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Abstract: As one of the key features of two-dimensional (2D) layered materials, stacking order
has been found to play an important role in modulating the interlayer interactions of 2D materials,
potentially affecting their electronic and other properties as a consequence. In this work, ultralow-
frequency (ULF) Raman spectroscopy, electrostatic force microscopy (EFM), and high-resolution
atomic force microscopy (HR-AFM) were used to systematically study the effect of stacking order on
the interlayer interactions as well as electrostatic screening of few-layer polymorphic molybdenum
disulfide (MoS2) and molybdenum diselenide (MoSe2) nanosheets. The stacking order difference
was first confirmed by measuring the ULF Raman spectrum of the nanosheets with polymorphic
stacking domains. The atomic lattice arrangement revealed using HR-AFM also clearly showed
a stacking order difference. In addition, EFM phase imaging clearly presented the distribution
of the stacking domains in the mechanically exfoliated nanosheets, which could have arisen from
electrostatic screening. The results indicate that EFM in combination with ULF Raman spectroscopy
could be a simple, fast, and high-resolution method for probing the distribution of polymorphic
stacking domains in 2D transition metal dichalcogenide materials. Our work might be promising
for correlating the interlayer interactions of TMDC nanosheets with stacking order, a topic of great
interest with regard to modulating their optoelectronic properties.

Keywords: transition metal dichalcogenides; stacking order; ultralow-frequency Raman spectroscopy;
electrostatic screening; atomic force microscopy

1. Introduction

In recent years, two-dimensional (2D) layered materials have attracted great interest
because of their extensive applications in electrocatalysis, optoelectronics, energy storage,
sensing, and other fields [1–5]. Among the available 2D materials, the arrangement of
adjacent layers, i.e., the stacking order between nanosheets, dominates the polytypes of
2D materials. It is known that the optoelectronic and electrocatalytic properties of 2D
materials are highly sensitive to the stacking order [6,7], also termed the crystal phase,
along with the size, thickness, and composition [8,9]. For instance, the ABA (Bernal) and
ABC (rhombohedral) stacking orders have been shown to have a significant influence
on the electronic and optical properties of graphene [10–12]. MoS2 with a hexagonal
phase (2H-MoS2) is the most thermodynamically stable structure and is useful for low-
cost photoelectronic applications, while MoS2 with a trigonal phase (1T-MoS2) has shown
promising performance as an electrocatalyst [13,14]. It has been reported that MoS2 with a
rhombohedral phase (3R-MoS2) is an excellent material for nonlinear optical devices [15].
In addition, robust sliding ferroelectricity has also been demonstrated in a 3R-MoS2-based
dual-gate FET device [16].

To date, several techniques have been used to distinguish the stacking order or twisted struc-
ture in monolayer and few-layer 2D materials, including Raman spectroscopy [17–22], trans-
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mission electron microscopy (TEM) [23–26], scanning transmission electron microscopy
(STEM) [27–29], second-harmonic generation (SHG) [15,30–34], third-harmonic generation
(THG) [35–37], infrared scanning nearfield optical microscopy (IR-SNOM) [38–41], absorp-
tion spectral mapping [42], phase imaging via tapping-mode atomic force microscopy
(AFM) [43], scanning microwave impedance microscopy [44], PL mapping [45], and Kelvin
probe force microscopy (KPFM) [46–48]. Due to the complex atomic arrangement in transi-
tion metal dichalcogenides (TMDCs), the impact of the stacking order on the properties
of TMDCs is more intriguing than that on graphene [49]. Although ultralow-frequency
(ULF) Raman spectroscopy has been extensively used to identify the crystal phases or
stacking orders of few-layer TMDCs [50,51], the spatial resolution of Raman mapping is
unsatisfactory. Shear-anisotropy-driven microscopy has successfully been employed to
image the crystalline orientation of MoS2 nanosheets, but it is dependent on the flexibility
of monolayer and bilayer MoS2 nanosheets [52]. Since the presence of rich polymorphs
or stacking orders in TMDCs endows them with diverse electric, catalytic, optical, and
magnetic properties [15,27,53–57], it is essential to correlate the interlayer interactions with
the stacking order in depth. Therefore, it is highly desirable to develop a simple, rapid, and
high-resolution method with which to directly image the stacking order distribution in 2D
TMDC materials.

In this work, the polymorphic stacking domains in mechanically exfoliated few-
layer molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) nanosheets
were directly revealed using electrostatic force microscopy (EFM), high-resolution atomic
force microscopy (HR-AFM), and ULF Raman spectroscopy. The distribution of non-2H
(including 3R and other types) and 2H stacking orders in the few-layer MoS2 and MoSe2
nanosheets was imaged using EFM with a high resolution. The various stacking orders
were then confirmed using HR-AFM and ULF Raman spectroscopy. Our results indicate
that EFM is a promising and effective method with which to directly identify the stacking
order distribution in few-layer TMDCs nanosheets with a mixed crystal phase.

2. Experimental Section
2.1. Sample Preparation

A SiO2/Si silicon wafer with an oxide layer thickness of 300 nm was cut into
1.2 cm × 1.2 cm square pieces and washed via ultrasonication in a mixture of acetone
and deionized water (with a volume ratio of 1:1) for 20 min. Then, the SiO2/Si pieces
were heated at 110 ◦C for 30 min in a mixture of concentrated sulfuric acid and hydrogen
peroxide (with a volume ratio of 1:1). After that, the SiO2/Si pieces were washed with
deionized water three times and then dried using purified nitrogen.

Monolayer and few-layer MoSe2 and MoS2 nanosheets were deposited on freshly
cleaned 300 nm SiO2/Si substrates using mechanically exfoliating 2H-phase MoS2 and
MoSe2 crystals (HQ Graphene, Groningen, The Netherlands).

2.2. Sample Characterization

Optical images were captured using an optical microscope (Axio Scope A1, Zeiss, Jena,
Germany). The thickness of the 2D nanosheets on the 300 nm SiO2/Si substrates was analyzed
using ULF Raman spectroscopy, AFM, and an optical contrast method. The Image J software
(https://imagej.net) was used to analyze the contrast difference between the MoS2 nanosheets
and the 300 nm SiO2/Si substrate by splitting the grayscale optical image [58]. As shown
in Figure S1 in the Supporting Information (SI), the red and green channel images could be
split from the color channel image. Then, the optical contrast value differences between the
MoS2 nanosheets and the SiO2/Si substrate in the red and green channels were obtained by
measuring the optical contrast values using Image J. The optical contrast value difference
of 1–10L MoS2 nanosheets is plotted in Figure S2 in the SI as a standard chart for thickness
identification. Furthermore, the optical contrast value differences of the MoS2 nanosheets
with an unknown thickness were compared with the standard chart, which could be used to
distinguish the layer numbers in the MoS2 nanosheets.

https://imagej.net
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High-frequency and ultralow-frequency Raman and photoluminescence spectra were
obtained using a Raman microscope (LabRAM HR Evolution, Horiba, Kyoto, Japan). A
laser of 532 nm was focused through a 100× objective lens at room temperature. A laser
power of 8.2 µW and a 60 s accumulation time were chosen to avoid damaging the sample.
The Raman band of a Si substrate at 520 cm−1 was used as a reference for calibration. An
atomic force microscope (Multimode 8, Bruker, Billerica, MA, USA) was used to obtain
the thickness and atomic lattice structures of MoS2 and MoSe2 nanosheets. EFM results
were collected using the SCM-PIT tip. The cantilever frequency was 75 kHz, and the spring
constant was 3 N/m. The scan rate of the EFM test was 1 Hz. The tip bias was applied
from −2 V to +2 V, and the lift height was changed from 20 nm to 150 nm.

3. Results and Discussion

The experimental process is shown in Scheme 1. The few-layer MoS2 and MoSe2
nanosheets were exfoliated from the 2H-phase crystals to the 300 nm SiO2/Si substrate
(Scheme 1a–c). Firstly, the 2H-phase crystal (Scheme 1a) was peeled off using scotch tape
(Scheme 1b). After multilayer MoS2 and MoSe2 nanosheets were deposited on scotch tape
and brought into contact with the SiO2/Si substrate, an external force was usually applied
to the scotch tape to rub the multilayer nanosheets. Due to the van der Waals interaction
between the multilayer nanosheets and the SiO2/Si substrate, the monolayer to few-layer
nanosheets could remain on the substrate after the scotch tape was removed (Scheme 1c).
In this process, the stacking order of the nanosheets could be altered from a 2H phase to
a non-2H phase due to the shear force applied between the scotch tape and the SiO2/Si
substrate (Scheme 1d). Then, AFM was used to measure the surface topography of the
nanosheets, and EFM was employed to characterize their stacking domain distribution
(Scheme 1e).
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Scheme 1. Scheme depicting the preparation and characterization of mechanically exfoliated MoS2

and MoSe2 with different stacking orders. (a,b) Peeling off of the multilayer nanosheets from the
2H-phase crystal using scotch tape. (c,d) Deposition of the 2H- and non-2H-phase MoS2 or MoSe2

nanosheets from the bulk 2H crystal via mechanical exfoliation. (e) EFM characterization of 2H- and
non-2H-phase MoS2 or MoSe2 nanosheets.
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To investigate the origin of the stacking order alternation in the TMDC nanosheets,
the few-layer MoS2 nanosheet was first mechanically exfoliated on the SiO2/Si substrate
and then transferred onto a flexible polydimethylsiloxane (PDMS) film. Afterward, a
Raman microscope was used to monitor the evolution of the ULF and high-frequency
Raman peaks of the MoS2 nanosheets before and after the transfer. As shown in Figure 1a,
the MoS2 nanosheet consisting of 6L and 7L layers was deposited on a 300 nm SiO2/Si
substrate via mechanical exfoliation. The thickness of the MoS2 layer was confirmed
by measuring the optical contrast and ULF Raman spectra [58,59]. The optical contrast
difference values in the red and green channels of the upper-left MoS2 nanosheet were
−118 and 25, respectively, which could be assigned to the 6L MoS2 from Figure S2 in the
SI. In addition, these values for the upper-right MoS2 nanosheet were −107 and 30 and
could be assigned to the 7L MoS2.
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Figure 1. Optical images of the MoS2 nanosheets consisting of 2H 6L and non-2H 7L layers (a) before
and (b) after their transfer onto a PDMS film. (c) The ULF Raman spectra of regions P1, P2, and P3
in the 6L and 7L MoS2 layers before and after the transfer. The red dashed lines are referred to the
breathing-mode peak, the blue and green dashed lines are referred to the shear-mode peaks.

Three regions (referred to as P1, P2, and P3 in Figure 1a) on the MoS2 nanosheet were
selected to present the change in stacking order by monitoring their ULF Raman spectra
before and after being transferred onto the PDMS film (Figure 1b). Regions P1 and P2
were located on the 6L nanosheet, while region P3 was located on the 7L MoS2 nanosheet.
Regions P1 and P2 showed ULF shear- and breathing-mode peaks located at 31.3 and
14.5 cm−1, respectively, which were consistent with those of the 6L MoS2 with a 2H phase
(Figure 1c), indicating that they maintained the 2H phase after being deposited on the
300 nm SiO2/Si substrate. After being transferred onto the PDMS film, regions P1 and P2
showed two new shear-mode peaks at 28.3 (indicated by the purple arrows in Figure 1c)
and 16.1 cm−1 (indicated by the green arrow in Figure 1c), indicating the formation of a
non-2H-phase stacking order. As shown in Figure 1c, the 2H-phase 7L MoS2 showed three
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characteristic ULF Raman peaks located at 12.3, 25.3, and 31.6 cm−1, respectively. Region
P3 showed additional ULF Raman peaks located at 20.1 (indicated by the yellow arrows
in Figure 1c) and 29.3 cm−1 (indicated by the brown arrows in Figure 1c) in addition to
the characteristic Raman peaks, implying a stacking order change to a non-2H phase after
mechanical exfoliation. Moreover, the intensity ratio of the Raman peaks at 29.3 cm−1 to
31.6 cm−1 changed from 1.38 to 0.54 after the nanosheets were transferred onto the PDMS
film, indicating that the stacking order was further changed during the transfer process.

During the mechanical exfoliation process, it is possible to cause a stacking order
change due to the shear-force-assisted movement of the constituent layers, thereby forming
nanosheets with polymorphic domains. Such a phenomenon has also been reported in
relation to the stacking order change in mechanically exfoliated few-layer graphene and
2H-TaS2 [22,60]. The aforementioned phenomena confirmed the stacking order change in
the MoS2 nanosheets during the mechanical exfoliation and transfer processes.

The stacking order change in the few-layer MoS2 nanosheet was further revealed via
HR-AFM and ULF Raman spectroscopy, yielding detailed results. As shown in Figure 2a,
the MoS2 nanosheet consisting of 2L and 5L layers was deposited on a 300 nm SiO2/Si
substrate via mechanical exfoliation. The thickness of the MoS2 nanosheet was confirmed
through AFM as well as optical contrast measurements. The stacking order was revealed
through ULF Raman spectroscopy. As shown in Figure 2b, the 2L MoS2 layer showed
a 2H phase since it had a ULF shear-mode peak at 22.7 cm−1 and a breathing-mode
peak at 40.2 cm−1. The 2H-phase 5L MoS2 had characteristic ULF Raman shear- and
breathing-mode peaks located at 30.9 and 16.9 cm−1, respectively. Furthermore, besides
these characteristic ULF Raman peaks, the 5L MoS2 layer shown in Figure 2a exhibited an
additional ULF shear-mode peak at 26.0 cm−1 (indicated by the purple arrows in Figure 2b),
indicating that it had a non-2H phase. The non-2H 5L MoS2 layer could have been formed
through the stacking of another 3L MoS2 layer on top of the 2H-phase 2L MoS2 layer, as
indicated by the AFM height image shown in Figure 2c. Since the bottom 2L MoS2 layer
has a 2H-phase and the as-stacked 5L MoS2 layer has a non-2H phase, the top 3L MoS2
layer should be stacked in a non-2H manner.
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Figure 2. (a) Optical and (c) AFM topography images. (b) ULF Raman spectra of the MoS2 nanosheet
on the 300 nm SiO2/Si substrate. The red and blue dashed lines are referred to the shear- and
breathing-mode peaks of 2H 2L MoS2, the orange and green dashed lines are referred to the shear-
and breathing-mode peaks of 2H 5L MoS2. The purple arrows are referred to the new shear-mode
peaks of non-2H 5L MoS2. (d) Simulated atomic lattice images of regions P2 and P3 shown in (c) and
according to the measured twist angle.
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In order to reveal the stacking order of the non-2H 5L MoS2 layer, HR-AFM was
performed to image the atomic lattice orientation of the bottom 2H-phase 2L MoS2 layer
and the top non-2H 3L MoS2 layer, referred to as regions P1, P2, and P3 in Figure 2c.
Although regions P2 and P3 were located in the same nanosheet, they showed different
ULF Raman peaks (Figure 2c). The ULF Raman peak located at 30.9 cm−1 of region P2
showed a higher intensity than that of region P3, implying that the two might have different
stacking orders. Compared to region P1, regions P2 and P3 showed anti-clockwise twist
angles of 1◦ and 4◦ (as shown in the insets in Figure 2c,d), respectively. As shown in
Figure 2c, there was a wrinkle between regions P2 and P3, indicating that the origin of the
stacking order differed between them. A similar phenomenon was also observed in the
non-2H 4L MoS2 consisting of a 1L MoS2 layer stacked on top of a 2H-phase 3L MoS2 layer
with a twist angle of 3◦ (Figure S3 in SI).

Besides the non-2H stacked 3L MoS2, there was another 1L MoS2 layer stacked on
top of the 2H-phase 2L MoS2, forming a 3L MoS2 layer, as shown in Figure S4 in the SI.
Although the atomic lattice orientation of the 3L MoS2 layers (regions P2 and P3, shown
in Figure S4c) was the same as that of the bottom 2H-phase 2L MoS2 layer (region P1,
shown in Figure S3c), the ULF Raman spectra indicate that the crystal phases of the 3L
MoS2 layers in regions P2 and P3 were different (Figure S4b). As shown in Figure S4b, the
3L MoS2 in region P3 showed mixed shear- and breathing-mode peaks around 28.1 cm−1,
which are consistent with those of the 2H-phase 3L MoS2 (indicated by the bottom black
curve in Figure S4b), confirming its 2H phase, while the 3L MoS2 in region P2 showed a
ULF shear-mode peak located at 16.2 cm−1 and a breathing-mode peak (purple arrow in
Figure S3b) located at 27.6 cm−1, respectively, indicating its 3R phase [51]. Since the 2L
MoS2 in region P1 was in a 2H phase, the 3R phase of the 3L MoS2 in region P2 could be
attributed to the sliding of the top 1L MoS2 layer (Figure S4d).

Figure 3a,b show the optical and AFM topography images of a mechanically exfoliated
MoS2 nanosheet on a 300 nm SiO2/Si substrate. The height of the MoS2 nanosheet is
4.6 nm, indicating that its thickness is 6L. Compared to the 2H-phase 6L MoS2 nanosheet
(indicated by the black curve in Figure 3c), the ULF Raman spectra of regions P1 and P2
show new shear-mode peaks at 28.3 cm−1. In addition, the intensity of the shear-mode
peak at 31.3 cm−1 is considerably lower than that of the 2H-phase 6L MoS2. Therefore,
the 6L MoS2 nanosheet shown in Figure 3a,b should be in a non-2H phase. Although
regions P1 and P2 show similar ULF Raman peaks (indicated by the blue and red curves
in Figure 3c), they show different intensity ratios of the peak at 28.3 cm−1 to the peak at
31.3 cm−1, which were 3.38 and 0.58, respectively. Furthermore, a small shear-mode peak
(indicated by the purple arrow) at 16.1 cm−1 appeared in the ULF Raman spectra of region
P2. These results indicate that the stacking orders in regions P1 and P2 are different, which
was also confirmed by the ULF Raman mapping of regions P1 and P2 in the range of 25.5
to 35.5 cm−1 (Figure 3d).

It is known that there are charged impurities trapped between mechanically exfoliated
2D nanosheets and SiO2/Si substrates under ambient conditions [61–63]. Such charged
impurities induce an electric field that can be screened by 2D nanosheets [64–67]. Moreover,
the interlayer coupling between MoS2 layers plays a crucial role in the electrostatic screening
of an electric field [63], different from that of graphene. To reveal the electrostatic screening
by MoS2 nanosheets with various stacking orders, EFM was employed. As shown in
Figure 3e, there is quite a faint difference between regions P1 and P2 in the EFM amplitude
image. Region P1 shows an amplitude difference of 3.15 pm compared to the SiO2/Si
substrate and that of region P2 shows a slight increase to 5.83 pm, which could be attributed
to the low sensitivity of amplitude detection in the EFM test. The cantilever could be
considered an oscillator with some damping, while the interaction between the probe and
sample would affect the amplitude. However, a certain period of time was required for
adjusting the oscillation amplitude, which led to almost no difference in the amplitude
profile between regions P1 and P2 (Figure 3e). However, phase detection in the EFM test
was instant and sensitive, meaning that the phase shift difference was more obvious than
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the amplitude change. Regions P1 and P2 show obvious contrast differences (−77 m◦ and
−146 m◦) in the EFM phase image (Figure 3f), implying different forms of electrostatic
screening induced by the stacking order.
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sample with different stacking orders.

To further investigate the influence of stacking order on electrostatic screening, a
scanning bias voltage (−2 V to +2 V) was applied to the EFM tip to generate an external
electric field with different strengths [68]. Firstly, a MoS2 nanosheet consisting of 2L and
3L layers with different stacking orders was deposited on the 300 nm SiO2/Si substrate
and imaged using AFM (Figure 4a). As shown in Figure 4b–h, with the change in tip
bias voltage, the contrast of different stacking domains (referred to as regions P1, P2, P3,
and P4 in Figure 4a) in the EFM phase images was obviously changed, indicating the
noticeable electrostatic screening ability of the stacking order. The phase shift results are
summarized in Figure 4i. In our EFM test, the resonant frequency shift (∆∅) was larger
than the cantilever frequency. Thus, the EFM phase shift is expressed as follows [65]:

∆ϕ =
∂F
∂z

·Q
k

(1)

Here, F is the driving force, i.e., electrostatic force in the EFM test; z is the motion
displacement of the AFM tip; k is the spring constant of the cantilever; and Q is the quality
factor of the cantilever. If the capacitive interaction between the AFM tip and the sample is
considered to be ideal capacitance, the relationship between electrostatic force and applied
voltage can be described as follows [63]:

F =
1
2

∂C
∂z

(Vtip − Vs)
2 (2)
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Here, C is the capacitance between the AFM tip and the sample; Vtip is the DC
bias voltage; and Vs is the effective surface potential of the sample. By combining
Equations (1) and (2), the relationship between the force gradient (∂F/∂z) and bias voltage
can be written as

∂F
∂z

=
1
2

∂2C
∂z2 (Vtip − Vs)

2 (3)
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in (a), with the tip bias changed from −2 V to +2 V. (i) EFM phase shift as a function of the applied
tip bias.

As a result, the phase shift values of regions P1, P2, P3, and P4 in Figure 4a show an
obvious parabolic dependence on the voltage applied to the AFM tip, which is similar to
that of MoS2 nanosheets with different thicknesses [69]. Moreover, the apex of each curve
indicates that the applied voltage on the tip is equal to the Vs. The curve of 2H-phase 3L
MoS2 reaches its apex at an applied voltage of −0.59 V, indicating the Vs of 2H-phase 3L
MoS2, while the Vs of non-2H 3L MoS2 is −0.71 V. In addition, the Vs of non-2H-phase
2L MoS2 in region P3 is −0.68 V, while that of non-2H-phase 2L MoS2 in region P4 is
−0.44 V. Therefore, the surface potential of MoS2 nanosheets with different stacking orders
could also be detected via EFM phase imaging. For the MoS2 nanosheets with the same
thicknesses, the apex of the parabola is sensitive to the stacking order, indicating the latter’s
significant effect on electrostatic screening. The EFM phase shifts of the MoS2 nanosheets
with different stacking orders are highly dependent on the lift height during the scanning
process. EFM phase measurement on a 15L MoS2 nanosheet was also performed, with the
lift height changed from 20 to 150 nm (Figure S5 in SI). The phase shift was about 0.94◦

when the lift height was set to 20 nm. It decreased rapidly to 0.08◦ when the lift height
increased to 150 nm. By plotting the EFM phase shift as a function of the lift height, it can
be observed that the phase shift of the MoS2 nanosheets with different stacking domains
decreased exponentially as the lift height increased (Figure S5 in SI), a result which aligns
with the standard EFM response [70–73].

EFM phase imaging is also effective in distinguishing the stacking orders of other
TMDC nanosheets. As shown in Figure 5a, a MoSe2 nanosheet with a uniform thickness
was deposited on a 300 nm SiO2/Si substrate. The thickness of the MoSe2 nanosheet was
4.6 nm, indicating that it was 6L thick. Three regions (referred to as P1, P2, and P3 in
Figure 5a) on the MoSe2 nanosheet were selected to reveal the stacking order domains
using their ULF Raman spectra and EFM phase imaging. Region P3 in Figure 5a has
three characteristic ULF Raman peaks at 11.9, 19.0, and 26.2 cm−1, which are consistent
with those of the 2H-6L MoSe2 nanosheet (indicated by the black curve in Figure 5c),
indicating that it was in the 2H phase, while regions P1 and P2 in Figure 5a also show
additional Raman peaks at 13.4 and 23.6 cm−1, respectively, demonstrating that they were
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in a non-2H phase. In addition, regions P1 and P2 in Figure 5a show the same Raman
peaks but different intensities at 11.9 and 13.4 cm−1, implying that they also have slightly
different stacking orders. The Raman mapping result shown in Figure 5d clearly presents
the different contrast between regions P2 and P3, while the contrast difference between
regions P1 and P2 is almost indistinguishable.
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of the 6L MoSe2 sample with different stacking orders.

Regions P1, P2, and P3 in Figure 5a show EFM amplitude shifts of 14.6, 5.3, and
11.2 pm, respectively, compared to the SiO2/Si substrate, for which the shifts are difficult to
distinguish. Compared to the EFM amplitude image, the EFM phase image clearly shows
the contrast differences of regions P1 and P2 with different stacking orders (Figure 5e,f).
Regions P1, P2, and P3 show EFM phase shifts of −252, −102, and −142 m◦ compared
to the SiO2/Si substrate, respectively. These results prove that EFM phase imaging is a
direct and powerful method for visualizing the stacking order distributions of TMDCs on a
300 nm SiO2/Si substrate.

Similarly, bias voltage (−2 V to +2 V) was also applied on the same MoSe2 nanosheet
to investigate the electrostatic screening of stacking orders (Figure S6 in SI). As shown in
Figure S6, when the tip bias voltage changed from −2 V to +2 V, the EFM phase shifts
of different stacking domains (regions P1, P2, and P3) also changed correspondingly,
indicating the influence of stacking order on electrostatic screening ability. As shown in
Figure S6i, the phase shift values of regions P1, P2, and P3 had a quadratic relation with the
applied voltage of the AFM tip, which was similar to that of the MoS2 nanosheets shown in
Figure 4. For the MoSe2 nanosheets with the same thicknesses, the apex of the parabola
was also sensitive to the stacking order. These results show that the stacking order had a
greater impact on the electrostatic screening effect than layer thickness.
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4. Conclusions

In summary, we investigated few-layer MoS2 and MoSe2 nanosheets with various
stacking orders using ULF Raman spectroscopy, HR-AFM, and EFM. The correlation
between stacking order and interlayer interaction as well as the electrostatic screening of 2D
materials were explored in detail. In the TMDC nanosheets with different stacking orders,
the electrostatic screening contrast was consistent with the stacking domain distribution.
Through EFM characterization, phase mapping with higher contrast and resolution could
be obtained. Therefore, EFM phase imaging was proposed to be a direct and accurate
method for characterizing polymorphic domain distribution in mechanically exfoliated
2D materials. Compared to thickness, the stacking order had a more significant impact on
electrostatic screening. Our work could be helpful for studying the influence of stacking
order on the optical and electronic properties of polymorphic TMDC samples.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano14040339/s1, Figures S1 and S2: Optical contrast images of MoS2
nanosheets; Figure S3 and S4: ULF Raman spectra and high-resolution AFM images of polymorphic
MoS2; Figure S5: EFM images of polymorphic MoS2; Figure S6: EFM images of polymorphic MoSe2.
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