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Abstract: New and efficient sensors of nerve agents are urgently demanded to prevent them from caus-
ing mass casualties in war or terrorist attacks. So, in this work, a novel hierarchical nanoheterostruc-
ture was synthesized via the direct growth of α-Fe2O3 nanorods onto multiwall carbon nanotube
(MWCNT) backbones. Then, the composites were functionalized with hexafluoroisopropanol (HFIP)
and successfully applied to detect dimethyl methylphosphonate (DMMP)-sarin simulant gas. The
observations show that the HFIP-α-Fe2O3@MWCNT hybrids exhibit outstanding DMMP-sensing
performance, including low operating temperature (220 ◦C), high response (6.0 to 0.1 ppm DMMP),
short response/recovery time (8.7 s/11.9 s), as well as low detection limit (63.92 ppb). The analysis
of the sensing mechanism demonstrates that the perfect sensing performance is mainly due to the
synergistic effect of the chemical interaction of DMMP with the heterostructure and the physical
adsorption of DMMP by hydrogen bonds with HFIP that are grafted on the α-Fe2O3@MWCNTs
composite. The huge specific surface area of HFIP-α-Fe2O3@MWCNTs composite is also one of the
reasons for this enhanced performance. This work not only offers a promising and effective method
for synthesizing sensitive materials for high-performance gas sensors but also provides insight into
the sensing mechanism of DMMP.

Keywords: chemical warfare agent; DMMP gas sensor; multiwall carbon nanotubes; α-Fe2O3

nanorods; nanoheterostructure

1. Introduction

In the tranquil English city of Salisbury, Sergei Skripal, a former Russian military
officer, and his daughter Yulia, fell victim to poisoning in March 2018, attributed to the
use of a nerve agent called Novichok. The incident reawakened alarm and concern about
nerve agents. Nerve agents were developed on the basis of the rapid development of
organophosphorus chemistry and organophosphorus insecticides in the 1930s [1,2]. Such
agents can strongly inhibit the activity of acetylcholine, which is an important chemical
medium in the nervous system. Nerve agent molecules cannot be hydrolyzed by enzymes,
leading to the destruction of the normal dynamic process of acetylcholine release and
hydrolysis, as well as the normal nerve impulse transmission process [3,4]. Excessive
accumulation of acetylcholine in the body leads to a series of toxic reactions throughout the
nervous system, which is extremely harmful [5]. Unfortunately, due to their strong toxicity,
fast action, easy production, good performance, and its ability to be absorbed through
the skin, mucous membranes, gastrointestinal tract and lungs, and other ways to cause
systemic poisoning [6], nerve agents have become the main chemical warfare agents used
by foreign militaries [7]. Despite a convention on the prohibition of the use of chemical
weapons, there are still terrorists who use them to launch attacks against civilians, seriously
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endangering human security and world peace [8]. Sarin, a typical organophosphorus
nerve agent, suffocates to death within 1–10 min at exposure concentrations of more than
60 ppb (parts per billion) [3,9]. Because these nerve agents are colorless, odorless, volatile,
and act quickly, and human senses are unable to recognize them [10]. Therefore, it is
crucial to find a fast and accurate electronic nose that is able to distinguish and sense nerve
agents efficiently [11]. To ensure that the experiment is safe, dimethyl methylphosphonate
(DMMP), which is similar to sarin in molecular structure but has little toxicity, was selected
as a simulation gas for sarin. The chemical formula of sarin and DMMP are C4H10FO2P
and C3H9O3P, both belonging to the organophosphorus compound family [12–15]. -P=O-
is an important detection group in the chemical structure of DMMP, and further research
on this analog is helpful to provide a reference and basis for the detection of real nerve
agents such as sarin [15].

In various fields, carbon materials like carbon nanotubes (CNTs), graphene and carbon
fiber have gained extensive usage in recent years due to their excellent physical, chemi-
cal, electronic, and mechanical properties in addition to environmental friendliness and
lightweight [16–18]. Carbon-based sensing materials have also been used by researchers
in the field of gas sensors [19]. According to the number of tube wall layers, CNTs can be
divided into single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-
walled carbon nanotubes (MWCNTs). CNTs are considered an outstanding gas-sensitive
material because of their large specific surface area, large number of chemical reaction
places, high carrier mobility, and good chemical stability. They have great prospects in the
development of chemical and biological sensors [20–22]. CNTs are p-type semiconductor
materials in which electrical properties change when chemical molecules are adsorbed
to their surface [23]. This behavior is based on the operating principle of semiconductor
resistive gas sensors [24]. However, bare CNT-based gas sensors have some restrictions,
such as limited sensitivity, the absence of selectivity, and a prolonged recovery time [25,26],
which limit their practical application. After further investigation, it was found that the
sensing performance of CNTs can be seriously affected by surface defects and residual
contaminants [27]. Therefore, oxidizing CNTs and grafting specific chemical groups onto
CNTs have been considered beneficial strategies to modify their chemical properties and
improve their sensing properties [28].

Metal oxide semiconductor (MOS) gas sensors have been widely researched due to
their outstanding sensing properties and simple manufacturing process [29,30]. The rapid
development of nanotechnology provides an opportunity to realize the powerful aspects of
the nanocrystallization of sensitive materials [31]. Although hollow [32], hierarchical [33],
core–shell [34] and other special nanostructured sensitive materials show excellent sensing
properties due to their large specific surface area, many numbers of active sites, and
excellent permeability [35]. However, working at high temperatures makes it difficult to
maintain these structural advantages for a long time, which impacts long-term stability
and limits the practical application of the sensor. Recently, it was found that constructing
MOS nanocrystals on the surface of CNTs creates a synergistic effect between CNTs and
MOS semiconductor properties that enhance their sensing properties [25,28,36]. In addition
to that, due to the excellent mechanical strength of CNTs, a heterostructure composed of
CNTs and MOS can maintain its structural stability for a long time [37]. In the last few
years, the gas-sensing properties of CNTs combined with various MOS as heterostructure
composite gas-sensing materials synthesized by different methods have been intensively
studied [38]. Yang et al. prepared ZnO nanoparticle-coated SWCNTs network sensors
for the detection of DMMP using RF magnetron sputtering. The ZnO-SWCNTs network
sensor has excellent DMMP sensing behavior even at room temperature. The response
performance of the sensor could be transformed from p-type to n-type based on how long
the deposition lasts, except for low-temperature detection [39]. Wang et al. prepared an
acetone sensor based on a Co3O4/MWCNT composite material, and the optimized sensor
has an ultra-low detection limit of 0.41 ppm. The formation of a p-p heterojunction in the
composite greatly improved the detection performance, resulting in an improvement of
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five times compared to the original Co3O4 sensor [40]. A ZnO/CoNiO2 hollow nanofiber
sensor successfully achieved a high response (240) to 100 ppm of target gas at an optimal
temperature of 220 ◦C [41].

The organic group hexafluoroisopropanol (HFIP) is considered to be a facilitator for
detecting DMMP by forming hydrogen bonds (H-bonding) with DMMP’s phosphate esters.
Based on our expertise and the literature, we chose to graft it onto the composite material
in order to improve the selectivity of DMMP [3,10,42]. K.T. Alali et al. reported high selec-
tivity and excellent performance of the double-layer HFIP-rGO/Co3O4 sensor for detecting
0.5 ppm DMMP compared to bilayer rGO/Co3O4 with a response of 11.8 at 125 ◦C. More-
over, the functionalized double-layer sensor maintained 75% of its initial response even at
85% relative humidity [43].

Therefore, in this paper, the synthesis of α-Fe2O3 nanorods assembled onto MWCNTs
backbones by hydrolysis reaction and annealing is proposed to prepare α-Fe2O3@MWCNT
nanoheterostructure composites. Then, HFIP groups were grafted on the surface of α-
Fe2O3@MWCNTs nanocomposites by chemical treatments for rapid and selective detection
of DMMP. The HFIP grafted α-Fe2O3@MWCNTs nanocomposite outperformed any of its
individual units for DMMP sensing. α-Fe2O3 nanocrystal growth on MWCNTs adds to
the number of active places for the adsorption of DMMP molecules versus bare MWCNTs
and α-Fe2O3 nanostructures. Hydrogen bonding interactions between HFIP groups and
DMMP further enhance its DMMP selective sensing. Other factors that enhance the sensing
performance are the generation of a heterogeneous structure and the cooperative effect
between MWCNTs and α-Fe2O3 nanorods.

2. Experimental Section

Details of the full range of chemical reagents and characterization equipment are
described in the Supplementary Material.

2.1. Fabrication of α-Fe2O3 and α-Fe2O3@MWCNT Compounds

It is well known that carboxyl (-COOH) and hydroxyl (-OH) groups usually adhere in
small amounts on the surface of carbon materials [38]. In order to enhance the number of
carboxyl groups on the surface of the MWCNTs, the MWCNTs were subjected to reflux in a
mixture of acids. Specifically, 0.5 g of MWCNTs was refluxed in a 20 mL acidic solution
comprising 2 mL of HNO3 and 6 mL of H2SO4 for 5 h at a temperature of 40 ◦C. Later, the
resulting samples were flushed alternately with ethanol and deionized (DI) water until the
liquid reached a neutral pH and dried overnight. To grow the FeOOH nanospindles on
the MWCNTs skeleton, the acid-treated MWCNTs were homogeneously dispersed in an
FeCl3 solution and underwent a reaction at 80◦C for a duration of 5 h. Subsequently, the
samples were separated by centrifugation, flushed alternately with DI water and ethanol,
and dried overnight at 60 ◦C. Finally, after annealing in air at 400 ◦C for 10 h with a slow
ramp rate of 2 ◦C min−1, FeOOH was successfully converted to α-Fe2O3 to obtain the
α-Fe2O3@MWCNTs hierarchical nanoheterostructure. Schematic diagrams of the synthesis
process and the final structure are illustrated in Figure 1.
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2.2. Functionalization with HFIP Chemical Group

The presence of a number of -COOH groups on the surface is a necessary condi-
tion for grafting HFIP groups on α-Fe2O3@MWCNTs [10,38]. To create -COOH groups,
0.5 g α-Fe2O3@MWCNT nanomaterials were dissolved in 30 mL DI water, the solution’s
acidity was lowered to a pH of 4–5 with HCl, and stirred at 40 ◦C for 30 min [44]. Sub-
sequently, 1.1 mL of carboxyethylsilanetriol was gradually added into the solution and
stirred for 1 day at 40 ◦C. Then, the solution was centrifuged several times with DI water
and acetone and dried in a vacuum oven at 45 ◦C overnight to obtain α-Fe2O3@MWCNTs–
COOH. Subsequently, to graft HFIP groups on the α-Fe2O3@MWCNTs–COOH, 0.06 g
from the as-prepared α-Fe2O3@MWCNTs-COOH and 0.1 mL of hexafluoroacetone trihy-
drate were added to 20 mL of N,N-Dimethylformamide (DMF), next the solution was
magnetically stirred in a cold-water bath (≈−5 ◦C) for 3 h. Then, 0.7 g of N-ethyl-N-(3-
dimethylaminopropyl) carbodiimide hydrochloride (EDCl), 0.06 g of Hydroxybenzotriazole
(HOBt), and 0.6 mL of triethylamine were subsequently added to the former solution and
stirred in a cold-water (−5 ◦C) bath for 3 h and at room temperature (20 ◦C) for 1 day. In the
end, the collected material was centrifuged, washed with DI water, and dried at 45 ◦C for 1
day. The fabrication and the methodology of HFIP functionalization α-Fe2O3@MWCNTs
are depicted in Figure 1.

2.3. Fabrication of Gas Sensors

To prepare the gas sensors, it was necessary to coat the prepared sensitive material
onto the external surface of the ceramic tube, forming a thick sensing film. The sensitive
materials need to be covered on the external surface of the ceramic tube to create a dense
sensing film [45]. The illustration of the sensor structure in Figure 2 shows the dimensions
of the ceramic tube, which are 0.8 mm internal diameter, 1.2 mm external diameter, and
4 mm length. A couple of Au electrodes are fixed at the ends of the tube, and each
electrode is attached to a Pt wire. Then, appropriate quantities of MWCNT, α-Fe2O3, α-
Fe2O3@MWCNTs, and HFIP-α-Fe2O3@MWCNTs were dispersed in anhydrous ethanol
and ground into even pastes. Then, the sensing materials were carefully painted on a
ceramic tube to connect the Au electrodes. Subsequently, the sensors were left in the air for
30 min, annealed at 400 ◦C for 2 h and aged for 7 days before conducting gas measurements.
In the electrical circuit of sensors, the resistors of the sensor and load (Rl) are linked in
series, which supplies the circuit voltage (Vc). The Ni-Cr coil provides the heating voltage
(Vh). Figure 2 displays the electrical circuit schematic of the sensor. When sensors are in
contact with the target gas, the chemical adsorption reaction between the sensing material
and gas molecules will result in a variation in the resistance of the sensors’ circuit, and this
alteration is then detected and presented as an output voltage (Vout) [46].
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3. Characterization of Materials and Discussion

Figure 3a,b show SEM and TEM images of the original MWCNTs, with the regular
smooth surface and curled shape. After oxidization by the mixed acids (TEM image is
shown in Figure 3c), a slight change in the morphology of MWCNTs could be observed with
significant corroding and extension of the ends of the carbon nanotubes. In addition to that,
the observation of some micro-folded regions in the MWCNT wall means that MWCNTs
have been disrupted to be like multi-layer graphene regions, which highly enhance the
sensing performance due to their high functionalization [47]. These changes and the
unzipping of MWCNTs are due to the fact that the oxidizing effect of the mixed acid broke
the unstable five-membered and seven-membered carbon rings located at the bends of the
MWCNTs, shortening and opening the structure of the MWCNTs, effectively increasing the
surface area-to-volume ratio. The SEM of the α-Fe2O3 nanoparticles in Figure 3e shows that
they are in a seed-like structure with an approximated size of 30 × 100 nm. The SEM image
of α-Fe2O3 @MWCNTs in Figure 3d shows that the α-Fe2O3 are completely grown and have
warped the skeleton of the MWCNTs, forming layered rod-like structures. However, since
MWCNTs are easily wound, these rod-like structures are interleaved and stacked together.
The corresponding selective electron diffraction (SAED) (lower left corner of Figure 3e) and
HRTEM characterization confirmed that the α-Fe2O3 nanorods are polycrystalline, and the
lattice fringes can be clearly observed in Figure 3f with lattice spacings of 0.27 nm, which
is consistent with the (110) crystal face spacing of α-Fe2O3 crystal, respectively. The TEM
image of α-Fe2O3@MWCNTs after functionalization by HFIP is shown in Figure 3g, and
the overall structure of the material remains unchanged after annealing. The successful
grafting of HFIP on α-Fe2O3@MWCNTs was confirmed by the TEM mapping patterns of
C, O, Fe, and F elements in Figure 3(g1–g4). [3,10,42]. In the product α-Fe2O3@MWCNT
composite material, it is difficult to directly observe the presence of MWCNTs in the SEM
and TEM images due to the fact that MWCNTs are tightly wrapped by α-Fe2O3 nanorods.
The TEM mapping patterns of C also confirm the presence of MWCNTs.
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Figure 3. Structural characterization of the prepared samples, (a,b) SEM and TEM images of MWCNTs;
(c) TEM image of MWCNTs-COOH; (d) SEM images of the α-Fe2O3@MWCNTs composites; (e) TEM
image of the α-Fe2O3@MWCNTs composites and corresponding SAED pattern inset on f; (f) HRTEM
image of the α-Fe2O3@MWCNTs composites; (g1–g4) TEM and TEM mapping patterns of HFIP-α-
Fe2O3@MWCNTs, respectively.

The crystal phase and purity of all samples (MWCNTs, α-Fe2O3, α-Fe2O3@MWCNTts)
were confirmed by XRD patterns, as shown in Figure 4a. A series of intense and sharp
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peaks are evident in all diagrams. Except that the diffraction peak of 2θ = 25.96◦ belongs
to the (002) crystal face of MWCNTs, all the other diffraction peaks perfectly match α-
Fe2O3 and are consistent with the standard card (JCPDS: 33-0664). No diffraction peaks
belonging to impurities were found, confirming the purity of the product. The peak of the
α-Fe2O3@MWCNT composite at 2θ = 26.3◦ is consistent with the peak of MWCNTs in the
(002) direction, indicating that the hydrated ferric oxide was completely transformed into
hexagonally crystalline α-Fe2O3 after thermal treatment and there was no change in the
structure of MWCNTs in the composite. The low intensity of the MWCNT peak is due to
their low percentage and being covered with the outer layer of α-Fe2O3 nanoparticles. The
FT-IR spectra of MWCNTs, α-Fe2O3, α-Fe2O3@MWCNTs, and HFIP-α-Fe2O3@MWCNTs
are shown in Figure 4b. Compared with the FT-IR pattern of the original MWCNTs, the
MWCNTs oxidized by mixed acid show the strong C=O stretching vibrational peak and
C-O vibrational peak of carboxyl group appeared at 1720 cm−1 and 1192 cm−1, respectively,
and a broad peak around 3700 cm−1, which prove that the carboxyl groups (-COOH) on
the surface of MWCNTs have significantly increased after acid treatment, this is conducive
to the functionalization of HFIP groups. In the α-Fe2O3 spectrum, the stretching vibrations
of the Fe-O bond are responsible for two strong and distinctive absorption bands at 466
and 560 cm−1. These findings affirm the successful synthesis of α-Fe2O3. Remarkably, the
observation of the carbonyl stretch of the carboxylic acid group (C=O) at 1693 cm−1, C=C
stretching vibration bands of the carbon skeleton at 1624 cm−1, the C-N amide carbonyl
stretching vibration at 1572 cm−1, the C-F bending vibration band of -CF3 at 1438 cm−1,
and the Si-O-Si vibrational peaks at 1086, 889, and 800cm−1 in the spectra of the final
HFIP-α-Fe2O3@MWCNTs, show the successful functionalization of HFIP groups on α-
Fe2O3@MWCNT composites [42,43,48]. The broad bands of 3845–3327 cm−1 are -OH bond
stretching vibrations produced by the adsorption of water molecules by the material. The
intensity of these peaks has enhanced after the HFIP-functionalized on α-Fe2O3@MWCNTs,
confirming the successful synthesis of HFIP-α-Fe2O3@MWCNTs. After grafting HFIP, some
of the adsorption bands disappeared while others, such as C=O, decreased in intensity.
This phenomenon may be due to the depletion of -COOH groups in the carboxy-terminated
MWCNTs through the formation of amide bonds [49].
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Figure 4. (a) XRD patterns of the α-Fe2O3@MWCNTts nanostructures, α-Fe2O3 and MWCNTs;
(b) FT-IR spectra of the representative samples at different preparation stages.

Furthermore, X-ray photoelectron spectroscopy (XPS) was applied to analyze the
chemical structure and morphology of the sample materials. The XPS spectra of the three
materials are shown in Figure 5a. As expected, MWCNT-COOH consists of the elements
C and O, which exist in their chemical states of O 1s and C 1s, respectively, supporting
their graphite-like structure. The element Fe in the composites exists in the state of Fe
2p. After functionalization with HFIP, peaks of N1s and F1s appeared in the spectra of
HFIP-α-Fe2O3@MWCNTs, which conformed to the HFIP groups. The XPS spectra of C 1s
peaks of the three samples are shown in Figure S2. The MWCNTs in α-Fe2O3@MWCNTs
and HFIP-α-Fe2O3@MWCNTs were oxidized by the mixed acid, and the change in C atom



Nanomaterials 2024, 14, 305 7 of 18

binding resulted in the shift of the C-C peak. Detailed analysis of the C 1s spectra of HFIP-
α-Fe2O3@MWCNTs reveals two new peaks in addition to the main peak at 285.05 eV, both
of which can be attributed to the carboxyl groups introduced by the oxidation of the mixed
acids. The peak of the Fe 2p in the composite is presented in Figure 5e. The peaks located at
724.0 eV and 710.4 eV can be associated with the characteristic signals of Fe 2p1/2 and 2p3/2,
respectively. The two broad peaks at 732.6 eV and 718.8 eV are satellite peaks of Fe 2p1/2
and Fe 2p3/2, respectively [50,51]. The peak of Fe 2p3/2 could be divided into three peaks at
binding energies of 713.6, 712.5, and 709.5 eV, respectively. These three peaks indicated the
presence of an Fe-O bond [52]. After the functionalization of α-Fe2O3@MWCNTs, the peaks
of Fe remained almost unchanged (shown in Figure 5f), indicating that functionalization
did not affect the composition of the material. As is known, the oxygen adsorption ability is
extremely crucial for surface resistive gas-sensing materials [53]. The high-resolution XPS
O 1s peak spectra of the three materials (Figure 5b–d) show that they can all be separated
into three peaks, corresponding to three different states of oxygen. The oxygen peak that
is near 530.1 eV is attributed to lattice oxygen (OLat), the peak near 530.8 eV is assigned
to vacancy oxygen (OVa), and the peak near 532.1 eV is attributed to chemisorbed oxygen
or free oxygen (Oabs). By calculating the intensity of each peak in the O 1s spectrum,
the percentage of different oxygen content in the sample can be estimated. Their relative
content can be found in Table S1 in Supplementary Materials. The relative contents of OVa of
single α-Fe2O3, α-Fe2O3@MWCNTs composite, and HFIP-α-Fe2O3@MWCNTs are 30.08%,
11.71%, and 22.95%, respectively. In contrast, the relative contents of Oabs in the samples
are 9.71%, 41.55%, and 42.58%, respectively. Compared with single α-Fe2O3, the relative
content of OLat in α-Fe2O3@MWCNTs and HFIP-α-Fe2O3@MWCNT composites decreased
significantly, and the remaining oxygen content almost doubled. In the α-Fe2O3@MWCNT
composite, the heterojunctions formed by MWCNTs and α-Fe2O3 produced a substantial
quantity of lattice mismatches, which introduced a great deal of vacancy oxygen (OVa)
and chemisorbed oxygen (Oabs). The composite was treated with acid before the grafting
of HFIP, so the oxygen content was further increased [54]. The increase in the amount of
oxygen OVa and Oabs makes the sensitive materials absorb more oxygen involved in the
gas-sensing reaction, thereby increasing their response to the corresponding gas.
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Figure 5. (a) Survey XPS spectra of different samples; high-resolution XPS spectrum of O 1s of
α-Fe2O3 (b), α-Fe2O3@MWCNTs (c), and HFIP-α-Fe2O3@MWCNT composites (d); high-resolution
XPS spectrum of Fe 2p of α-Fe2O3 (e) and α-Fe2O3@MWCNTs (f).

In order to further examine the pore structure, specific surface area and pore size
distribution of the materials, we also carried out BET measurement, and the N2 adsorption–
desorption isotherms and pore size distributions of the four materials are displayed in
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Figure 6. The prepared nanoparticles presented a type-II isotherm curve with an H3
hysteresis loop based on the IUPAC classification, reflecting the presence of macropore
in the sample. Furthermore, the stacking of the samples led to the formation of pores.
Compared with the original MWCNTs (27.829 m2/g) and α-Fe2O3 (59.711 m2/g), the
composite α-Fe2O3@MWCNTs and HFIP-α-Fe2O3@MWCNTs have a larger surface area of
118.442 m2/g and 124.796 m2/g, respectively, due to the composite structure and porous
structure. The pore volumes of MWCNTs, α-Fe2O3, α-Fe2O3@MWCNTs, and HFIP-α-
Fe2O3@MWCNTs are 0.165, 0.380, 0.690, and 1.018 cm3/g, respectively. The pore sizes
of α-Fe2O3@MWCNTs (21.854 nm) and HFIP-α-Fe2O3@MWCNT (21.668 nm) composites
are smaller than that of the original MWCNTs (20.471 nm) and α-Fe2O3 (23.975 nm). The
results show that α-Fe2O3@MWCNT composites have higher porosity and high specific
superficial area, which are favorable for effective gas adsorption and desorption.
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4. Gas Sensing Properties

The application of gas sensors requires thorough consideration of a number of pa-
rameters, the first of which is the operating temperature. We investigated the relationship
between the operating temperatures and the responses to 100 ppm DMMP for the sen-
sors based on the α-Fe2O3, α-Fe2O3@MWCNTs, and HFIP-α-Fe2O3@MWCNTs within the
temperature range of 160–300 ◦C. The results are presented in Figure 7a, which demon-
strated that the response of all sensors demonstrated a trend of initially rising and falling
subsequently. At low operating temperatures, the gas-sensitive material demonstrates
low surface activity. In turn, the activation energy present in the target gas molecules is
insufficient to cause adsorption on the sensing material, leading to low sensitivity. As the op-
erating temperature increases, the surface activity and the amount of chemisorbed oxygen
of the sensitive material increase, and a higher response value is obtained. However, when
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the temperature is too high, the adsorption rate and desorption rate of chemical-adsorbed
oxygen on the surface of the sensitive material decrease, which reduces the amount of
chemical-adsorbed oxygen on the surface of the material, reducing the sensor response.
According to the experimental results, the optimal operating temperatures of α-Fe2O3,
α-Fe2O3@MWCNTs, and HFIP-α-Fe2O3@MWCNTs are 250 ◦C, 220 ◦C, and 220 ◦C, and
the response values are 7.2, 9.0, and 15.7, respectively. The MWCNTs in the composite
not only reduce the operating temperature but also provide pathways for carriers in the
reaction and reduce the response time. The gas-sensitivity of HFIP-α-Fe2O3@MWCNTs
is 1.74 times greater than that of α-Fe2O3@MWCNTs and 2.18 times higher than α-Fe2O3,
clearly indicating that the formation of heterojunction of α-Fe2O3@MWCNT composites as
well as the functionalization of HFIP improved the sensitivity to DMMP.
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Figure 7. (a) The responses of α-Fe2O3, α-Fe2O3@MWCNTs, and HFIP-α-Fe2O3@MWCNTs to 1 ppm
DMMP versus the test temperature; (b) the responses of α-Fe2O3, α-Fe2O3@MWCNTs, and HFIP-
α-Fe2O3@MWCNTs toward various gases; (c) the responses of HFIP-α-Fe2O3@MWCNTs toward
DMMP in the presence of other interfering gases.

Selectivity is a key parameter that affects the application prospects of gas sensors.
To elucidate the selectivity of the sensitive materials toward DMMP, the responses of
three types of sensors to 1 ppm of multiple volatile organic compounds (VOC) gases are
shown in Figure 7b, including benzene, ethanol, chloroform, xylene, acetone, hexane,
and toluene. It has been observed that the performance of the HFIP-α-Fe2O3@MWCNT
sensor toward DMMP is much higher than that of the other analytes and other sensors.
These observations indicate that the specific selectivity of HFIP-α-Fe2O3@MWCNTs for
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DMMP may be attributed to the hydrogen bonding interactions between the HFIP groups
and the DMMP molecule. Furthermore, the similarity between the responses to DMMP
in the systems with other gas molecules and only DMMP in the atmosphere is evident.
The findings depicted in Figure 7c provide additional evidence of the DMMP selectivity
and confirm that the potential presence of interfering gases in the operating environment
does not impact the detection of DMMP molecules, making the sensor more resistant to
interference during practical use.

Within 0.1–1.0 ppm, the dynamic responses of the sensors toward DMMP concentra-
tion (Figure 8a) show that all the sensors, especially the HFIP-α-Fe2O3@MWCNT sensor,
have an outstanding correspondence, with the increase in sensor increasing almost lin-
early with DMMP concentration. The HFIP-α-Fe2O3@MWCNT sensor showed the highest
response, almost twice that of the α-Fe2O3@MWCNT sensor. At a 1 ppm DMMP concentra-
tion, the response value of the HFIP-α-Fe2O3@MWCNT sensor is 16.8 (Ra/Rg), while the
α-Fe2O3@MWCNT sensor is 7.4 (Ra/Rg), the response values of the α-Fe2O3 sensor and
the MWCNT sensor are 6.5 (Ra/Rg) and 1.2 (Rg/Ra), respectively. The excellent detection
performance of HFIP-α-Fe2O3@MWCNT for DMMP may be ascribed to the grafted HFIP
groups of the sensitive material and the already existing carboxyl groups on the surface that
can both form H-bonds with the receptor group (-OCH3) of DMMP. Compared with the
original α-Fe2O3 sensor and MWCNT sensor, the α-Fe2O3@MWCNT sensor has a better gas
response because of the larger specific superficial area of the composite, which offers more
active sites for the chemical reaction. The results of the MWCNT sensor performance tests
are shown in Figure S4. In order to calculate the limit of detection (LOD) and limit of quanti-
tation (LOQ) of the HFIP-α-Fe2O3@MWCNT sensor, we performed a linear fit between the
response value of HFIP-α-Fe2O3@MWCNT and the DMMP concentration in the range of
0.1–1.0 ppm (Figure 8b). The fitting line can be expressed as Y = 0.01235X + 4.56854, where
the fitting coefficient R2 was 0.9951, indicating the high linearity. It was calculated that
the LOD and LOQ of the HFIP-α-Fe2O3@MWCNT sensor are 63.92 ppb and 213.07 ppb,
respectively [55].
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Figure 8. (a) The dynamic response curves of the α-Fe2O3, α-Fe2O3@MWCNT, and HFIP-α-
Fe2O3@MWCNT sensors in the concentration range 0.1–1 ppm DMMP at their working temperature;
(b) the responsivity of the HFIP-α-Fe2O3@MWCNT sensor versus DMMP concentration and the lin-
ear fitting results; (c) response–recovery times with 1 ppm DMMP concentrations; (d) multiple-cycle
test curves of sensors at their working temperature with 1 ppm DMMP; (e) long-term stability of
sensors at their working temperature with 1 ppm DMMP; (f) responses of the sensors at different
values of RH.
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Response time and recovery time reflect the speed of response and recovery of the
gas sensor to the detected gas and are important factors in examining the performance of
the sensor. They can be calculated based on the results of dynamic testing, presented in
Figure 8c. The results demonstrated that the HFIP-α-Fe2O3@MWCNT sensor exhibited
rapid response (8.7 s) and recovery (11.9 s) times compared to the other sensors. The
composite formation and HFIP functionalization provide more oxygen vacancies for the
sensitive materials, promote carrier conversion, and accelerate the surface redox reaction,
thus improving the response time of the materials.

In practical applications, the long-term stability of gas sensors is a crucial indicator of
sensor performance, hence the sensors were subjected to several cycles of testing under
normal operating conditions to check their stability. Six detection cycles at the operating
temperature were carried out at 1 ppm DMMP (indicated in Figure 8d). The findings show
that the sensing performances of all sensors after several cycles are almost identical, with
similar curve shapes, response–recovery behaviors, and sensitivity values. As shown in
Figure 8e, all the sensors were tested for a long-term period of 25 days at a concentration of
1 ppm DMMP. The response of the HFIP-α-Fe2O3@MWCNT sensors showed a fluctuation
of about 4.82%, which is almost negligible, further confirming its good reversibility and
long-term stability. In comparison, the α-Fe2O3@MWCNT and α-Fe2O3 sensors fell by
around 9.46% and 11.98%, respectively. Compared to other sensors, MWCNTs sensors are
stable, although they do not have high response values (shown in Figure S5). These results
indicate that the HFIP-α-Fe2O3@MWCNT sensing material can be utilized as a long-life
and highly efficient DMMP sensor with practical applications.

Considering the practical application of DMMP sensors, the gas sensors may work
under different weather conditions, and humidity may affect their performance. Therefore,
the sensing performance of the α-Fe2O3@MWCNT and HFIP-α-Fe2O3@MWCNT samples
were monitored under different relative humidity (RH) environments, and the results are
shown in Figure 8f. It is clear that the responses of the sensors both decreased with the
rise of humidity. At 80% RH, there is a significant decrease in the response of the sensor.
The responses of HFIP-α-Fe2O3@MWCNTs and α-Fe2O3@MWCNTs are 13.98 and 5.48,
respectively, which decreased by about 15.66% and 40.28%. These results indicate that the
HFIP-α-Fe2O3@MWCNTs still have high response stability over a wide range of RH and
function perfectly under both dry and humid conditions.

The performances of recent works employing graphene and carbon nanotubes hybrids
for DMMP detection are compared with HFIP-α-Fe2O3@MWCNTs, shown in Table 1. It
can be seen that HFIP-α-Fe2O3@MWCNTs have a higher response and a faster response
recovery time, demonstrating the competitional performance of this material for chemical
warfare agent (CWA) sensing.

Table 1. Performance of the HFIP-α-Fe2O3@MWCNT sensor in comparison with DMMP sensors
based on graphene and carbon nanotube hybrids.

Sensor Types Sensing Materials Operation
Temperature

DMMP
Concentration

Response
Value

Response/Recovery
Time (s) References

SAW NGO@MnO2/PPy RT 25 ppm 98 Hz 120/197 (75 ppm) [56]
QCM MnO2@NGO/PPy RT 50 ppm 87 Hz 101/123 [57]

Resistance PPy-rGO RT 100 ppm 12.9% 43/75 [4]
Resistance β-MnO2@CNF RT 100 ppb 22.7% −/− [58]
Resistance CoPc-HFIP-GQD RT 20 ppm 8.4% 600/640 [59]

Resistance PANI
nanofiber/graphene RT 3 ppb 1.9% 2/35 [7]

Resistance rGO/WO3-HFIP 150 ◦C 10 ppm 17.6 9.4/12.6 [10]

Resistance HFIP-α-
Fe2O3@MWCNTs 225 ◦C 1 ppm 16.8 8.7/11.9 This work
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5. Gas Sensing Mechanism

Semiconductor gas sensors are made by using the redox reaction of gases on the
surface of semiconductors to cause changes to the resistance value of the sensitive element.
Under certain conditions (e.g., temperature), the gas to be measured reaches the surface of
the material and reacts chemically with the oxygen adsorbed on the surface accompanied
by charge transfer, which further causes a change in the semiconductor resistance, which
can be realized through the measurement of the change in semiconductor resistance to
the detection of gas [28,60]. P-N junctions are at the heart of many semiconductor devices.
MWCNTs is a p-type semiconductor while α-Fe2O3 is an n-type, so heterojunctions can
easily form at the interface of the two materials. To verify the conjecture, Mott–Schottky
curves were tested for MWCNTs, α-Fe2O3, and α-Fe2O3@MWCNTs, as shown in Figure 9.
A tangent line is made to the longest straight part of the Mott–Schottky curve, and the
slope of the tangent line of α-Fe2O3 is positive, indicating that the semiconductor is an
n-type semiconductor; the slope of the tangent line of MWCNTs is negative, indicating
that the material is a p-type semiconductor. The α-Fe2O3@MWCNT composite material
has the curve of an inverted V, indicating that there exists an n-p heterojunction in this
material [61]. The n-p heterojunction formed between them is the main factor that enhances
the response of the composite.

Nanomaterials 2024, 14, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 9. Mott–Schottky plots of MWCNTs (a), α-Fe2O3 (b), and α-Fe2O3@MWCNTs (c). 

According to previous literature reports, the calculated band gap and figure of merit 
of p-type MWCNTs are about 5.6 and 0.5 eV [62], respectively, and the electron affinity 
and band gap of n-type α-Fe2O3 are 4.78 and 2.2 eV [63], respectively. The energy band 
diagrams of the two materials are shown in Figure 10a. The electronic structure and en-
ergy band shifts of materials are revealed by the VB-XPS test (Figure S5). The valence band 
positions with respect to the vacuum (EVB-vac) are obtained from the VB-XPS spectra, and 
the valence band (VB) positions of α-Fe2O3, α-Fe2O3@MWCNTs, and HFIP-α-
Fe2O3@MWCNTs, with respect to the standard hydrogen electrode (EVB-NHE), are calculated 
to be 2.42, 2.53, and 2.56 eV, respectively (calculation shown in Supplementary Materials), 
suggesting that that grafting HFIP groups introduce electron holes in α-Fe2O3@MWCNTs, 
which broaden the VB width. After α-Fe2O3 modification of MWCNTs, an n-p heterojunc-
tion was formed at the interface of the two materials. The energy band diagram of α-
Fe2O3@MWCNT composites is shown in Figure 10b. In the air atmosphere, free oxygen 
molecules (O2) are adsorbed onto the surface of the sensitive material. Due to the high 
electron affinity of oxygen, electrons are transferred from the gas-sensitive material to the 
oxygen molecules, forming oxygen ions. The generation of oxygen ions is related to the 
temperature of the gas-sensitive material. At low temperatures, the oxygen ions will be in 
the (Oଶି ) chemisorbed state, whereas at high temperatures, they will be in the O− or O2 

states [46]. Consequently, electrons transfer from the surface of the gas-sensitive material 
to the oxygen molecule, thereby causing the formation of an electron depletion layer on 
the surface of the n-type material (α-Fe2O3). Similarly, a hole depletion layer is formed on 
the p-type crystals (MWCNTs), leading to a decrease in the carrier concentration inside 
the gas-sensitive material, and resulting in the formation of a broad depletion layer on the 
surface of the composite material and an increase the resistance in the sensors circuit [64], 
as indicated in Figure 10a. In the heterojunction regions, many holes (h+) will transfer from 
MWCNTs to α-Fe2O3 which naturally reduce the height of the potential barrier between 
the crystals below that of pristine α-Fe2O3 and MWCNTs, increasing the sensitivity [65]. 
The energy band gap diagram (Figure 10b) demonstrates that the high barrier (Фeff) on the 
crystals’ surface prevents the charge of the charge carriers. Upon exposing the sensors to 
the DMMP environment, the DMMP molecules will react with adsorbed oxygen species, 

Figure 9. Mott–Schottky plots of MWCNTs (a), α-Fe2O3 (b), and α-Fe2O3@MWCNTs (c).

According to previous literature reports, the calculated band gap and figure of merit
of p-type MWCNTs are about 5.6 and 0.5 eV [62], respectively, and the electron affinity and
band gap of n-type α-Fe2O3 are 4.78 and 2.2 eV [63], respectively. The energy band diagrams
of the two materials are shown in Figure 10a. The electronic structure and energy band
shifts of materials are revealed by the VB-XPS test (Figure S5). The valence band positions
with respect to the vacuum (EVB-vac) are obtained from the VB-XPS spectra, and the valence
band (VB) positions of α-Fe2O3, α-Fe2O3@MWCNTs, and HFIP-α-Fe2O3@MWCNTs, with
respect to the standard hydrogen electrode (EVB-NHE), are calculated to be 2.42, 2.53, and
2.56 eV, respectively (calculation shown in Supplementary Materials), suggesting that that
grafting HFIP groups introduce electron holes in α-Fe2O3@MWCNTs, which broaden the
VB width. After α-Fe2O3 modification of MWCNTs, an n-p heterojunction was formed
at the interface of the two materials. The energy band diagram of α-Fe2O3@MWCNT
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composites is shown in Figure 10b. In the air atmosphere, free oxygen molecules (O2) are
adsorbed onto the surface of the sensitive material. Due to the high electron affinity of
oxygen, electrons are transferred from the gas-sensitive material to the oxygen molecules,
forming oxygen ions. The generation of oxygen ions is related to the temperature of the gas-
sensitive material. At low temperatures, the oxygen ions will be in the (O−

2 ) chemisorbed
state, whereas at high temperatures, they will be in the O− or O2 states [46]. Consequently,
electrons transfer from the surface of the gas-sensitive material to the oxygen molecule,
thereby causing the formation of an electron depletion layer on the surface of the n-type
material (α-Fe2O3). Similarly, a hole depletion layer is formed on the p-type crystals
(MWCNTs), leading to a decrease in the carrier concentration inside the gas-sensitive
material, and resulting in the formation of a broad depletion layer on the surface of the
composite material and an increase the resistance in the sensors circuit [64], as indicated
in Figure 10a. In the heterojunction regions, many holes (h+) will transfer from MWCNTs
to α-Fe2O3 which naturally reduce the height of the potential barrier between the crystals
below that of pristine α-Fe2O3 and MWCNTs, increasing the sensitivity [65]. The energy
band gap diagram (Figure 10b) demonstrates that the high barrier (Φeff) on the crystals’
surface prevents the charge of the charge carriers. Upon exposing the sensors to the DMMP
environment, the DMMP molecules will react with adsorbed oxygen species, releasing the
captured electrons back into the conduction band. The enriching of the conduction band
with electrons causes an increase in the charge carrier in the sensing materials, forming an
electron accumulation region on the surface of sensing materials [66]. The reaction between
the DMMP molecules and adsorbed oxygen species (O−

2 ) on the MWCNTs (p-types) and
α-Fe2O3 (n-type) crystals can be described by Equations (1) and (2) [67].

C3H9O3P + 5O2 + 10h+ → H3PO4 + 3CO2 + 3H2O (1)

C3H9O3P + 5O2 → H3PO4 + 3CO2 + 3H2O + 10e− (2)
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Figure 10. (a) Energy band diagram of α-Fe2O3 and MWCNTs; (b) energy band diagram of the
α-Fe2O3@MWCNT composite; schematic diagram of the DMMP sensing mechanism of sensors based
on αFe2O3@MWCNT composites (c), and hybrid HFIP-α-Fe2O3@MWCNTs (d). The abbreviation Ec
is the conduction band, Ev is the valence band, Ef is the Fermi level, Eg is the energy bandgap, Φw is
the work function, and χ is the electron affinity.
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After the reaction, the decrease in the depletion layer thickness and the energy barrier
height (Φeff) leads to a decrease in the resistance in the sensor’s circuit until the conduction
band (CB) of the sensing materials is saturated with free electrons [68]. After the perfor-
mance has stabilized, the sensor is transferred to an air environment where the sensitive
material re-adsorbs oxygen ions, which makes the resistance return to its initial value.
These processes will be performed during each test cycle. The above findings indicate
that the crystal structure and chemical composition of α-Fe2O3@MWCNTs hierarchical
nanoheterostructure provide a large number of active sites and rapid channels for carriers.
The formation of the n-p heterojunction reduces the height of the inter-crystalline energy
barriers, which reduces the sensing temperature and makes the sensing speed faster.

Moreover, the layered structure of the α-Fe2O3@MWCNT composite in this experi-
ment is also one of the factors contributing to the enhanced gas-sensitive properties. The
structural characteristics of the α-Fe2O3@MWCNT composite make it have a large specific
superficial area and better permeability. According to the SEM and TEM characterization
of the material (Figure 3) and the BET (Figure 6), the polycrystalline α-Fe2O3 nanorods
are loosely stacked on the surface of the MWCNTs skeleton to form a multilevel layered
structure with a large specific superficial area, and compared with that of the individual
α-Fe2O3 nanorods (58.097 m2/g), the specific superficial area of the α-Fe2O3@MWCNTs
composites was 114.345 m2/g. These results mean that the material can offer further active
sites for the reaction, which come into contact with more oxygen molecules and absorb and
ionize more oxygen molecules, thus increasing the utilization of sensitive materials [69].
The excellent electrical properties of MWCNTs provide a direct pathway for charge carriers,
further reducing the response—recovery time. Therefore, compared with pure α-Fe2O3
and bare MWCNTs sensors, α-Fe2O3@MWCNTs composite sensor demonstrates stronger
response and fast response/recovery characteristics.

When the sensor is exposed to DMMP gas, the DMMP molecules will bind to the
oxygen adsorbed on the surface of α-Fe2O3@MWCNTs composites through methoxy (O-
CH3). Since DMMP is an outstanding electron donor, the electrons will be transferred to
the sensing material, thus reducing the conductivity (shown in Figure 10c) [70]. Because
different molecules can all bind to the metal oxides through methoxy bonds, this interaction
cannot achieve DMMP-specific detection. According to Lewis’s acid-base theory, DMMP is
a hydrogen-bonded alkaline gas, while the HFIP group has enhanced selective adsorption
capacity for DMMP as a hydrogen-bonded acidic organic matter. After the composite is
functionalized with HFIP, HFIP (-O-H) can form hydrogen bonds with DMMP (-P=O). In
addition, -COOH on the surface of the composite can also interact with DMMP to form
hydrogen bonds [57]. Therefore, the double hydrogen bonding interactions with DMMP of
HFIP-α-Fe2O3@MWCNTs showed higher adsorption and specific selectivity.

6. Conclusions

In this paper, we report a highly selective and excellently performant DMMP sensor
based on HFIP-α-Fe2O3@MWCNTs. By assembling α-Fe2O3 nanorods on the skeleton of
carbon nanotubes, a novel α-Fe2O3@MWCNTs layered heterostructure is prepared. The
characterization results show that the prepared material has high porosity and specific
surface area. On this basis, it was functionalized by HFIP and its selectivity to DMMP
gas was improved. At the optimum operating temperature, the HFIP-α-Fe2O3@MWCNT
composite sensor responds to 1 ppm of DMMP with a ratio of 16.8 (Ra/Rg), while that of
the unfunctionalized α-Fe2O3@MWCNT composite is 9.1 (Ra/Rg). The response values
of the α-Fe2O3 and MWCNTs are 6.5 (Ra/Rg) and 1.2 (Rg/Ra), respectively. Compared
with the original MWCNTs and α-Fe2O3 sensors, the composite α-Fe2O3@MWCNT sensor
has a faster response/recovery time and better performance due to the heterojunction
formation between the two materials. The response of the functionalized sensing material
to DMMP is further improved due to the hydrogen bonding with HFIP by DMMP. The
improved performance of the HFIP-α-Fe2O3@MWCNT composite sensor is due to the
formation of heterojunction, the enhancement of chemical oxygen absorption capacity,
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and the increase in the specific superficial area of the α-Fe2O3@MWCNTs’ hierarchical
nanoheterostructure material. In summary, the novel layered DMMP sensing material
(HFIP-α-Fe2O3@MWCNTs) is expected to promote the development and application of
organic-inorganic hybrid materials as high-performance gas sensing materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano14030305/s1, Figure S1. SEM images of the ceramic tube
covered by sensing material in different magnifications confirm the full covering of tubes by sensing
material. Figure S2. (a) High-resolution XPS spectrum of C 1s of MWCNTs, α-Fe2O3@MWCNTs
and HFIP-α-Fe2O3@MWCNTs composites; (b) High-resolution XPS spectrum of C 1s of HFIP-α-
Fe2O3@MWCNTs. Table S1. The atomic percentage for O elements of prepared samples was obtained
from XPS analysis. Figure S3. Multiple-cycle test curves of MWCNTs sensor at RT with 1 ppm DMMP.
Figure S4. Long-term stability of MWCNTs sensors at RT with 1 ppm DMMP. Figure S5. VB-XPS
spectra of α-Fe2O3, α-Fe2O3@MWCNTs and HFIP-α-Fe2O3@MWCNTs. Refs. [71,72] are cited in the
supplementary materials.
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