribute, to regulate the conductivity of the graphene channel and induce PSC response. The
relationship between the piezoelectric polarization caused by mechanical stimulation and
the transmission characteristics of the semiconductor endows PSC with the time and space
information of external stimuli. The unique ion response behavior and strong ion/electron
coupling phenomenon of the graphene/ion gel interface lay the foundation for biomimetic
neural and biochemical sensing applications. Inspired by the biological reflex mechanism in
Figure 6b, Wang et al. [72] proposed an artificial tactile system based on wood’s structure and
GaN-based piezoelectric effect. The system used a cantilever structure to achieve pressure
sensing, greatly simplifying the system complexity. When the cantilever beam was subjected
to strain, the piezoelectric potential was produced, which would change the concentration
of the 2D electron gas on the interface of AlGaN/AlN/GaN heterostructure. In this way,
the piezoelectric potential can modulate the electron transmission in the neuromorphic
transistor, thereby simulating the biological reflex process.

2.4. Triboelectric Tactile Sensors

The mechanical displacement of triboelectric nanogenerators (TENG) can generate
friction potential based on friction electrification and electrostatic induction. Combining
friction potential with semiconductor devices, the carrier transportation of the semicon-
ductor channel can be directly controlled by mechanical stimulus. The integration of
TENG tactile sensors with Extended Gate Field Effect Transistor or EGFET [73,74], Fer-
roelectric Field Effect Transistor or FeFET [75–77], Floating-Gate Field Effect Transistor
or FGFET [78–80], Semi-Floating-Gate Field Effect Transistor or SFGFET [81] and other
neuromorphic transistors [82,83] has been used to develop self-powered tactile perception
systems. The external force applied on the TENG is converted into voltage spikes, which
are then captured by the neuromorphic transistor, producing PSC responses. In addition,
in view of the self-powered nature of the TENG, the system greatly reduces energy con-
sumption and demonstrates the spatiotemporal recognition ability of external stimuli. The
artificial perception can be used to establish dynamic logic, as well as to identify the fre-
quency/amplitude of external motions. As shown in Figure 7, Wang et al. [84] developed a
neuromorphic tactile system consisting of TENG tactile sensors and MoS2-EGFET, in which
the TENG mechanical receptor could be designed into different working modes, monitoring
disparate tactile information, including mechanical displacement, lateral sliding motion,
tactile signal, and pressure. The friction electric signal could activate the EGFET, which
further enables the system to recognize spatiotemporal touch patterns by triggering the
corresponding LED array to display the result. This can be used to realize visualization of
virtual stimuli in the cerebral cortex.
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Figure 6. (a) The human sensory nervous system features mechanoreceptors in the skin that transform
mechanical stimuli into presynaptic potential signals, which are then transmitted to the central
nervous system via neurons and synapses (i). (ii) Schematic diagram of the graphene artificial sensory
synapse based on piezotronics effect. (iii) An equivalent circuit diagram of the piezoelectric potential’s
interaction through an ion gel. Reproduced with permission from Ref. [70]. Copyright 2019, Wiley.
(b) In the human reflex arc, stimulation of a thigh muscle induces a response where the sensory
neuron communicates an action potential to the spinal cord’s gray matter. Within the spinal cord,
this neuron forms a direct synaptic link with a motor neuron. If the stimulus is sufficiently intense, it
can initiate action potentials in the motor neuron, resulting in a knee jerk (i). (ii) The Strain-Powered
Device (SPD) uses an external strain on a cantilever mechanism to mimic the logical processing of a
human reflex, modulating output power based on mechanical input. Reproduced with permission
from Ref. [72]. Copyright 2020, Springer Nature.

So far, giant advances in neuromorphic tactile systems have been achieved. Here,
Table 1 compares the specialties of neuromorphic tactile systems based on four types of
mechanisms in these aspects, including sensor features, sensitivity, sensing range, and
applications. By comparison, it was clear that each type offers distinct advantages and
limitations based on their working principles and material properties. Resistive sensors are
valued for their simplicity and robustness, while capacitive sensors excel in sensitivity and
spatial resolution. Piezoelectric sensors stand out for their ability to generate voltage from



Nanomaterials 2024, 14, 465 10 of 30

mechanical stress, offering self-powering capabilities. Triboelectric sensors, on the other
hand, leverage contact electrification and electrostatic induction, providing high sensitivity
and the potential for energy harvesting. The choice among these sensors depends on the
specific application requirements, including sensitivity, power consumption, flexibility, and
environmental robustness.
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Figure 7. (a) Schematic illustration of triboelectric tactile systems activated by contact electrifica-
tion, which includes a self-activation component, a synaptic transistor, and a functional circuit.
(b) Schematic diagram of the CE-activated MoS2 synaptic transistor with annotations of each compo-
nent. (c) Equivalent circuit of the CE-activated artificial afferents. Reproduced with permission from
Ref. [84]. Copyright 2021, Springer Nature.

Table 1. Comparison of resistive-, capacitive-, piezoelectric-, and triboelectric-typed tactile sensors.

Sensor Types Sensor Features Sensitivity Sensing
Range Applications Ref.

Resistive tactile
sensors Multi-walled carbon nanotubes ~385 kPa−1 >1400 kPa smart robotics [54]

Resistive tactile
sensors

CNT/Au electrode with a
pyramid-structure resistive

channel
/ 1~80 kPa neurorobotics and

neuro-prosthetics [56,85]

Resistive tactile
sensors

Al2O3/MoS2/Al2O3 sandwich
structure 0.011 kPa−1 1~120 kPa wearable electronics,

e-skin, bio-robotics [86]

Capacitive tactile
sensors AgNF-AgNW hybrid electrode 1.78 × 10−3 kPa−1 <350 kPa mobile smart devices [35]

Capacitive tactile
sensors

Graphene/CNT/Silicone
rubber composite 0.63 kPa−1 0.1~0.26 MPa robotic prostheses [44]

Capacitive tactile
sensors

Au/ polystyrene (PS)/Au layer
with micropatterned PDMS 0.815 kPa−1 0~50 N

electronic skins,
wearable robotics, and

biomedical devices
[87]
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Table 1. Cont.

Sensor Types Sensor Features Sensitivity Sensing
Range Applications Ref.

Capacitive tactile
sensors

PDMS/microconformal
graphene (MGr) structure with

PET substrate
3.19 kPa−1 0~4 kPa

wearable
health-monitoring

devices, robot tactile
systems and

human-machine
interface systems

[59]

Piezoelectric
tactile sensors

Polyacrylonitrile/barium
titanate (PAN-C/BTO)

nanofiber film
1.44 V·N−1 0.15~25 N

human-computer
interactive and smart

wearable sensing
systems

[88]

Piezoelectric
tactile sensors

PVDF nanofibers based on
polyurethane

(PU) film and PDMS plate
7.1 mV·kPa−1 <10 kPa

electronic skin,
robotics, and interface
of artificial intelligence

[89]

Piezoelectric
tactile sensors PVDF/BaTiO3 nanocomposites 18 V·N−1 1~20 g human–machine

interfaces [90]

Triboelectric
tactile sensors

Ecoflex electrification layer with
polyvinyl

alcohol/polyethyleneimine
(PVA/PEI) electrode layer

0.063 V·kPa−1 5~50 kPa

self-powered touch
screens,

human–machine
interfaces

[91]

Triboelectric
tactile sensors

Micro-pyramid-patterned
double-network ionic

Organohydrogels
45.97 mV·kPa−1 0.02~4 kPa wearable devices and

robotics [92]

Triboelectric
tactile sensors

Carbonyl
Iron powder

(CIP)/NdFeB/PDMS Magnetic
Composite and CNT/PDMS

Mixture

0.314 kPa−1 >1000 kPa healthcare monitoring [37]

3. Fabrication Techniques for Tactile Sensors

The fabrication techniques for neuromorphic tactile sensors determine their perfor-
mance, functionality, and compatibility with different applications. So far, the mainstream
fabrication techniques include inkjet printing, 3D printing, 4D printing, and transfer print-
ing.

3.1. Inkjet Printing

As an emerging technology, inkjet printing is receiving increasing attention for flex-
ible electronics with superior digital capability, simple operating procedures, and high
depositing resolution [93–95]. In addition, the merits of time efficiency and low cost help
inkjet printing as a potential candidate for batch production of flexible electronics, which is
beneficial for applications such as robotics, human motion monitoring, etc. Figure 8a shows
a bimodal e-skin designed by Pan et al. [96] that can sense both strain and pressure using
an inkjet-printing method, which used a microcracked metal film as a common electrode
for both sensors without interfering with each other. The device had a high sensitivity
of ~2 Pa for pressure sensor and stability with over 5700 cycles for pressure sensor and
4500 cycles for strain sensor and could detect the shape and pressure of various objects. In
addition, no interfering signal between the pressure sensor and strain sensor was observed.
To deal with the challenge of sensitivity and stability, Sun et al. [97] prepared a flexible
sensor with a flat electrode and micro-structured electrode of metallic Ag nanoparticles on
polyurethane acrylate (PUA) substrate via inkjet printing, as depicted in Figure 8b. The
as-synthesized single-layer sensor showed an ultrahigh sensitivity with a gauge factor
of >1100, durability of >1000 cycles under stretching and releasing, and response time
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of ~90 ms, while double-layer sensor with PUA/Ag composite films achieved a faster
response capability for small pressure of 250 Pa.
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Figure 8. (a) Schematic illustration of bimodal sensor fabricated by inkjet printing (i). (ii) The durabil-
ity of the strain sensor at a strain of 0.76% and 1.07%, respectively. (iii) The durability of the pressure
sensor at a pressure of 202.8 kPa. Reproduced with permission from Ref. [96]. Copyright 2019, Wiley.
(b) Schematic illustration of the fabrication process of PUA/Ag composite film as flexible electrode (i).
(ii) Durability under 1% strain with a frequency of 0.1 Hz and 1000 stretching/releasing cycles.
(iii) The response time of single-layer PUA/Ag-based strain sensor under 1% strain. Reproduced
with permission from Ref. [97]. Copyright 2021, Wiley.

3.2. Three-Dimensional (3D) Printing

Three-dimensional (3D) printing is a potential method to create one device rapidly
through breaking up a 3D model into several slices in combination with computer de-
sign. The core point of 3D printing is materials, for which polymers, liquid metals, silver
nanowires, carbon nanotubes, graphene, and other materials are the most commonly
used in conductive flexible composite materials. Zeng et al. [98] developed a new type of
piezoresistive sensor based on one ink composed of polydimethylsiloxane microspheres
and carbon nanotubes via 3D printing to mimic the texture and sensitivity of human skin.
As-prepared sensors were sensitive to applied shear stress with a sensitivity of ~2.08 kPa−1

at a pressure of 0.12 kPa and had a fast response time of 50 ms and high durability of over
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8000 cycles. Utilizing the high mobility of graphene, Zeng et al. [99] designed one tactile
sensor for microstructure perception using graphene-polydimethylsiloxane microspheres
using 3D printing. Some properties of the flexible tactile sensor with complex functions
were achieved, including a robust tensile capability with a stretch rate of 70% and a re-
sponse time of 60 ms. Moreover, the sensitivity was up to 2.4 kPa−1, and the stability
over 2000 cycles, which could be used to accurately measure pressure and distinguish the
delicate morphology of surfaces. On one hand, the overall resistance of the conductive
material is large due to the low CNT or graphene content added. On the other hand, the
addition of dispersant will greatly affect the overall mechanical properties of the composite
material. More importantly, the dispersants have certain toxicity, which is not friendly for
the preparation of sensors. Therefore, most of the existing dermoid perception materials re-
quire complex molecular design or multi-step functionalization. The materials doped with
conductive fillers often have a contradiction between printability and conductivity when
used for 3D printing ink. Excess conductive filler will meet the requirement of conductivity
but cause the material viscosity to be too high, resulting in the phenomenon of printing
nozzle blockage. Inversely, the conductive ink can meet the rheological characteristics of
printability but often fails to meet the required conductivity.

According to the material properties, the 3D printing used to manufacture flexible sen-
sors mainly comprises direct ink writing (DIW), fused deposition modeling (FDM), digital
light processing (DLP), stereo lithography (SLA), and material jet printing (MJP). Table 2
summarizes the printable materials, forming accuracy, and advantages and disadvantages
of these five techniques.

DIW can extrude viscoelastic colloids and their composites through the print head
and manufacture the required 3D structure in a layer-by-layer accumulation manner, such
as planar capacitive pressure sensors and stretchable electrodes. Zhang et al. [100] used
direct 3D printing to prepare a porous ionic gel flexible sensor containing ionic liquids (ILs)
and acrylate monomers, which achieved a high sensitivity of ~0.213 kPa−1, as shown in
Figure 9a. For better breathability, the spacing among fibers was 400 µm, which is 5 times
less than that of hair follicles on the human arm, by controlling the printing fill rate. In
comparison to DIW, FDM can produce composite multiple functional materials during
the printing process to achieve multi-material structures via as-equipped screw-driven
filament extrusion and direct melt particle extrusion. In Figure 9b, Toyserkani et al. [101]
used 3D printing acrylonitrile butadiene styrene (ABS) material porous mold to realize
the honeycomb-porous-structure pressure sensor with a graphene oxide coating, which
presented an electrical resistance durability of 12 months and high tolerance for organic
solvents. For properties, this pressure sensor retained favorable conductivity and strain
recoverability under severe conditions with a gauge factor of 10 within the compressive
strain range of 2~10%.

Both SLA and DLP are based on the polymerization of photosensitive polymer under
ultraviolet, in which SLA uses a laser source to directly write on the surface of the polymer,
while DLP employs digital light projection to solidify the pattern of each layer. Figure 9c
illustrates a photo-curable resin containing ionic liquids and acrylate monomers [102].
Through DLP, customized porous ionic gel flexible sensors were prepared, which exhibit a
high pressure sensitivity and lower hysteresis of 2.4% due to the complex porous structure
composed of organic frameworks, hollow footballs, and various lattice structures, and
can provide stable signals during long-term loading of >500 cycles. Material jetting, also
known as “Multi-jets” technology, is one hybrid technique of inkjet printing and photo-
polymerization. This method uses a multi-channel dispenser to distribute droplets of photo-
polymerizable material according to the layer configuration defined by the CAD model and
is solidified by a UV light source. As shown in Figure 9d, Yang et al. [103] prepared a film
piezoresistive sensor based on the microstructure of sandpaper surface. Combining inkjet
printing with the self-diffusion process of carbon nanotubes, the conductivity of traditional
CNT-doped conductive ink was refined, which resulted in a sensitivity of 155.54 kPa−1, an
ultrawide pressure sensing range from 0.1 kPa to 500 kPa, and an exceptional durability of
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over 12,000 pressure cycles at 300 kPa. Therefore, MJ technology can also be a potential
method to develop multifunctional flexible wearable sensors. Table 2 outlines the various
aspects on the types of 3D printing techniques with the corresponding materials, resolutions,
advantages, and disadvantages.
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Figure 9. (a) Flow chart of the fabrication of e-skin 3D printing based on a porous ionic gel (i) with
a high sensitivity of 0.213 kPa−1. (ii) Pressure vs resistance response of the e-skin pressure sen-
sor. Reproduced with permission from Ref. [100]. Copyright 2022, American Chemistry Society.
(b) Surface-embedded graphene sensors. (i) SEG sensors are fabricated in the following procedures:
An ABS mold was made via 3D printing and then was dip coating in the graphene solution repeatedly.
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After dehydration by hot air flow, graphene nanoplatelets (GnP) was adhered to the surface of ABS
mold uniformly. Subsequently, silicone rubber (SR) was cast, leading to GnP transfer to the SR
surface after dissolving ABS mold with resistance changes (ii) and stable gauge factors (iii) when
applying 200 cycles and 0~400 cycles under strain of 2%, 5%, 10%. Reproduced with permission from
Ref. [101]. Copyright 2020, American Chemistry Society. (c) Schematic illustration of DLP 3D printing
for wearable devices with different structures (i). (ii) The image of the compression/release state of
the lattice-structure sensor under 85% strain. (iii) The pressure sensitivity when sensors are lattice-
structured or bulk-structured. Reproduced with permission from Ref. [102]. Copyright 2022, Elsevier.
(d) The structure design of the sandpaper morphology and PDMS/CNTs (SPC) sensor consisting of
the SPC film and interdigitated electrode layers (i). (ii) The sensitivity of the 600-mesh-roughness
SPC sensor within the range of 10 kPa. Reproduced with permission from Ref. [103]. Copyright 2022,
American Chemistry Society.

Table 2. Lists of types of 3D printing with materials, resolutions, advantages, and disadvantages.

Types Materials Resolution Advantages Disadvantages Ref.

DIW

Polymer, e.g.,
hydrogel

Electronic materials,
e.g., semiconductor

and conductor

1~100 µm

High resolution
Material versatility
Customization and

complexity

High equipment costs
Low printing speed
Material limitations

Low durability and longevity

[104–106]

FDM

Thermoplastic
materials, e.g.,

cellulose
nanocrystals and

polymer composites

50~400 µm

Material accessibility
Ease of use

Structural integrity
Customization and flexibility

Rapid prototyping

Limited resolution
Material limitations

Printed layer visibility
Potential for warping and

shrinkage

[107–109]

DLP Photopolymer and
its composites 25~100 µm

High resolution
Smooth surface finish

Rapid prototyping
Material versatility

Consistency

Limited build volume
Material cost and availability

Post-processing
Sensitive to light and storage

conditions

[110–113]

SLA Photopolymer and
its composites 25~100 µm

High resolution
Smooth surface finish

Material versatility
Consistency

High elaboration of detail

Limited build volume
High cost for material,

operation and maintenance
Post-processing

Limited durability

[114–118]

MJP
Photopolymer and

thermoplastic
materials

<300 µm

High resolution
Multi-material printing
Smooth surface finish

High precision and
consistency

Efficient use of materials

High material cost
Post-processing

Limited durability
Limited build volume

[119–121]

Three-dimensional (3D) printing technologies, like DIW (Direct Ink Writing), FDM
(Fused Deposition Modeling), DLP (Digital Light Processing), SLA (Stereolithography), and
MJP (MultiJet Printing), offer unique advantages and limitations. DIW excels in printing
viscous materials with moderate resolution. FDM is widely used for its cost-effectiveness
and material variety but lacks fine resolution. DLP and SLA provide high-resolution and
smooth surface finishes, with SLA being particularly noted for its precision in intricate
details, but both can be limited by material compatibility and post-processing requirements.
MJP offers high resolution and the ability to print in multiple materials simultaneously,
though it can be costly and involves extensive post-processing.

3.3. Four-Dimensional (4D) Printing

Four-dimensional (4D) printing, evolved from 3D printing, refers to one process of cre-
ating 3D objects that can transform over time in response to environmental stimuli, such as
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light, heat, and moisture. Four-dimensional printing is an important trend for tactile sensors,
which can control the spatial position of different materials. Nowadays, the novel functions
realized by 4D printing are mainly concentrated in the aspects of self-healing, integrated
sensing and driving, and self-adaption. For example, Hao et al. [43] fabricated self-healing
triboelectric nanogenerators or TENGs with an output power density of 56 mW/m2 based
on shape memory polymer via 4D printing, which exhibits excellent self-recovery ability
and robustness. However, the nature of shape memory polymers limits their adaptability
to unknown environments when perceiving outside stimuli. Herein, Leng et al. [122] syn-
thesized PLMC/CNT nanocomposite material with electric-induced deformation ability
for 4D printing. As-printed deformable liquid sensors based on the composite printing ink
could self-adapt to different liquid levels with high precision. This self-adaption could be
used in aerospace, robotics, and other fields to tackle complex environmental adaptability.
In addition, ink composed of conductive fillers with stimulus-responsive smart materials
could realize the self-sense for motion, position, and posture, which is one of the hot topics
relevant to 4D printing. Shi et al. [123] reported a 4D-printed high-performance integrated
sensor-actuator with biomimetic microstructure, which showed a gauge factor of 48.46 and
a high-temperature sensitivity of about 1.9~2.25 × 104 ppm/◦C. In terms of applications,
the potential orientations of 4D-printed sensors are mainly to enhance the detection of vari-
ous physiological signals of biological bodies, and to improve the performance, function,
adaptability, and durability of sensors via fine design.

3.4. Transfer Printing

Transfer printing is an emerging technology that transfers nano/micro devices from
donor substrates to recipient substrates, which is of great significance for the development
of flexible electronics that require heterogeneous inorganic electronic materials and soft
substrates [124–126]. The typical printing process includes pick-up and printing. In the
pick-up step, the functional devices that are previously fabricated on the donor substrates,
such as micro/nano films, ribbons, nanowires, nanotubes, etc., are picked up to the flex-
ible film [127,128]. In the printing step, the inked stamp contacts the recipient substrate,
and then the stamp is removed to release the devices onto the recipient substrate. The
prerequisite for a successful pick-up step is that the adhesion strength at the stamp/device
interface is greater than that at the device/donor interface, resulting in delamination at
the device/donor interface and thereby transferring to the elastomer stamp [129–131]. For
the printing step, the adhesion strength at the device/receiver interface is stronger than
that at the stamp/device interface, thus enabling printing [132–134]. In order to realize a
high-performance ultrathin tactile device, Niroui et al. [135] reported one transfer method
to decouple the forces at the interface of van der Waals (vdW) layers and Si substrate via
a hybrid high- and low-adhesion surface, which retained intrinsic physical properties of
2D materials. Although the transferring process of a single device has been realized, batch
transfer still sets blocks for the large-scale production of 2D tactile devices. Di et al. [136]
developed a graphene-assisted metal transfer printing process to overcome chemical dis-
order and Fermi-level pinning via conventional metal deposition, which enabled metal
electrode arrays with weak (Cu, Ag, Au) and strong (Pt, Ti, Ni) adhesion strengths to be
transferred from a four-inch graphene wafer onto recipient substrate due to weak vdW
force and absence of dangling bonds. Kim et al. [137] designed a high-throughout layer
transfer technique, which was used for production of multi-compound 2D membranes from
a single wafer. A time efficiency that avoids sacrificial layer etching and wafer polishing,
and atomic-precision exfoliation for membrane production was achieved. Transfer tech-
niques open a novel path to reduce costs and realize batch production for heterogeneously
integrated tactile devices in the future.

4. Representative Applications of Tactile Sensors

Tactile devices and systems have expansive application potential, especially in intelli-
gent robotics, wearable devices, prosthetics, etc. In robotics, neuromorphic tactile sensors
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are used to help robots grasp and manipulate objects with more dexterity and precision, as
well as to interact safely with humans and the environment. For wearable devices, neuro-
morphic tactile sensors can be integrated into skin-conformable devices that can monitor
the physiological and environmental signals of the wearer, such as pressure, temperature,
humidity, and motion. In prosthetics, neuromorphic tactile sensors can provide sensory
feedback to amputees, which can enhance their sense of embodiment and improve their
motor control and functionality.

4.1. Intelligent Robotics

Intelligent robotics have been extensively explored for their ability to solve complex
problems relevant to humans, such as interacting with human beings in a friendly manner,
identifying unknown objects delicately [51,61], and tackling tasks in unstructured envi-
ronments with dexterity and adaptability. Over the past years, many researchers have
devoted themselves to the continuous advancement of more intelligent robotics. Tactile
perception may be one of the grand challenges that remains to be addressed for intelligent
robotics, and neuromorphic devices could be one possible solution for this. As shown
in Figure 10a, Choi et al. [1] developed an artificial tactile sensor system that could emu-
late the human sensory system’s ability to detect and learn from patterns of stimuli. The
system consisted of a semi-volatile CNT transistor device that acted as a sensory neuron
and a synaptic network, and it could improve its recognition accuracy of tactile patterns
through an iterative learning process. In order to perceive multiple things using a tactile
sensor, Xu et al. [138] created a device called a nanowire-channel intrinsically stretchable
neuromorphic transistor (NISNT) that could sense touch and vision and mimic brain-like
functions. It could stretch up to 1000 times without losing its electrical properties and be
used as a nerve that processes different types of information simultaneously. This device
can be attached to fingers conformally to measure the strain and movement of the fingers,
and then analyze the signals and recognize different gestures via a neural network. In
addition, Sun et al. [139] proposed a multifunctional e-skin that mimicked the chameleon’s
ability to change color according to the pressure it feels, based on two types of self-powered
devices: triboelectric sensor (TES) arrays and electrochromic device (ECD) arrays. The TES
arrays measured the pressure at different parts of the robot, and the ECD arrays showed the
pressure by changing the color of the e-skin. The e-skin could provide real-time tactile and
visual feedback for the robot and the object it touched. It could also fit large and curved
robot surfaces because of its flexibility and scalability. Neuromorphic tactile sensors are
a novel and promising way to improve human–robot interactions with dynamic tactile
feedback systems. To reproduce the tangential “sliding” perception of human skin, Shao
et al. [140] introduced a bioinspired robot skin capable of ultrasensitive and fast-response
sliding tactile perception. This innovative skin, featuring mechanically gated electron
channels within a monolithic structure of CNT networks and PDMS, mimicked the lateral
gating sensing mechanism of human tactile sensory cells. The R-skin could detect ultrafine
surface textures with a high accuracy of 5 µm and a speed of 485 Hz, outperforming human
tactile capabilities. This development opens new avenues for robotic tactile sensing with
potential applications in intelligent robotics and human–machine interfaces by providing
detailed tactile feedback and enhancing interaction with the environment. Zhu et al. [141]
introduced a skin-inspired quadruple tactile sensor integrated onto a robotic hand, enhanc-
ing object recognition through grasping. This sensor combined pressure, material thermal
conductivity, and temperature sensing to achieve precise identification of object shapes,
sizes, and materials, demonstrating a 94% accuracy in garbage sorting applications. Kim
et al. [142] reported a bioinspired robot skin (R-skin) capable of ultrasensitive and fast-
response sliding tactile perception, mimicking human tactile sensory cells, and featuring
a novel design using carbon nanotube networks and polydimethylsiloxane. The R-skin
enabled ultrafine texture detection with a detection limit of 0.7 N, which surpassed human
tactile capabilities, promising advancements in robotic tactile sensing and interaction.



Nanomaterials 2024, 14, 465 18 of 30

Nanomaterials 2024, 14, x FOR PEER REVIEW 18 of 31 

 

 

time tactile and visual feedback for the robot and the object it touched. It could also fit 

large and curved robot surfaces because of its flexibility and scalability. Neuromorphic 

tactile sensors are a novel and promising way to improve human–robot interactions with 

dynamic tactile feedback systems. To reproduce the tangential “sliding” perception of hu-

man skin, Shao et al. [140] introduced a bioinspired robot skin capable of ultrasensitive 

and fast-response sliding tactile perception. This innovative skin, featuring mechanically 

gated electron channels within a monolithic structure of CNT networks and PDMS, mim-

icked the lateral gating sensing mechanism of human tactile sensory cells. The R-skin 

could detect ultrafine surface textures with a high accuracy of 5 μm and a speed of 485 

Hz, outperforming human tactile capabilities. This development opens new avenues for 

robotic tactile sensing with potential applications in intelligent robotics and human–ma-

chine interfaces by providing detailed tactile feedback and enhancing interaction with the 

environment. Zhu et al. [141] introduced a skin-inspired quadruple tactile sensor inte-

grated onto a robotic hand, enhancing object recognition through grasping. This sensor 

combined pressure, material thermal conductivity, and temperature sensing to achieve 

precise identification of object shapes, sizes, and materials, demonstrating a 94% accuracy 

in garbage sorting applications. Kim et al. [142] reported a bioinspired robot skin (R-skin) 

capable of ultrasensitive and fast-response sliding tactile perception, mimicking human 

tactile sensory cells, and featuring a novel design using carbon nanotube networks and 

polydimethylsiloxane. The R-skin enabled ultrafine texture detection with a detection 

limit of 0.7 N, which surpassed human tactile capabilities, promising advancements in 

robotic tactile sensing and interaction. 

 

Figure 10. (a) Schematic illustration of a robotic tactile system, in which pressure stimuli applied to 

mechanoreceptors induce changes in the receptor potential and then initiate action potentials. Ac-

tion potentials activated by multiple nerve fibers are superposed through neurons and used for in-

formation processing, resulting in the synaptic network of the brain recognizing the input pressure 

pattern. Reproduced with permission from Ref. [1]. Copyright 2020, Springer Nature. (b) Schematic 

illustration of gesture recognition and control of the tactile sensor system (i). (ii) The structural de-

sign of the tactile sensor. (iii) SEM image of PVDF nanowires prepared via electrospinning with a 

scale bar of 5 μm. (iv) XRD pattern of PVDF film. Reproduced with permission from Ref. [143]. 

Figure 10. (a) Schematic illustration of a robotic tactile system, in which pressure stimuli applied
to mechanoreceptors induce changes in the receptor potential and then initiate action potentials.
Action potentials activated by multiple nerve fibers are superposed through neurons and used for
information processing, resulting in the synaptic network of the brain recognizing the input pressure
pattern. Reproduced with permission from Ref. [1]. Copyright 2020, Springer Nature. (b) Schematic
illustration of gesture recognition and control of the tactile sensor system (i). (ii) The structural design
of the tactile sensor. (iii) SEM image of PVDF nanowires prepared via electrospinning with a scale
bar of 5 µm. (iv) XRD pattern of PVDF film. Reproduced with permission from Ref. [143]. Copyright
2022, American Chemistry Society. (c) The structural diagram of the multilayered e-dermis over the
fingertips of a prosthetic hand (i), including conductive and piezoresistive textiles encased in rubber,
in which a dermal layer of two piezoresistive sensing elements is separated from the epidermal layer
with a silicone rubber layer of 1 mm. (ii) The counterparts of humans’ biological mechanoreceptors
in healthy glabrous skin. Reproduced with permission from Ref. [144]. Copyright 2018, Science.
(d) The procedures that a biological system uses to perceive (i) and process (ii) external pressure.
Schematic diagram of the volatile pristine in-memory tactile sensor (iii) and the nonvolatile PEI
de-doped in-memory tactile sensor (iv). Reproduced with permission from Ref. [145]. Copyright
2023, American Chemistry Society.

4.2. Wearable Devices

Wearable tactile devices can provide a more natural and realistic touch sensation
for the wearer and are used to improve immersion in virtual reality/augmented reality
(VR/AR) systems [146–150]. The glove is the bridge connecting virtuality and reality, and
is used to send real-time tactile-feedback information. However, some drawbacks still
block timely feedback, such as simple vibration, narrow bandwidth, and single tactile
perceptions. In order to address these problems, Lee et al. [151] developed a smart low-cost
glove that could sense and stimulate touch for virtual interaction, as shown in Figure 10b,
employing triboelectric sensors to measure finger bending and palm sliding and piezoelec-
tric stimulators to provide tactile feedback. It could detect different hand movements and
gestures in virtual space and could also recognize objects using machine learning with a
high accuracy of 96%. Moreover, Li et al. [143] developed a wearable sensor that could
sense and control gestures using deep learning, made of two types of self-powered devices
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that generate electricity from touch. It had high power density with 0.35 mW cm–2 and
sensitivity with fast response of 5 ms, low noise of ~22.5 dB, and fine pressure resolution
of 1% (1~10 kPa). Although researchers have achieved giant advances in wearable tactile
systems, they still face challenges in creating realistic and immersive VR/AR experiences.
In order to enhance the interconnection between augmented and virtual reality, Matusik
et al. [152] presented a novel approach to enhance tactile interaction transfer through digi-
tally embroidered smart gloves, which were integrated with tactile sensors and vibrotactile
tactile actuators, allowing for the capture, reproduction, and transfer of tactile interactions.
Furthermore, a machine-learning pipeline was developed to adaptively model individual
users’ responses to tactile feedback and optimize the feedback parameters. The research
showcases applications in alleviating tactile occlusion, guiding physical skill performance,
and enhancing robot teleoperation. Lee et al. [153] introduced augmented tactile-perception
and tactile-feedback rings (ATH-Rings) designed to enhance VR experiences, featuring tri-
boelectric and pyroelectric sensors for tactile and temperature sensing, along with vibrators
and nichrome heaters for vibro- and thermo-tactile feedback. Integrated into a compact,
wireless platform, the rings aimed to provide immersive interactions in VR applications by
enabling real-time, continuous finger motion tracking and gesture and object recognition
through artificial intelligence analysis and interactive metaverse platforms. This innovative
approach offers a new dimension to human–machine interfaces, promoting immersive
virtual social experiences. In addition to smart gloves, e-skin is also a ground-breaking
strategy for sensing imperceptible outer changes. Song et al. [154] discussed a multifunc-
tional electronic skin based on patterned metal films designed for tactile sensing, capable
of detecting pressure and temperature simultaneously with a broad linear response range
of 80 kPa. This e-skin utilized a single sensing mechanism of piezoresistance, simplifying
signal processing and device configuration. Through experimental and numerical studies,
the e-skin’s design and operation principle were explored, demonstrating its flexibility and
wearability. More importantly, the scalable manufacturing process aligns with existing
microfabrication techniques, promising for various practical applications.

4.3. Prosthetics

Amputees can receive stimuli from pressure and vibration signals via tactile sensors.
However, amputees still need to endure a signal delay in view of the timeliness and accuracy
of microprocessors in prosthetics [1,147]. So far, researchers have done tremendous work to
increase the levels of sophistication of prosthetics. For example, Wang et al. [155] showed
a new type of piezoresistive memristor for prosthetics that could switch between digital
and analog modes through sensing mechanical stimuli and act as an artificial synapse
for neuromorphic computing, which was based on CsPbBr3 material with an on/off ratio
of 103, a retention time of 104 s, an endurance of ~100 cycles, and multilevel resistance.
Furthermore, as shown in Figure 10c, Thakor et al. [144] reported a layered e-skin for
a prosthetic hand and its user to sense touch and pain, depending on how our body’s
receptors and nerves work and how amputees perceive pain or no pain in their missing
hand via brain activity. The user could tell apart painful or nonpainful touches and judge the
shape and sharpness of objects through a series of touch and pain signals from e-skin. These
works showcased the potential to generate a more lifelike experience by encompassing
various tactile stimuli in the field of prosthetics. To endow manipulators or prosthetics with
artificial tactile perception, fingers are the key components of prosthetic limbs to realize
the identification for materials and surfaces of things. Wang et al. [156] introduced a smart
finger that surpassed human tactile perception, capable of accurately identifying material
types and their roughness through a combination of triboelectric sensing and machine
learning. The device picked out different materials via the unique triboelectric fingerprints
upon contact, achieved by an array of triboelectric sensors to minimize environmental
interference. With a high accuracy rate of 96.8% in material identification, this smart
finger offers potential enhancements for manipulators or prosthetics, providing them with
artificial tactile perception capabilities. To enhance sensory feedback and motor control for
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amputees, Micera et al. [157] reported the development and clinical implementation of a
transradial neuromusculoskeletal prosthesis that integrated directly with the user’s nervous
and skeletal systems. This bionic hand, attached via titanium implants and equipped with
electronic muscle, offered meliorative prosthetic functionality with a high accuracy of
75.5% and reduced post-amputation pain through reliable neural control and feedback.
Frequent use in daily activities demonstrates its effectiveness and potential to overcome
limitations of conventional prosthetics, highlighting significant advances in prosthetic
technology and human–machine interfaces. Guglielmelli et al. [158] described a closed-
loop hand prosthesis providing simultaneous intraneural tactile and position feedback
to transradial amputees. By employing implanted electrodes and sensory substitution,
the prosthesis enabled amputees to regain high levels of proprioceptive acuity and tactile
feedback, allowing for improved object discrimination. The integration of this feedback
significantly enhanced the functionality and embodiment of the prosthesis, showcasing a
promising advance towards more sophisticated bionic limbs that convey richer multimodal
sensations and improve the quality of life for amputees. Branemark et al. [159] showcased
a study on restoring tactile sensations and enabling real-time force-and-slippage control in
bionic hands through neural interfaces, thus detailing the development of a system that
provided amputees with close-to-natural sensations of force and slippage, significantly
improving manipulative skills with the prosthesis. This approach used a combination
of cuff and intraneural electrodes, demonstrating substantial enhancements in grasp and
manipulation tasks, supported by quantifiable improvements in motor performance and
sensory feedback, which underlined the potential of neural interfaces in prosthetic control
and sensory restoration.

4.4. Health Care

Biomechanical information, such as pulse, blood pressure, intraocular pressure, and
articular movement, is pivotal to monitor and measure patients with chronic and acute dis-
eases and assess their health status after reconstructive surgeries [160–164]. To address the
coupling relationship between adaptive receptors and artificial neurons, Hao et al. [165], by
integrating a polypyrrole-based pressure sensor with a volatile NbOx memristor, designed
an artificial mechanoreceptor that could mimic skin-like tactile sensation and perception.
This mechanoreceptor was capable of encoding external mechanical stimulus into electrical
spikes and enhancing tactile sensation through processing spike frequency signals using a
pulse-coupled neural network, and could promote the development of future bio-inspired
electronic systems. In addition, to fulfill the requirements of sensing complex information
exactly, Chen et al. [166] and Zhang et al. [167] developed a chemically mediated artificial
neuron based on a carbon-based electrochemical sensor to detect dopamine and a synaptic
memristor to process the sensory signals, and realized a stretchable temperature-responsive
multimodal neuromorphic e-skin by integrating stretchable neuromorphic transistors with
mechano- and thermos-receptors to conduct sensory and memory functions, respectively.
However, conventional methods turn to integrating multi-sensory modalities to guarantee
accuracy, sensitivity, and effectiveness, which will increase the complexity of circuits, en-
ergy consumption, and crosstalk among signals. As shown in Figure 10d, Hu et al. [145]
proposed an in-memory tactile sensor (IMT) with a programmable steep-slope region and
retention time of >1000 s based on a mechano-gated transistor. In view of programma-
bility and nonvolatility, the IMT could realize sensing signals on demand, mechanical
cue mapping with high spatiotemporal resolution, and associative learning between two
physical inputs, leading to precise assessment for patients’ health status with an ultralow
power dissipation of ~25.1 µW. In addition, minimally invasive surgery (MIS) and robotic
minimally invasive surgery (R-MIS) face challenges in tactile feedback due to reduced
physical sensation from surgery. Innovations in tactile technology, such as gloves equipped
with soft robotic sleeves and actuators, offer solutions by transmitting tactile feedback from
the interaction between surgical instruments and tissues directly to the surgeon’s hands.
Russo et al. [168] presented a proof-of-concept soft robotic glove that provided tactile
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feedback to the surgeon’s hand during interventional endoscopy procedures, specifically
colonoscopy. The glove with pneumatic actuators was connected to a force sensing soft
robotic sleeve that was mounted onto a colonoscope. When sensing the incident forces,
the glove is capable of alerting the surgeon of potentially dangerous forces exerted on the
colon wall by the colonoscope during the navigation. The glove was calibrated to respond
to incident forces on the soft robotic sleeve ranging from 0 to 3 N with an internal pressure
of 53 kPa and exerted forces up to 20 N, thereby relaying and amplifying the force exerted
by the colonoscope on the colon to the surgeon’s hand.

5. Challenges and Perspectives

Recent years have witnessed remarkable progress in the development of tactile sen-
sors based on distinctive structures, mechanisms, and fabrication techniques, and fruitful
results have been achieved. Moreover, tactile sensory systems based on flexible synaptic
devices have been constructed to mimic certain bio-inspired functions. With the ongoing
advancement of neuromorphic devices, artificial tactile systems will potentially contribute
to long-term developments in human–machine interaction. Neuromorphic tactile devices
can be used in intelligent robotics to enhance perceptive capability in the future. For ex-
ample, neuromorphic tactile hardware can likely help robotics adapt to less-constrained
natural environments [169], and process external information more efficiently, and transmit
it to the brain more rapidly than conventional sensors. Although neuromorphic tactile
sensors have been involved in many aspects of HMI, such as robotics [170–173], wearable
devices [40,174], prosthetics [175,176], and healthcare [166,167], the as-mentioned technolo-
gies are still in the initial stage of development and far from practical applications. Several
key challenges relevant to neuromorphic tactile systems remain to be addressed and are
discussed below.

5.1. Power Consumption of Tactile Sensors

Power consumption is a core indicator to evaluate the quality of artificial tactile
systems based on synaptic sensors. Generally, the human neural network consists of about
1012 neurons and 1015 synapses, and each synapse just costs 1~10 fJ [177]. By contrast,
power consumption per artificial synapse is larger than that of the biological counterpart. In
order to reach this target, many researchers are devoted to reducing the power consumption
of neuromorphic tactile sensors from the aspect of materials and structures. Currently, 2D
materials such as graphene [178–182], transition-metal dichalcogenides [183–188], and black
phosphorus [189–192], are emerging as platforms to be constructed into tactile and synaptic
sensors with low power consumption, low working voltage, and high flexibility. In addition,
special structures can help improve sensing performance. For example, Xing et al. [193]
proposed one octopus-inspired tactile sensor with a sensitivity of 0.636 kPa−1, response
time of ~40 ms, and durability of >6000 cycles, validating it as a reliable platform for us
in intelligent robotics and e-skins. Current flexible tactile sensors and bionic perception
systems based on them still exhibit significant gaps in power efficiency when compared
to their biological equivalents, highlighting the urgent need for continued research and
development aimed at minimizing power consumption in both the devices and the overall
systems. For example, the adoption of innovative, low-power, two-dimensional materials in
material selection could play a crucial role. Similarly, the exploration of three-dimensional
fabrication techniques for flexible tactile sensors could pave the way for more efficient
designs. Additionally, the development of self-powered tactile sensing systems presents
a promising approach to reducing power consumption. Specifically, systems utilizing
piezoelectric or triboelectric principles can generate electrical energy from mechanical
motions, such as pressure or friction, eliminating the need for external power sources.
Piezoelectric tactile sensors convert mechanical stress into electrical signals, offering a
direct method for energy harvesting and sensing, which can significantly enhance power
efficiency. On the other hand, triboelectric sensors harness the electrical charge generated
from contact and separation processes between two different materials, providing a unique,
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low-power solution for tactile sensing. Incorporating these self-powered technologies into
tactile sensing systems could drastically decrease their energy requirements, making them
more comparable to the efficiency found in natural biological systems.

5.2. Stability and Endurance of Tactile Sensors

Long-term stability is crucial for the consistency of neuromorphic tactile sensors, which
determines their sensitivity and accuracy over time, and under various environmental
conditions, such as temperature and humidity. More and more researchers are focusing on
increasing the stability and endurance of neuromorphic tactile sensors through selecting
rational materials, delicate structures, and reliable fabrication processes. For example,
Chien et al. [194] observed a steady and reliable sensing capability under the aid of a
porous dielectric framework and conducting nanowires over 1000 pressure load/unload
cycles with a response time of 100 ms and recovery time of 100 ms. As another example, Kim
et al. [195] introduced the hierarchical sea-urchin TiO2 particle-in-micropore structure into
a dielectric layer via a mixed solvent phase separation method, which showed a pressure
sensitivity of 10.5 kPa−1 at 100 Pa and response/relaxation times both of 5.6 ms after
10,000~12,000 compression/bending cycles. Currently, the majority of research efforts in the
field are focused on proof-of-concept studies, with limited efforts aimed at improving the
stability and endurance of devices and systems. Yet, enhancing both stability and durability
is essential for their practical application in the future. One effective strategy to boost device
stability involves the use of encapsulation materials that protect against environmental
factors. Moreover, adjusting the chemical and mechanical properties of materials to create
ones that inherently possesses long-term stability is a promising avenue. Specifically,
incorporating microporous materials such as Titanium Dioxide (TiO2) could offer significant
improvements. TiO2 is known for its robust chemical stability, photocatalytic properties,
and biocompatibility, making it an excellent candidate for enhancing the durability of
tactile sensors. By leveraging such materials, alongside innovations in material science,
future research undertakings can lead to tactile sensors with superior long-term stability
and endurance. These advancements are particularly relevant for applications in robotics
and prosthetics, where reliability and longevity are paramount, allowing for more effective
and dependable use.

5.3. Feedback Time of Tactile Sensors

The speed at which these sensors process and respond to tactile information is vital,
especially in applications requiring real-time interaction, like robotics or prosthetics. Gener-
ally, the feedback time of a human varies from a few milliseconds to several milliseconds.
Minimizing the feedback time without sacrificing accuracy is a significant challenge. Re-
searchers are focusing on utilizing innovative approaches and technologies to enhance
the responsiveness and efficiency of tactile sensors. Inspired by human somatosensory
feedback pathways, Zhang et al. [196] constructed an In2O3-based artificial somatosensory
system with spatiotemporal information processing ability via integrating tactile sensors
and synaptic transistors, showing a feedback time of 50~200 ms. Currently, tactile sensing
systems are still grappling with critical challenges in feedback timing, such as latency
in signal processing and delayed responses to stimuli, hindering their effectiveness in
real-time applications. To mitigate these issues, a multifaceted approach is recommended.
This includes optimizing the sensor’s architecture to facilitate faster signal transmission, re-
fining computational algorithms for more rapid data processing, and employing advanced
materials that respond more swiftly to stimuli. Specifically, materials like Indium Oxide
(In2O3), known for its high charge carrier mobility and saturation velocity, can significantly
enhance sensor reactivity, offering a substantial leap in performance. Additionally, im-
proving the synergy between the hardware and software of the sensor systems can greatly
reduce feedback times. Such advancements will render tactile sensors far more suitable
for applications that demand immediate responses, such as robotic control and interactive
technologies, by ensuring quicker and more reliable sensory feedback.
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