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Abstract: Developing non-precious metal-based electrocatalysts operating in high-current densi-
ties is highly demanded for the industry-level electrochemical hydrogen evolution reaction (HER).
Here, we report the facile preparation of binder-free Mo2C-Mo2N heterostructures on carbon
nanowalls/diamond (CNWs/D) via ultrasonic soaking followed by an annealing treatment. The
experimental investigations and density functional theory calculations reveal the downshift of the
d-band center caused by the heterojunction between Mo2C/Mo2N triggering highly active interfacial
sites with a nearly zero ∆GH* value. Furthermore, the 3D-networked CNWs/D, as the current collec-
tor, features high electrical conductivity and large surface area, greatly boosting the electron transfer
rate of HER occurring on the interfacial sites of Mo2C-Mo2N. Consequently, the self-supporting
Mo2C-Mo2N@CNWs/D exhibits significantly low overpotentials of 137.8 and 194.4 mV at high
current densities of 500 and 1000 mA/cm2, respectively, in an alkaline solution, which far surpass the
benchmark Pt/C (228.5 and 359.3 mV) and are superior to most transition-metal-based materials. This
work presents a cost-effective and high-efficiency non-precious metal-based electrocatalyst candidate
for the electrochemical hydrogen production industry.

Keywords: hydrogen evolution reaction; high current density; carbon nanowalls; diamond; Mo2C;
Mo2N; heterostructure

1. Introduction

Hydrogen energy, characterized by cleanliness and high energy density, is emerging
as a sustainable alternative to fossil fuels [1,2]. The electrochemical hydrogen evolution
reaction (HER) holds significant promise for large-area green hydrogen production, offering
a solution to the high carbon emissions associated with the traditional steam reforming
technique, due to the advantages of utilizing an exhaustless and cost-effective water
resource, zero carbon emission, and ensuring high purity (>95%) [3–5]. Achieving this
industrial goal requires highly active and inexpensive HER electrocatalysts capable of
operating at high current density (≥500 mA/cm2) [1,6,7]. While Pt-based materials are
regarded as excellent HER electrocatalysts, they suffer from the penalty of scarcity and
a high cost [8]. Therefore, it is highly required to develop efficient non-precious metal
alternatives for high-current HER applications.

As non-precious-metal electrocatalysts, Mo2C-based nanostructures have provoked
significant attention from researchers due to their earth abundance, low cost, analogous
d-orbital electronic structure to the Pt, and good resistance to dissolution [9–11]. However,
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the high d-band center position of the Mo site in the Mo2C induces a strong hydrogen-
binding that is detrimental to the desorption process and consequently resulting in an
unsatisfactory HER activity [12,13]. For instance, Chi et al. demonstrated that a large
overpotential of 189 mV is required for the Mo2C nanospheres to reach a current density
of 10 mA/cm2 in 1 M KOH [14]. To overcome the sluggish reaction kinetics, heteroatom
doping with either nonmetals, such as N [15] and P [16], or metals, such as Ni [17] and
Co [18], into the Mo2C as well as the design of heterostructures [19,20] have been employed
to create a modulation of the electronic structure and boost the intrinsic HER activity.
In this context, a Mo2C-Mo2N heterostructure was prepared by calcining Mo-containing
polyoxometalates and graphene oxide in a NH3 atmosphere and exhibited an optimized
overpotential of 154 mV in 1 M KOH [21]. Recently, a lower overpotential of 88.1 mV at
10 mA/cm2 was reported based on a ZIF-67-derived Mo2C-Mo2N catalyst [22]. It is verified
that the construction of a heterostructure is a viable and efficient way to improve HER
performance. Nevertheless, most studies focus on the HER characteristics at low current
density, e.g., 10 and 100 mA/cm2, which falls short of addressing the practical application
at high current operation [23,24]. In addition, in the case of above nanoparticle-type
electrocatalysts, binders were needed to immobilize the particles onto a current collector,
which possesses, however, several drawbacks, such as restricting exposure of the active
sites, impeding mass transport, and obstructing electron transfer that reduce the overall
HER performance [25,26].

In this study, we prepared binder-free porous Mo2C-Mo2N heterostructures on the
carbon-nanowalls/diamond-coated carbon cloth (Mo2C-Mo2N@CNWs/D) via facile soak-
ing in an ammonium molybdate solution followed by annealing with melamine. In this
self-supporting electrocatalyst, the carbon nanowalls/diamond (CNWs/D), with a high
electrical conductivity, open accessible surface, and large specific area, serves as a template
for depositing Mo2C-Mo2N, efficiently enlarging the electrically active surface area (ECSA),
as well as a current collector, greatly facilitating the electron transfer during HER. An
electrochemically active Mo2C-Mo2N heterostructure is finely tuned in phase constituents
to attain optimum HER characteristics. Density functional theory (DFT) calculations further
reveal that the atoms located at the Mo2C-Mo2N interface possess greatly enhanced intrin-
sic activity. Derived from the excellent current collector and the boosted intrinsic activity,
consequently, much lower overpotentials at both low (10 mA/cm2) and high current densi-
ties (500 and 1000 mA/cm2) are achieved on Mo2C-Mo2N@CNWs/D in 1 M KOH. This
work provides a facile methodology for the construction of a non-precious electrocatalyst
and promising applications in electrochemical high-current hydrogen production.

2. Materials and Methods
2.1. Material Preparation

CNWS/D film was prepared on carbon cloth (CC) using microwave plasma chemical
vapor deposition (MPCVD) with a 915 MHz reactor (Cyrannus, Iplas Innovative Plasma
Systems GmbH, Troisdorf, Germany). The CC was ultrasonically cleaned in acetone,
ethanol, water, and nitric acid, followed by being ultrasonically seeded in the diamond
suspension for 30 min. It was verified that the diamond seed enhanced the growth rate and
robustness of carbon nanowalls (CNWs). The seeded CC was then placed onto the Al2O3
holder in the MPCVD chamber. During the deposition, a microwave power of 6 kW, a H2
flow rate of 200 sccm, a CH4 flow rate of 14 sccm, and a chamber pressure of ~30 mbar
were employed. The substrate temperature was estimated to be ~1065 ◦C, monitored using
an infrared pyrometer. After 60 min of growth, the plasma was shut down and the pristine
CNWs/D film was obtained on the CC.

The preparation of Mo2C-Mo2N@CNWS/D involved soaking CNWS/D in a Mo-
containing solution and thermal treatment with melamine. Before the soaking, the pristine
CNWS/D film surface was modified to become O-terminated through UV irradiation in
the air, in order to impart a hydrophilic property in an aqueous solution. After soak-
ing for 30 min in an ultrasonic bath made up of 31.39 wt% (NH4)6Mo7O24 (Sinopharm
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Chemical Reagent Co., Ltd., AR, Shanghai, China), the obtained Mo precursor@CNWS/D
was annealed with 0.2 of melamine (Aladdin, 99%) positioned upstream at a heat rate
of 2 ◦C/min in an Ar/H2 atmosphere. According to the annealing temperature (includ-
ing 500, 650, 700, 750, 800, and 850 ◦C), the obtained electrocatalysts are designated as
Mo2C-Mo2N@CNWS/D-500, -650, -700, -750, -800, and -850, respectively. For comparison,
Mo2C@CNWS/D-650 was prepared using the same routine at 650 ◦C, albeit without the
introduction of melamine. Mo2C-Mo2N@CC-650 was prepared on CC using a similar
routine at 650 ◦C.

2.2. Material Characterization

The morphology and elemental composition were investigated by using a field-
emission scanning electron microscope (SEM, Hitachi, SU 70, Tokyo, Japan). The micro-XRD
(Bruker, D8 Discover, Billerica, MA, USA) using a Co Kα1 radiation source (λ = 1.78897 Å)
was employed to obtain the phase information. In addition, the carbon phase of CNWS/D
was studied using a Raman spectroscope (Horiba, Labram HR Evolution instrument, Kyoto,
Japan) based on a 532 nm laser. The microstructure and elemental mapping distribution
were characterized by using a transmission electron microscope (TEM, ThermoFisher, Tab-
los F200X, Waltham, MA, USA) equipped with an energy dispersive X-ray spectrometer
(EDS, ThermoFisher, Super X G2, Waltham, MA, USA).

To access the surficial chemical state, X-ray photoelectron spectra (XPS) were recorded
by using a Thermo ESCALAB Xi+ instrument (Waltham, MA, USA) with an Al Kα source
(hυ = 1486.6 eV). The bare surface of Mo2C-Mo2N@CNWs/D was measured without
sputtering. In addition, during the XPS test, the power was 150 W, and the electron
emission angle was 55◦. The analyzed area had a diameter of 500 µm. The base pressure
was 2.77 × 10−7 mbar. The charge neutralizer was used to reduce the possibility that the
sample charges up. Furthermore, all the acquired XPS data were corrected based on the
highest peak located at 284.6, assigned to the adventitious carbon contamination [27]. To
reveal the chemical state of Mo, C, and N species of Mo2C-Mo2N@CNWs/D, peak fitting
was conducted further using XPSPEAK software (Version 4.1) based on the acquired XPS
spectra. All spectra were fitted with Shirley backgrounds and the Voigt function (80%
Gaussian and 20% Lerentzian). For the Mo 3d fitting, the 3d3/2/3d5/2 area ratio was
constrained at around 0.66. In addition, the XPS fitting conformed to the criterion of
qualitative self-consistency [27].

2.3. Electrochemical Measurements

Electrocatalytic HER measurement of all samples was carried out on an electrochemical
workstation (Metrohm, PGSTAT302N, Herisau, Switzerland) in a three-electrode cell at
room temperature. The three-electrode system was composed of a self-supporting working
electrode, a graphite rod counter electrode, and a Hg/HgO (1 M KOH) reference electrode.
The measured potential was converted to a reversible hydrogen electrode (RHE) using the
following equation:

ERHE = EHg/HgO + 0.098 + 0.0591 × pH (1)

Linear sweep voltammetry (LSV) was carried out at the scan rate of 0.002 V/s to
evaluate the overpotential and Tafel slope during the HER process. Cyclic voltammetry
(CV) was performed at various scan rates ranging from 0.04 to 0.12 V/s to estimate the
ECSA of the electrocatalyst. In addition, electrochemical impedance spectroscopy (EIS) was
recorded at an overpotential of 74.6 mV with a 10 mV amplitude in the frequency range
from 100 kHz to 0.1 Hz. Prior to the electrochemical test, Ar gas (≥99.999%) was bubbled
into the electrolyte for 20 min to preclude the inference of the oxygen reduction reaction.
All LSV potentials were demonstrated through a 95% iR-compensation based on the EIS
results. All current densities were demonstrated after normalization using the geometric
area of the electrocatalyst.
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2.4. Calculation Method

DFT calculation was conducted using the plane-wave code implemented in the Vienna
Ab Initio Simulation Package (VASP). The electron exchange and correlation are described
with the generalized gradient approximation as parameterized by Perdew, Burke, and
Ernzerhof (GGA-PBE), and the interaction between ions and electrons is described using
the projector augmented wave method (PAW). The effective valence used here of each
atom is 4.000 for the C atom, 5.000 for the N atom, and 6.000 for the Mo atom, respectively.
For all calculations, the kinetic cut-off energy of 400 eV with the self-consistent field (SCF)
tolerance of 1 × 10−6 eV and 0.02 eV Å−1 was adopted. Figure S1 displays the side-view
and top-view of the constructed model structure. Typically, the (111) crystal surface of
Mo2N and the (101) crystal surface of Mo2C were chosen, consistent with the TEM and XRD
results. To model the Mo2C-Mo2N interface structure, we constructed firstly a supercell
consisting of 2 × 3 Mo2C (101) unit cells with 2 × 2 Mo2N (111) unit cells in the vertical
direction with a lattice mismatch of 0.3%. Then, the supercell was rotated 90◦ to expose
the interface sites for subsequent adsorption energy calculations. A vacuum region of 20 Å
was set along the z direction to avoid the interaction between slabs. For the balance of the
calculation accuracy and time cost, the k-point mesh was employed as 3 × 3 × 1 k-points
for the structural relaxation and 9 × 9 × 1 for the energy band.

After the structural optimization, the adsorption free energy differences of H* (∆GH*)
on different surface sites were determined as

∆GH* = ∆EH* + ∆ZPE − T∆S (2)

where ∆EH* is the energy change during the H adsorption/desorption process. ∆ZPE
and ∆S are the difference in zero-point energy and entropy, respectively. T is the system
temperature (298.15 K, in our calculation). For H* on different surfaces sites, all 3N degrees
of freedom are treated as vibrational motions while neglecting the contributions from the
material surfaces. The ∆GH* was calculated using Vaspkit software (Version 1.4.1) from
∆EH*, temperature, pressure, and calculated vibrational energy [28].

3. Results and Discussion
3.1. Microstructure Characterizations

Figure 1 schematically shows the synthesis route of the Mo2C-Mo2N heterostructure
on the CNW/D-coated CC. Typically, the CNWS/D was initially deposited on the CC using
the MPCVD system, followed by ultrasonic soaking in a (NH4)2MoO4 aqueous solution
and then drying through centrifugation. Afterwards, the obtained Mo precursor@CNWS/D
was immediately calcined with melamine in the Ar/H2 atmosphere. Finally, the Mo2C-
Mo2N@CNWS/D was prepared. It is noteworthy that the proportion of Mo2C to Mo2N
could be manipulated by varying the calcination temperature.
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Figure 1. Schemic illustration for the preparation of Mo2C-Mo2N@CNWs/D.

Figure 2a demonstrates the morphology of the CNW/D-coated CC. Compared to the
smooth surface of bare CC (see Figure S2), the CNW/D-coated CC is completed surrounded
by a furry 3D-networked nanowall after MPCVD. The magnified inset shows the nanowall
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almost vertically aligned on the CC. In the Raman spectrum (Figure S3), well-separated
peaks of the D band positioning at ~1344 cm−1, the G band at ~1566 cm−1, the D’ band at
~1615 cm−1, as well as the outstanding 2D band at ~2700 cm−1 are observed, and the ID/IG
ratio is estimated to be 0.34. The ID/IG value is lower than the reported carbon nanofiber
and highly branched graphene nanosheets [29,30], suggesting low-disordered CNWs were
prepared on the CC substrate [31]. Figure 2b–g show the microstructure and constituent of
the Mo2C-Mo2N@CNWS/D after calcination. Notably, porous nanostructures completely
cover the CNWS/D (see Figure 2b). The CNWs/D, with an open accessible surface and
large specific area, works as a great nano-template for the conformal growth of Mo2C-Mo2N.
XRD measurement was used to determine the phases. As illustrated in Figure 2c, besides
the predominated graphite peak, one can see two major characteristic peaks at 44◦ and 46◦,
matching well with the (111) plane of Mo2N (PDF#25-1366) and (101) of Mo2C (PDF#35-
0787), respectively. This distinctly verifies that the Mo2C-Mo2N composite was rationally
synthesized. In order to access deep insight into the microstructure, TEM characterizations
were carried out on the Mo2C-Mo2N@CNWs/D. Figure 2d illustrates that Mo2C-Mo2N has
a porous structure. The pore size was estimated to be less than 10 nm, which can be clearly
observed in the high-angle annular dark field (HAADF) TEM image in Figure S4. Figure 2e
shows the high-resolution TEM image of Mo2C-Mo2N. As exhibited by the blue rectangle,
the distances between adjacent lattice planes are measured to be 0.24 nm, consistent with the
theoretical d-spacing of the {111} plane of Mo2N. The fast-Fourier transformation pattern
in the bottom-right panel also matches well with the Mo2N diffracting spots taken along
the [011] zone axis. Such results suggest that the Mo2N (PDF#25-1366) phase constitutes
the region ft2. In addition, the measured interlayer spacing of 0.23 nm corresponding to the

{101} plane of Mo2C and the ft1 pattern related to the theoretical Mo2C spots along the [0
-
1

-
1]

zone indicate that the Mo2C (PDF#35-0787) phase is obtained in the region ft2. Importantly,
an intimate interface is observed at the transition zone, hinting that a heterointerface is
created between Mo2N and Mo2C. Due to the crystal lattice misfit, lattice distortion occurs
at the heterointerface. It is believed that such distortion should induce an alteration in
the local electronic structure, which accordingly manages the activity toward HER [32].
In addition, the CNWs, also designated as multilayered graphene with a lattice spacing
of 0.35 nm, are obviously distinguished in the high-resolution TEM image taken near
the edges (see Figure 2f). As an excellent current collector, CNWs support the Mo2C-
Mo2N heterostructure, endowing high electrical conductivity to facilitate the transport of
electrons generated during the HER into the electrochemical loop. Moreover, as shown in
Figures 2g and S5, the HAADF image and corresponding EDS mapping images display a
nearly even distribution of Mo, C, and N elements within the porous structure, suggesting
the formation of abundant heterostructures in the catalyst.

All of the above results reveal that the porous Mo2C-Mo2N heterostructure was facilely
fabricated on the CNWS/D. Accounting for abundant active sites from porous Mo2C-Mo2N
heterostructures and an excellent current collector from CNWs, an outstanding high-current
HER performance is foreseen.

3.2. Performance of Hydrogen Evolution Reaction

The HER performance of the obtained Mo2C-Mo2N@CNWS/D catalyst was inves-
tigated in 1 M KOH based on a typical three-electrode system. Figure S6 shows that
the Mo2C-Mo2N@CNWs/D prepared with the annealing time of 180 min demonstrates
a better HER performance at high current densities than those with annealing times of
60 and 180 min. In the following, the effect of annealing temperature on the HER perfor-
mance is investigated further. For comparison, the performance of the Pt/C@CC catalyst
(2.0 mg/cm2) prepared using the drop-casting method and CC was also studied. As de-
picted in Figure 3a, the electrocatalytic performance of CC is very poor. Pt/C exhibits
a high HER activity with an overpotential (η10) of 16.8 mV at a low current density of
10 mA/cm2. Comparatively, the η10 are measured to be 83.7, 42.8, 47.9, 62.6, 169.3, and
281.7 mV for the Mo2C-Mo2N@CNWS/D-500, -650, -700, -750, -800, and -850. Table 1
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lists the HER characteristics of these catalysts. Note that the overpotential gradually de-
clines as the annealed temperature increases, reaches the minimum point of 42.8 mV for
Mo2C-Mo2N@CNWS/D-650, and then goes up with elevating the temperature further.

To unveil the rate-determining step of the HER process, Figure 3b shows the Tafel
plots derived from the LSV data. Pt/C@CC possesses the smallest Tafel slope estimated to
be 32.5 mV/dec, consistent with the previously reported value of 31.0 mV/dec [33]. As the
temperature increases, electrocatalysts demonstrate a similar variation trend in the Tafel
slope as observed in the overpotential. As listed in Table 1, Mo2C-Mo2N@CNWS/D-650
has the smallest Tafel slope estimated to be 45.6 mV/dec. Generally, the HER occurring on
the electrocatalyst involves the electrochemical adsorption of hydrogen (Volmer reaction),
followed by either the electrochemical desorption (Heyrovsky reaction) or the chemical
desorption (Tafel reaction) [34]. Given the Tafel slope of 120 mV/dec for the Volmer reaction-
determining step, 30 mV/dec for the Tafel reaction, and 40 mV/dec for the Heyrovsky
reaction, the HER mechanism closely adheres to the Heyrovsky mechanism on the Mo2C-
Mo2N@CNWS/D-650. In contrast, other obtained electrocatalysts exhibit a mixed Volmer–
Heyrovsky mechanism.
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To gain a comprehensive understanding of the charge transfer kinetics during the HER,
EIS tests were carried out, and the Nyquist plots were recorded in Figure 3c. The curves
are composed of a semicircle related to the electron transfer behavior on the active sites of
the electrode [35]. The Mo2C-Mo2N@CNWS/D-650 demonstrates the smallest semicircle,
and the charge transfer resistance (Rct) is calculated to be 8.59 Ω, derived from the fitting
data using the Randles equivalent circuit (see Table 1). In addition, the ECSA of Mo2C-
Mo2N@CNWS/D was estimated through the electrochemical double-layer capacitance
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tests at different scan rates. As shown in Figure S7, no faradaic features are observed in
these CV curves. Correspondingly, the capacitive current densities at ~0.23 V were plotted
as a function of the scan rate in Figure 3d. The electrochemical double-layer capacitance of
Mo2C-Mo2N@CNWS/D-650 is the highest at 891 mF/cm2, which then quickly decreases
with the increase in the temperature.
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Figure 3. Electrocatalytic HER performance of Mo2C-Mo2N@CNWs/D in 1 M KOH. (a) Polarization
curves and corresponding (b) Tafel plots. (c) Nyquist plots, and the inset showcases the Nyquist
plots at high frequency. (d) Capacitive current variation as a function of scan rate from 0.04 to
0.12 V/s. (e) Long-term HER durability test of Mo2C-Mo2N@CNWs/D-650 at high current densities.
(f) Statistics histogram for the overpotential of our prepared Mo2C-Mo2N@CNWs/D and previously
reported transition-metal-based electrocatalysts at 500 and 1000 mA/cm2. The curves of CC and
Pt/C@CC catalyst are demonstrated in (a,b) as control.



Nanomaterials 2024, 14, 243 8 of 15

Table 1. Electrocatalytic HER characteristics of Mo2C-Mo2N@CNWs/D-500, -650, -700, -750, -800,
and -850. Pt/C@CC is included as control.

Sample η10 (mV) η500 (mV) η1000 (mV) Tafel Slope
(mV/dec)

Rct
(Ω)

Capacitance
(mF/cm2)

Mo2C-Mo2N@CNWs/D-500 83.7 221.5 299.8 54.3 33.94 603
Mo2C-Mo2N@CNWs/D-650 42.8 137.8 194.4 45.6 8.59 891
Mo2C-Mo2N@CNWs/D-700 47.9 154.8 207.8 46.5 8.64 359
Mo2C-Mo2N@CNWs/D-750 62.6 169.4 222.9 48.8 13.95 243
Mo2C-Mo2N@CNWs/D-800 169.3 369.1 - 97.4 464.65 46
Mo2C-Mo2N@CNWs/D-850 281.7 502.2 - 109.2 1214.90 40

Pt/C@CC 16.8 228.5 359.3 32.5 - -

Furthermore, the stability of Mo2C-Mo2N@CNWs/D-650 was determined through
24 h HER operation at high current densities. Figure 3e shows that the current density
could retain 86.7% and 83.2% of the initial values at 500 and 1000 mA/cm2, respectively,
suggesting the good stability of the Mo2C-Mo2N@CNWs/D electrocatalyst. In addition,
Mo2C-Mo2N@CNWs/D-650 exhibits minor structural variations after 24 h HER operation
at 500 mA/cm2, which implies the good structural stability (see Figure S8).

The above results demonstrate that the Mo2C-Mo2N@CNWS/D-650 exhibits the best
performance, that is, the lowest overpotential (η10 = 42.8 mV), the lowest Tafel slope
(45.6 mV/dec), the lowest Rct (8.59 Ω), and the largest capacitance (891 mF/cm2), among our
prepared electrocatalysts. Furthermore, HER performances of the Mo2C-Mo2N@CNWS/D-
650 and other reported transition-metal-based electrocatalysts are compared in Table 2.
The η10 value is smaller than that of the reported molybdenum-based materials, such as
Mo2C-Mo2N/HGr [21], MoxC [13], P-MoP/Mo2N [36], Mo2C/MoC/CNT [20], and MoC-
Mo2C/Mo [37]. More impressively, the Mo2C-Mo2N@CNWS/D-650 desires overpotentials
of only 137.8 and 194.4 mV to achieve high current densities of 500 and 1000 mA/cm2, re-
spectively. These values are much lower than those of benchmark Pt/C@CC (η500 = 228.5 mV,
η1000 = 359.3 mV). Actually, Figure 3f and Table 2 verify that the Mo2C-Mo2N@CNWS/D-
650 stands out as one of the most highly active electrocatalysts at high current density
(≥500 mA/cm2) in alkaline HER, compared with previously reported transition-metal-based
materials [19,20,26,33,37–48].

Table 2. Comparison of the HER performance of transition-metal-based electrocatalysts in 1.0 M
KOH solution.

Catalysts η10 (mV) η500 (mV) η1000 (mV) Ref.

Mo2C-Mo2N@CNWs/D-650 42.8 137.8 194.4 This work
Mo2C-Mo2N/HGr 154 - - [21]

MoxC 116 - - [13]
P-MoP/Mo2N 89 - - [36]

Mo2C/MoC/CNT 82 201 233 [20]
MoS2/Mo2C - 191 220 [37]

MoC-Mo2C/Mo 98.2 292 - [19]
Co2.90B0.73P0.27/NF 42 129 165 [38]

Ni2P/NF - 235 306 [39]
Mo2N/CoN/NC/Cu 22 155 230 [26]

Ni2(1−x)Mo2xP/NF 72 240 294 [40]
N-NiMoS/NF 68 250 322 [41]
MoS2/Ni3S2 70 182 200 [33]
P-NiMoHZ 23 175 210 [42]

N-MoO2/Ni3S2 NF - 431 517 [43]
NiCoP/CF 47 273 379 [44]

Cu-m/Cu–W/NiCo-LDH 21 139 190 [45]
NiCo/NiCo-OH 19 184 - [46]

A-NiCo LDH/NF 36 286 381 [47]
PrBa0.94Co2O5+δ-DSPH 186 364 - [48]
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3.3. Dependance of Hydrogen Evolution Reaction Performance on the Surface Chemical State

It is noteworthy that the electrocatalytic properties could be facilely modulated by
tuning the calcination temperature. As the temperature increases from 500 to 650 ◦C, the
overpotential, Tafel slope, and Rct of the catalysts demonstrate a decreasing trend. With ele-
vating the temperature further until 850 ◦C, these HER characteristics all quickly increase.

To deeply understand such variation, the crystal phase and surface chemical state
of Mo2C-Mo2N@CNWS/D are thoroughly studied. Figure S9 shows that the ID/IG of
Mo2C-Mo2N@CNWs/D is estimated to be 0.53, slightly larger than that of bare CNWs/D.
This indicates that defects are created in the CNWs through annealing treatment. The
ID/IG value does not vary significantly as the annealing temperature increases. Figure 4a
displays the XRD patterns of the catalysts prepared at different temperatures. The Mo2C-
Mo2N@CNWS/D-500 sample shows a prominent peak positioned at ~43◦ and a feeble peak

at 51◦, corresponding to (
-
202)/(020) of MoO2 (PDF#73-1249) and (200) of Mo2N, respectively.

Moving to 650o or above, distinct peaks associated with the Mo2C (101) and Mo2N (111)
planes are clearly seen. The intensity ratio of the Mo2C (101) peak to Mo2N (111) peak is
further calculated, and the results are recorded in Figure S10. Mo2C-Mo2N@CNWS/D-650
shows a ratio of 1.15, which then gradually rises with the increase in annealing temper-
ature. It is deduced that Mo2N is easily fabricated at a low temperature. When a higher
temperature was employed, more Mo2C was obtained in the Mo2C-Mo2N@CNWS/D.

The surface chemical states could play a crucial role in the HER as the electrochemical
reaction primarily occurs at the surface sites. Figure S11 shows the XPS survey spectrum
of Mo2C-Mo2N@CNWS/D-650, and the signals from C, N, Mo, and O are clearly distin-
guished. In comparison to the XPS survey before the HER test, all elements remain at the
surface of Mo2C-Mo2N@CNWs/D-650 after the HER test (see Figure S12). This indicates a
good chemical stability of the prepared electrocatalyst. Moreover, the high-resolution XPS
spectra of C 1s, N 1s, and Mo 3d are devaluated and scrutinized in Figure 4b–d. In the C
1s spectrum, three peaks located at a binding energy of 283.47, 284.60, and 285.80 eV are
attributed to C-Mo bonds in Mo2C, sp2-carbon bonds, and C-N bonds, respectively (see
Figure 4b) [34,49]. The C-Mo species constitute 12.1 at% of the C species on the surface. The
N 1s spectrum was deconvoluted into three components: the peak at 396.00 eV assigned to
the N-Mo bond, the peak at 397.47 eV to pyridinic N, and the peak at 399.39 eV to pyrrolic N
(see Figure 4c) [50]. The peak positioning at 394.60 eV is derived from Mo 3P bonds [21,50].
The N-Mo species make up 41.5 at% of the surface N species. It is noteworthy that the
C 1s and N 1s investigations indicate the coexistence of Mo-C and Mo-N bonds on the
surface of the catalyst. This is further confirmed by the high-resolution Mo 3d spectrum
shown in Figure 4d. The Mo 3d spectrum reveals four deconvoluted doublets: peaks at
228.30 and 231.48 eV corresponding to the Mo-C bonds, peaks at 228.80 and 231.89 eV to
the Mo-N bonds, peaks at 229.20 and 232.45 eV to the Mo4+ species, and peaks at 232.65
and 235.56 eV to the Mo6+ species [37,50–53]. The Mo4+ and Mo6+ peaks are associated
with MoO2 and MoO3, which stem from the unavoidable surface oxidation occurring when
exposed to air [54]. In addition, the Mo 3d XPS spectra of Mo2C-Mo2N@CNWS/D-500, -750,
-800, and -850 were recorded and deconvoluted using the similar doublets, as illustrated
in Figure S13. Figure 4e presents a summary of the statistical percentage distribution of
Mo species as the synthesis temperature varies. Mo2C-Mo2N@CNWS/D-500 possesses a
higher percentage of Mo4+ species than others, aligning with the distinct MoO2 peak in
the XRD result. Importantly, the percentage of the Mo-C bond generally increases from
13% to 53% with the temperature rising from 500 to 850 ◦C, while that of Mo-N bonds
constantly remains around 33%. It is proposed that the high calcination temperature fa-
cilitates the transformation of the Mo-O (Mo4+ and Mo6+) bonds into Mo-C bonds. Keep
in mind that the Mo-C and Mo-N bonds are regarded as the active sites for HER [55]. To
reveal the relative variation of these bonds, the ratio changes in Mo-C content (n(Mo-C))
to Mo-N content (n(Mo-N)) were determined in Figure 4f. One can see that the ratio pro-
gressively increases as a function of temperature, well in line with the XRD investigations
(see Figures 4a and S10). Notably, it is the Mo2C-Mo2N@CNWS/D-650, with a ratio close
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to 1 between Mo-C and Mo-N bonds, that demonstrates the lowest HER overpotential (and
best HER performance) among these catalysts.
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Figure 4. Constituent characterizations of Mo2C-Mo2N@CNWs/D. (a) XRD patterns of Mo2C-
Mo2N@CNWs/D-500, -650, -700, -800, and -850. High-resolution XPS spectra and deconvoluted plots
of (b) C 1s, (c) N 1s, and (d) Mo 3d in Mo2C-Mo2N@CNWs/D-650. (e) Histogram illustrating the
statistical distribution of Mo species percentages and (f) the ratio of n(Mo-C)/n(Mo-N) derived from
XPS deconvolution as a function of the temperature. The η10 variation with the temperature is also
depicted in panel (f).

To further explore the synergistic effects involved in the HER activity on the Mo2C-
Mo2N heterostructure, DFT calculations were carried out. Figure 5a exhibits the optimized
atomic model of the Mo2N(111), Mo2C (101), and Mo2N(111)/Mo2C(101) heterostructure
consistently well with XRD and TEM results. The possible adsorption sites of H* are
also indicated in the model. Figure 5b displays the free energy diagram (∆GH*) of H*

adsorption/desorption on different electrocatalysts. ∆GH* is supposed to be a significant
indicator of the electrocatalyst activity. Regarding ideal ∆GH*, it is hoped that it is close
to zero since either a negative ∆GH*, meaning the facile adsorption of H* on the active
site but challenging detachment, or a positive ∆GH*, indicating the arduous attachment
of H on the active site but easy release, results in a large overpotential during the HER
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process [56]. As listed in Table S1, Mo2N and Mo2C have an exothermic ∆GH*, calculated
to be −0.5889 and −0.3178 eV, respectively, implying an impediment to hydrogen release
and hence a poor HER performance. For the Mo2C-Mo2N heterostructure, the ∆GH* values
for HER occurring on the interfacial N, Mo (bonded with N and C atoms), and C site are
0.0913, −0.1673, and −0.6604 eV, respectively. Therefore, interfacial N and Mo (bonded
with N and C atoms) atoms are two major active centers for HER. More significantly,
the |∆GH*| value of these centers is much closer to zero compared to those of Mo2N
and Mo2C, which endows the desired balance between adsorption and desorption of
H*, contributing to a high electrocatalytic activity of the Mo2C-Mo2N heterostructure. To
support such theoretical results, Mo2C@CNWS/D-650 was prepared on the CC without the
melamine introduction (see XRD pattern in Figure S14). Figure S15 and Table S2 confirm
the beneficial effect derived from the Mo2C-Mo2N heterostructure on the HER, because
the Mo2C-Mo2N@CNWS/D-650 possesses a much smaller overpotential (η10 = 42.8 mV)
and lower Tafel slope (45.6 mV/dec) than the Mo2C@CNWS/D-650 (η10 = 107.9 mV, Tafel
slope = 52.9 mV/dec).
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Figure 5. DFT calculations for HER energy variation and electronic states. (a) Optimized structural
model with H* adsorbable sites, (b) free energy diagram of H* adsorption/desorption, and (c) partial
density of states of Mo d orbitals for Mo2N (111) facet, Mo2C (101) facet, and Mo2C (101)-Mo2N (111)
heterostructure. The Fermi level is referenced to 0 eV in panel (c).

To further explain the factors affecting the adsorption energy on the Mo2C-Mo2N
heterostructure, we investigated the electronic states of Mo d orbitals and calculated the
corresponding d-band center (Figure 5c). The heterostructure possesses a more negative
d-band center (−1.13 eV) than that of Mo2N (−0.81 eV) and Mo2C (−1.02 eV), indicating
that the surplus H* binding capacity favorably weakens, which thus contributes to a
decreased |∆GH*| value on the interfacial Mo site of Mo2C-Mo2N [57], as explained in
Figure 5b. In addition, the local density of state of Mo2C-Mo2N is higher than that of
Mo2N and Mo2C near the Fermi level. Such enhancement facilitates a rapid charge transfer
rate at the electrolyte(H+)/electrocatalyst interface in the HER, consistently supported
by the much lower Rct on the Mo2C-Mo2N (8.59 Ω) than Mo2C (129.42 Ω) in Table S2.
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The fast charge transfer process further triggers a superior HER activity on the Mo2C-
Mo2N heterostructure.

DFT calculation reveals that the interfacial atoms, particularly N and Mo atoms, take a
pivotal role in determining the high intrinsic activity of the Mo2N–Mo2C heterostructure.
Therefore, more interface sites are created, and more active HER performance will be
harvested. Considering a constant total amount of Mo2N and Mo2C, and only the Mo2N
content is equal to the Mo2C content, could the maximal interfacial abundance possibly be
approached. That is why the utmost HER efficiency was observed when the ratio of n(Mo-
N)/n(Mo-C) of Mo2C-Mo2N@CNWs/D-650 is close to 1, as shown in Figure 4f. In the study
by Liu et al., the MoC-Mo2C heterostructure was developed as the HER electrocatalyst.
They also uncovered that the optimum HER efficiency was attained when the MoC and
Mo2C exhibited nearly identical concentrations.

Furthermore, 3D-networked CNWs/D possesses a high electrical conductivity, open
accessible surface, and large surface area, working as an excellent current collector to
efficiently promote the charge transfer on the active sites of porous Mo2C-Mo2N and
enhance the overall high-current HER performance. Figure S16 and Table S2 display that
the Mo2C-Mo2N@CNWS/D-650 has a close Tafel slope with the Mo2C-Mo2N@CC-650,
indicating the nearly identical HER kinetics derived from the Mo2C-Mo2N heterostructure.
Nevertheless, owing to more than a two-fold increase in capacitance (also ECSA) stemming
from the CNWs/D, the Mo2C-Mo2N@CNWS/D-650 exhibits a much lower overpotential
(η1000 = 194.4 mV) than that of Mo2C-Mo2N@CC-650 (η1000 = 251.7 mV).

In short, we constructed a highly active Mo2C-Mo2N heterointerface and augmented
the abundance of interfacial sites through facilely manipulating the annealing tempera-
ture. This, coupled with the enhanced ECSA provided by the CNWs/D current collector,
synergistically results in exceptional HER performance at high current densities.

4. Conclusions

In summary, a binder-free Mo2C-Mo2N@CNWs/D heterostructure is facilely prepared
via ultrasonically soaking in a Mo-salt solution followed by an annealing treatment and the
outstanding performance is demonstrated using this self-supporting electrocatalyst in the
high-current-density HER. The Mo2C-Mo2N@CNWs/D not only delivers a low overpoten-
tial of 42.8 mV at a small current density of 10 mA/cm2 but also maintains impressively
low overpotentials of 137.8 and 194.4 mV at high current densities of 500 and 1000 mA/cm2,
respectively. The outstanding high-current HER performance could be ascribed to synergis-
tic merits derived from the Mo2C-Mo2N heterostructure and CNWs/D as follows: (1) DFT
calculations reveal that the heterojunction of Mo2C and Mo2N downshifts the d-band center
of interfacial Mo orbitals, contributing to a ∆GH* value that is close to zero, thus leading to
high interfacial activity of Mo2C-Mo2N. (2) The hetero-interfacial active sites are enriched
through elaborately manipulating the proportion of the Mo-C bond to Mo-N bond close
to 1. (3) Benefitting from a high electrical conductivity, open accessible surface, and large
surface area, the 3D-networked CNWs/D serves as a good current collector to facilitate
the electron transfer occurring on the interfacial sites of Mo2C-Mo2N. This work highlights
an effective way to design a highly active non-precious electrocatalyst and promises its
applications in the electrochemical hydrogen production industry.

Supplementary Materials: The following supporting information can be downloaded at: https:
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