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Catalysis is an important field dealing with innovation, sustainability, and materials science
that has been witnessing remarkable advancements through nanotechnology [1–10]. This
Special Issue of Nanomaterials deals with research on “Catalysis by Metal-Oxide Nanostruc-
tures”, featuring several papers that illustrate the diverse and impactful applications of
these nanostructures in catalytic processes.

In the pursuit of selective hydrogenation, Ni-modified Ag/SiO2 catalysts have emerged
as promising candidates for converting dimethyl oxalate to methyl glycolate (contribu-
tion 1). This work not only shows the catalytic efficiency of metal-modified nanostructures
but also emphasizes the importance of selectivity in sustainable chemical transformations.

Electrocatalysis is shown through the exploration of hollow CoP/FeP4 heterostructural
nanorods interwoven by carbon nanotubes (CNTs) as highly efficient electrocatalysts for
oxygen evolution reactions (contribution 2). This study underscores the synergistic effects
of heterostructures and CNTs in enhancing electrocatalytic performance, paving the way
for advancements in energy conversion technologies.

A magnetic core–shell iron(II) C-scorpionate catalyst, exhibiting catalytic efficiency
under unconventional oxidation conditions, adds a unique dimension to our understanding
of the versatility of metal-oxide nanostructures in challenging reaction environments
(contribution 3).

Functionalizing magnetic nanoparticles with bioactive compounds is also explored
through the development of chitosan-functionalized magnetic nanoparticles (contribu-
tion 4). This work not only presents a novel approach to nanocatalyst design but also opens
avenues for combining catalysis with therapeutic or biocompatible functionalities.

The synergy between carbon quantum dots and (002)-oriented Bi2O2CO3 composites
is harnessed for enhanced photocatalytic removal of toluene in air (contribution 5). This
research showcases the potential of tailored nanostructures in addressing environmental
challenges through advanced photocatalysis.

The impact of thermal treatment on Nb2O5 in glucose dehydration to 5- hydrox-
ymethylfurfural in water is investigated, shedding light on the thermal stability and
catalytic activity of metal oxides in biomass conversion (contribution 6).

A one-step synthesis of tetragonal-CuBi2O4/amorphous-BiFeO3 heterojunctions demon-
strates improved charge separation and enhanced photocatalytic properties, offering in-
sights into designing efficient nanostructured heterojunctions for catalytic applications
(contribution 7).

Cationic magnetite nanoparticles emerge as agents for increasing siRNA hybridization
rates, adding a nanocatalytic perspective to nucleic acid interactions (contribution 8).

Turning waste into a resource, biochars and activated carbons from olive oil industry
residues are explored as supports for Fe-catalysts in the heterogeneous Fenton-like treat-
ment of simulated olive mill wastewater, showcasing the potential of sustainable catalyst
supports (contribution 9).

Investigations on Mn3O4-coated Ru nanoparticles for partial hydrogenation of benzene
towards cyclohexene production reveal the interesting interplay between metal oxides and
additives in catalytic processes (contribution 10).
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CO2 hydrogenation over nanoceria-supported transition-metal catalysts unveils the
role of ceria’s morphology and active phase nature, providing critical insights for designing
efficient catalysts for CO2 conversion (contribution 11).

Pd/UiO-66-v catalysts were fabricated for the conversion of furfuryl alcohol to tetrahy-
drofurfuryl alcohol under mild conditions in water, showing the potential of metal–organic-
framework-supported nanocatalysts (contribution 12).

A bimetal CuFe2O4 oxide redox-active nanocatalyst is synthesized for the oxidation of
pinene to renewable aroma oxygenates, bridging the gap between redox-active materials
and catalytic transformations (contribution 13).

Copper ferrite nanosphere composites are explored as Fenton catalysts for the removal
of phenolic compounds from water, highlighting the potential of metal-oxide nanocatalysts
in water treatment applications (contribution 14).

Molybdenum disulfide (MoS2) synthesized through a common hydrothermal method
exhibits coexisting 1T and 2H phases for efficient hydrogen evolution reactions, contributing
to the understanding of phase-dependent catalytic activity (contribution 15).

The electronic state of gold is investigated for its effect on the catalytic performance of
nano gold catalysts in n-octanol oxidation (contribution 16). This study provides crucial
insights into tailoring gold catalysts for specific oxidation reactions.

Supported gold nanoparticles exhibit catalytic activity in the peroxidative and aerobic
oxidation of 1-phenylethanol under mild conditions, emphasizing the versatility of gold-
based nanostructures in green oxidation methodologies (contribution 17).

The cooperative effects between metal and support in Au/VPO are investigated for
the aerobic oxidation of benzyl alcohol to benzyl benzoate, showcasing the significance of
metal–support interactions in catalytic processes (contribution 18).

This Special Issue also includes a review on catalytic methane decomposition to
carbon nanostructures and COx-free hydrogen, offering a comprehensive overview of this
intriguing field (contribution 19).

As the Guest Editor of this Special Issue, I thank all the authors for their exceptional
contributions and the dedicated MDPI staff members for the important editorial support.
As we dive deeper into the catalytic potential of metal-oxide nanostructures, these research
papers show us new frontiers in sustainable and efficient catalysis.
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