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Abstract: Addressing the urgent need for sustainable energy sources, this study investigates the
intricate relationship between rhodium (Rh5) nanoclusters and TiO2 rutile (110) surfaces, aiming to
advance photocatalytic water splitting for green hydrogen production. Motivated by the imperative
to transition from conventional fossil fuels, this study employs density functional theory (DFT) with
DFT-D3 and HSE06 hybrid functionals to analyse the geometrical stabilities and electronic structures
of Rh5 nanoclusters on TiO2 rutile (110). TiO2, a prominent photocatalyst, faces challenges such as
limited visible light absorption, leading researchers to explore noble metals like Rh as cocatalysts. Our
results show that bipyramidal Rh5 nanoclusters exhibit enhanced stability and charge transfer when
adsorbed on TiO2 rutile (110) compared to trapezoidal configurations. The most stable adsorption
induces the oxidation of the nanocluster, altering the electronic structure of TiO2. Extending the
analysis to defective TiO2 surfaces, this study explores the impact of Rh5 nanoclusters on oxygen
vacancy formation, revealing the stabilisation of TiO2 and increased oxygen vacancy formation energy.
This theoretical exploration contributes insights into the potential of Rh5 nanoclusters as efficient
cocatalysts for TiO2-based photocatalytic systems, laying the foundation for experimental validations
and the rational design of highly efficient photocatalysts for sustainable hydrogen production. The
observed effects on electronic structures and oxygen vacancy formation emphasize the complex
interactions between Rh5 nanoclusters and the TiO2 surface, guiding future research in the quest for
clean energy alternatives.

Keywords: Rh5 nanoclusters; TiO2 rutile (110); photocatalysis; green hydrogen production; DFT;
oxygen vacancy; sustainable energy

1. Introduction

Contemporary chemistry is characterized by a heightened focus on addressing global
challenges related to energy production and environmental remediation. The pursuit of
innovative energy alternatives, driven by the pressing need to move beyond conventional
fossil fuels, has become a central theme in scientific research. This shift towards sustainable
practices is not only motivated by environmental consciousness but also by stringent
environmental regulations that highlight the necessity of adopting eco-friendly approaches.
A pivotal contribution to this field is exemplified by the groundbreaking work of Fujishima
and Honda, who showed the viability of photoelectrochemical water splitting using rutile
TiO2 as an anode and a Pt wire cathode under a chemical bias [1]. Beyond its role in
water splitting, TiO2, a prominent photocatalyst, has garnered significant attention for its
applications in the decomposition of harmful organic materials [2–5]. This multifaceted
functionality extends TiO2 photocatalysis to diverse environmental challenges, showcasing
their effectiveness in both gaseous environments and solutions. This versatility aligns
with the broader trend in contemporary chemistry, emphasizing interdisciplinary research
approaches aimed at developing sustainable solutions for the interconnected issues of
energy and the environment. The collaborative efforts of scientists and researchers across
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disciplines underscore the significance of integrated approaches in meeting the complex
challenges of the modern era.

In photocatalytic water splitting [6], the role of TiO2 is pivotal but not without its
challenges. TiO2 is commonly employed as a photocatalyst, and to intensify the efficiency of
the hydrogen evolution reaction (HER), it is a prevalent practice to load suitable cocatalysts,
often metallic in nature [7,8]. Upon photon excitation, TiO2 generates photoelectrons in
its bulk region, underscoring the importance of cocatalysts that excel in two key aspects:
(i) facilitating improved charge transfer over the interface from catalyst to the metal and
(ii) ensuring fast H2 generation on the surface of metal [9,10]. However, TiO2 faces intrinsic
challenges [11], including a band gap energy (Eg) of around 3.2 eV [12,13], that confines its
light absorption primarily to ultraviolet (UV) wavelengths. Additionally, a notable concern
arises from the significant degree of charge recombination for photo-generated charges in
TiO2. In response to these challenges, researchers have implemented various strategies to
broaden the application of TiO2 in photocatalysis. For instance, efforts have been made to
integrate TiO2 with other semiconductor materials [14,15], a technique aimed at mitigating
limitations associated with its band gap and extending its responsiveness to a broader
spectrum of light. Furthermore, innovative approaches such as dye sensitization in solar
cells have been explored [16], providing alternative avenues to enhance the performance of
TiO2 in capturing and utilizing solar energy, fabricating with both metallic and non-metallic
ions [17,18] and depositing noble metals [19]. These strategies exemplify the ongoing
endeavours within the scientific community to overcome the inherent limitations of TiO2
and advance the field of photocatalysis for sustainable energy production.

Noble metals, such as Pd (palladium), Pt (platinum), and Rh (rhodium), have emerged
as valuable catalysts in the realm of photocatalytic hydrogen evolution reaction (HER) due
to their notable work functions and favourable Gibbs adsorption energies for hydrogen
atoms [20,21]. These metals, with their distinctive properties, play a significant role in
enhancing the efficiency of hydrogen evolution during photocatalysis. For example, the
incorporation of Rh into TiO2 has been explored as a strategy to boost photoreactivity.
Rh-doped TiO2 has demonstrated enhanced performance, a phenomenon attributed to
the facilitated electron transfer between Rh and the TiO2 conduction band (CB) or valence
band (VB). Studies have shown that TiO2 samples decorated with Rh exhibit superior
activity compared to alternative modifications, emphasizing the effectiveness of noble
metal doping in optimizing the photocatalytic properties of TiO2 [22,23]. This underscores
the significance of exploring and understanding the synergistic effects between noble metals
and semiconductor materials to further advance the development of effective photocatalysts
for applications in sustainable energy.

Xing et al. [24] made notable contributions to the field of photocatalysis by employing
a single-step approach to synthesise isolated metal atoms stably loaded on the TiO2 anatase
(101) surface, thereby extending the concept of single atom catalysts to the domain of pho-
tocatalytic hydrogen production. This groundbreaking approach involves the deposition of
single atoms of noble metals, including Pd, Pt, Rh, and Ru, uniformly on the TiO2 anatase
(101) surface. The resulting catalysts exhibit remarkably improved photocatalytic perfor-
mance, particularly in the context of hydrogen evolution. This innovative methodology
opens new avenues for the design of highly efficient and stable photocatalysts. The work
by Xing et al. underscores the importance of exploring diverse approaches to advance
the understanding and application of single atom catalysts in photocatalysis. While Pt,
Pd, Rh, and Ru nanoclusters have found practical applications [25,26], it is noteworthy
that a comprehensive theoretical analysis of Rh nanocluster-loaded TiO2 rutile (110)-based
photocatalytic systems is currently lacking. Further theoretical investigations into the
unique properties and behaviours of these systems could provide valuable insights into
their photocatalytic mechanisms and guide the development of advanced materials for
sustainable energy applications.

In the current study, an examination of the pristine and reduced TiO2 rutile (110)
surface loaded with Rh5 nanoclusters is conducted using density functional theory (DFT).
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Upon a reduction in the size of the Rh cluster, it exhibits a more substantial HOMO-LUMO
gap relative to larger clusters of Rh [27]. The phenomenon of energy band discretisation
in metal clusters is notably pronounced and size-dependent, resulting in the emergence
of substantial band gaps in proximity to the Fermi level. These gaps often surpass one
electronvolt (eV) and play a pivotal role in dictating the excitation–emission characteristics
within clusters. Such a feature paves the way for the strategic design of metal clusters, capi-
talising on their distinctive luminescence properties across the ultraviolet-visible–infrared
(UV-Vis-IR) spectrum for tailored optical applications [28]. Furthermore, an investigation
into the low-index faces of rutile revealed that, in accordance with the composition found
in natural rutile powder, the (110) face exhibits the highest stability, followed by the (100)
and (101) faces in terms of their relative stability [29,30]. Therefore, the TiO2 rutile (110)
surface was chosen in this study. The choice of employing the DFT-D3 method [31] is
rooted in its effectiveness in characterising the adsorption behaviour of Rh nanoclusters
on rutile TiO2. To further elucidate the electronic structure relevant to polaron formation
on TiO2 surfaces [32,33], this study utilises the HSE06 hybrid functional, a theoretical
framework developed by Heyd, Scuseria, and Ernzerhof [34,35]. This hybrid functional
incorporates a fraction of exact exchange, improving the description of electronic properties
compared to standard DFT methods. This article is organised as follows: Section 2 provides
comprehensive details on the simulation methodologies employed, offering transparency
and reproducibility in the research process. Section 3 is dedicated to presenting and dis-
cussing the outcomes of the simulations, shedding light on the interactions and behaviours
observed in the system under investigation. It also delves into the concept of polaron
and compares the obtained results with previous findings, contributing to the theoretical
understanding of charge carriers on TiO2 surfaces. Finally, Section 4 outlines the principal
results, providing a pragmatic perspective on their implications for the broader scientific
community and applications in renewable energy.

2. Computational Details

To explore the electronic properties and charge density of Rh5 nanoclusters and
understand their photon absorption capabilities, we employed the Vienna Ab initio Sim-
ulation Package (VASP 5.4.4) [36–38]. This allowed us to derive optimised geometries
and electronic structures for both bare Rh5 nanoclusters and Rh5@TiO2. The simulations
utilised the HSE06 hybrid exchange–correlation functional with periodic boundary condi-
tions, encompassing short-range and long-range elements of the Perdew–Burke–Ernzerhof
(PBE) exchange functional. The exchange–correlation component incorporates short-range
Hartree–Fock (HF) exchange and a PBE correlation functional [34].

The interplay between valence electrons and the ion core was clarified through the
utilisation of the projector-augmented wave (PAW) approach. [39,40], employing PAW-
PBE [41] pseudopotentials. Valence electrons from Ti (3s, 3p, 4s, 3d), O (2s, 2p), and Rh (4d,
5s) atomic orbitals were considered. To rectify the self-interaction error and ensure accurate
predictions of polaronic states and the band gap of TiO2, we incorporated the generalised-
gradient approximation (GGA) with a Hubbard parameter (U) [42]. The assigned U value
for the titanium (3d) state study was 4.2 eV, as documented in the literature [43,44]. Spin-
polarized Perdew–Burke–Ernzerhof (PBE) with the Becke–Jonson (BJ) damping function,
following Grimmme’s technique [31], was applied for van der Waals (vdW) corrections,
selected for its accuracy in predicting the adsorption energy of metal oxide materials [45].

To model the pristine rutile TiO2 (110) surface, we constructed unit cells with dimen-
sions of 12 Å × 13 Å, consisting of four O-Ti-O trilayers. A 20 Å vacuum layer was added
above the surface. For individual Rh5 nanoclusters without any interaction with periodic
images, we utilised large supercells (30 × 30 × 30 Å3). A k-point mesh was employed,
adhering to the Monkhorst–Pack scheme [46], wherein all simulations were conducted
utilising a singular k-point value, employing a fixed planewaves basis set of 500 eV. A Gaus-
sian smearing parameter of 0.05 eV was applied for band occupation due to the substantial
supercell used in the tetrahedron. To achieve self-consistent electronic minimisation, we set
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a convergence threshold of 10−4 eV. The convergence criterion of 10−4 eV was chosen based
on common practices in computational studies [47–51]. This criterion ensures adequate
precision in the calculations while balancing computational resources, and all modelled
structures underwent relaxation with a force threshold value of 0.02 eV/Å.

The stability of catalysts during chemical reactions poses a crucial challenge for prac-
tical applications. Consequently, we computed the adsorption energy (Eads) of the Rh5
nanocluster to assess its stability during adsorption, as per the following formula:

Eads = Etot − ETiO2 − ERh5 (1)

Here, Etot is the total energy of the whole system, ETiO2 is the total energy of TiO2, and
ERh5 is the total energy of Rh5 nanoclusters. In the context of defects, the oxygen vacancy
(EVo) formation energy was determined through the following formula:

EVo = Esur f ace+Vo +
1
2

EO2 − Esur f ace (2)

This involves Esur f ace+Vo, representing the total energy of the reduced TiO2, EO2
denoting the total energy of free oxygen in the gas phase, and Esur f ace representing the total
energy of the perfect TiO2. Both adsorption and formation energies were assessed using
GGA + U calculations. The construction and visualisation of all structures presented in this
study were performed using (VESTA 3.5.8) software [52].

3. Results and Discussion
3.1. Isolated Rh5 Nanoclusters

Figure 1a and Figure 1b illustrate the optimised structures of Rh5 nanoclusters in the
gas phase, showcasing bipyramidal and trapezoidal shapes, respectively. Both structures,
representing the doublet state, indicate that the bipyramidal configuration (Figure 1a) is
more stable in the gas phase compared to the trapezoidal shape (Figure 1b), with an energy
difference of 1.38 eV. The bipyramidal Rh5 nanoclusters in Figure 1a deviate from perfect
D3h symmetry, featuring equatorial Rh atoms forming a triangular ring and axial Rh atoms
located above and below the ring. Notably, the equatorial atoms exhibit inequivalence,
with three bonds shaping the triangle (d1), measuring 2.48 Å, while the remaining bond
(d4) is 2.50 Å. The bonds d2 and d3, formed by axial Ag with the three equatorial sites
measure 2.47 Å for both (see Table 1 for detailed information). The unpaired electron
in the Rh5 doublet state (with S = ½), as depicted in Figure 1c, primarily localises on
the two axial Rh atoms, resembling the charge distribution observed in Cu5 [53] and Ag5
nanoclusters [33]. According to the density of states analysis in Figure 1, the calculated band
gaps of bipyramidal and trapezoidal Rh5 nanoclusters are 1.15 eV and 0.57 eV, respectively.

3.2. Bipyramidal Rh5 Nanocluster Loaded on TiO2

As part of a benchmark analysis, we computed the electronic density of states for the
pristine TiO2 rutile (110), as shown in Figure S1. Our calculations yielded an estimated band
gap value of approximately 3.2 eV, aligning well with experimental findings [12]. After
examining the geometrical and electronic characteristics of bare Rh5 nanoclusters, our focus
shifted to an investigation of the corresponding attributes in Rh5 nanoclusters adsorbed
into both pristine and reduced TiO2 (110) surfaces. Three distinct adsorption sites of the
bipyramidal Rh5 nanocluster on TiO2 are scrutinized, as depicted in Figure 2. Notably,
the configuration illustrated in Figure 2a demonstrates superior stability, evidenced by
an adsorption energy of −5.28 eV in comparison to the other two configurations, with
an average Rh-O bond length of 2.10 Å (see Table 2). Conversely, the structure presented
in Figure 2b exhibits the least stability, marked by an adsorption energy of −4.78 eV.
The configuration in Figure 2c manifests a metastable state with an adsorption energy of
−4.84 eV. The discerned disparities in stability may be ascribed to the nature of the Rh-O
bonds; specifically, in the most stable configuration (Figure 2a), four Rh atoms are bonded
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to four O atoms, whereas in the remaining two structures, only three Rh atoms form bonds
with three O atoms.
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Table 2. DFT + U calculated adsorption energies (Eads) and Bader charge distributions on adsorbed
bipyramidal Rh5 nanoclusters shown in Figure 2.

Structure Figure 2a Figure 2b Figure 2c

Eads (eV) −5.28 −4.78 −4.84
Charge on Rh5 (e−) +0.60 +0.85 +0.80

Additionally, to enhance our understanding of the observed adsorption patterns, we
focus on the analysis of charge transfer. In the case of the most stable configuration, the
Rh5 nanocluster exhibits a charge transfer of approximately +0.6 e− to TiO2. This observed
electron transfer implies an oxidation state for the Rh5 nanocluster, corroborating findings
from previous studies [51,54,55]. To evaluate the influence of the Rh5 nanocluster on
the electronic structures of the TiO2 rutile (110) surface, we conducted density of states
calculations applying the HSE06 functional and wavefunction computations for the most
stable configuration, as depicted in Figure 2a and presented in Figure 3. Our findings
indicate that incorporating a bipyramidal Rh5 nanocluster into the TiO2 rutile (110) surface
results in the creation of mid-gap states in the band gap.
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Figure 3. Density of states and wavefunction of bipyramidal Rh5 nanocluster loaded on perfect
TiO2 rutile (110) surface. The states associated with Ti, O, Rh atoms, and Ti27 atom are depicted
by the green, red, blue, and pink colours, respectively. The Fermi energy level is indicated by the
black vertical line. The reference colours yellow and blue for isosurfaces symbolize the positive and
negative stages of wave functions, respectively. It’s important to note that these reference colours are
consistently used for all wavefunction plots in the following figures.

As an illustration, the highest occupied molecular orbital (HOMO) exhibits a high-
energy state situated at −0.23 eV, roughly 0.72 eV below the CB edge. The introduction of
mid-gap states is a result of charge transfer from the Rh5 nanocluster to the TiO2 surface.
These intermediary states play a pivotal role in absorbing photons within the visible
and UV regions. Furthermore, the deposition of the Rh5 nanocluster on TiO2 results in
the repopulation of the CB, initiating a manifestation of metallic characteristics within
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the system. Similar findings have been documented for a TiO2 system when exposed
to Ag3 and Ag5 clusters [56]. In the context of the visible-light spectrum, it becomes
apparent that mid-gap states can accept electrons from the VB. The energetic nature of
visible-light irradiation facilitates electron transfer due to the diminished energy separation
between intra-gap states and the VB. This electron transition potentially contributes to the
augmentation of photocatalytic hydrogen production [57]. For example, Wang et al. [58]
experimentally reported that the photocatalytic activity for hydrogen evolution using Rh-
doped rutile demonstrated an approximate fiftyfold increase in efficiency compared to that
observed with Rh-doped anatase powders.

3.3. Trapezoidal Rh5 Nanocluster Loaded on TiO2

This investigation involves the computational simulation of three distinct adsorption
configurations of trapezoidal Rh5 nanoclusters on the TiO2 rutile (110) surface, specifi-
cally adopting upstanding, tilted, and lying-down orientations, as illustrated in Figure 4.
Analysis of the simulation reveals notable distortions in the upstanding and tilted Rh5
nanoclusters (see Figure 4a,d and Figure 4b,e) upon their adsorption onto the TiO2 surface,
leading to diminished stability, characterised by an average Rh-O bond length of approxi-
mately 2.02 Å. A higher adsorption energy is discerned in the case of a slight tilt in the Rh5
nanocluster towards the TiO2 surface, amounting to approximately 0.01 eV. Conversely,
when the Rh5 nanocluster assumes a parallel orientation to the TiO2 surface (depicted
in Figure 4c,f), a considerably higher adsorption energy of approximately −6.46 eV is
observed, indicative of enhanced stability in comparison to the upstanding and tilted
configurations. This trend mirrors findings from prior DFT studies on trapezoidal Ag5
and Cu5 adsorbed on TiO2 rutile (110) [33,53]. Additionally, a pronounced distortion is
evident on the TiO2 surface directly beneath the loaded Rh5 nanocluster. Table 3 provides a
comparative analysis of the adsorption energies and charges associated with the various
Rh5 nanocluster structures depicted in Figure 4.
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Table 3. DFT + U calculated adsorption energies (Eads) and Bader charge distributions on adsorbed
trapezoidal Rh5 nanoclusters shown in Figure 4.

Structure Figure 4a Figure 4b Figure 4c

Eads (eV) −3.90 −3.91 −6.46
Charge on Rh5 (e−) +0.79 +0.80 +0.72

The electronic characteristics of the most stable structure of trapezoidal Rh5@TiO2
are subjected to an in-depth analysis through the density of states and analysis of Bader
charge, as presented in Figure 4 and Table 3, respectively. Bader charge analysis reveals
that all trapezoidal Rh5 nanoclusters exhibit electron donation to the TiO2 surface, inducing
oxidation. Interestingly, a noticeable correlation is observed, where less charge transfer from
the Rh5 nanocluster to the catalyst correlates with higher stability, while augmented charge
transfer corresponds to less stability. This trend contrasts with the behaviour noted in the
loading of Ag5 clusters on the TiO2 rutile (110) surface [33]. Furthermore, the adsorption of
the trapezoidal Rh5 nanocluster induces notable alterations in the electronic characteristics
of the pristine TiO2, generating mid-gap states within the band gap, as illustrated in Figure 5.
The density of states analysis delineates that the HOMO state of the Rh5 nanocluster is
situated approximately 1.2 eV below the CB. To conclude this section, the simulation results
show that the bipyramidal Rh5 nanocluster exhibits superior efficacy in enhancing the
photocatalytic activity of TiO2 rutile (110) compared to the trapezoidal Rh5 nanocluster.
This is substantiated by the energy difference, with the most stable configuration of the
bipyramidal Rh5 nanocluster registering a –0.2 eV reduction compared to the most stable
structure of the trapezoidal Rh5 nanocluster.
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3.4. Bipyramidal Rh5 Nanocluster Loaded on Defective TiO2

To investigate the influence of the Rh5 nanocluster on the generation of an oxygen
vacancy on the TiO2 rutile (110) surface, we initially present results related to defective TiO2
rutile (110). In our prior DFT calculations [33], it has been demonstrated that the formation
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energy of a surface oxygen vacancy on pristine TiO2 rutile (110) is lower than that of the
subsurface by approximately 0.6 eV (see Figure S2 and Table S1), aligning with previous
studies [59,60]. Subsequently, with reference to the most stable configuration of Rh5 loaded
on TiO2, as depicted in Figure 2a, an exploration into the impact on the photocatalytic
activity concerning surface oxygen vacancy was conducted. The investigation reveals that
the introduction of the Rh5 nanocluster stabilises TiO2 rutile (110), leading to an elevation
in the formation energy of both surface and subsurface oxygen vacancies by 0.44 eV and
0.17 eV, respectively (see Figure S3 and Table S1 for further comparative analysis).

To explore the electronic characteristics of a Rh5 nanocluster adsorbed onto reduced
TiO2 rutile (110), we conducted density of states and wavefunction calculations, as shown
in Figure 6. The figure indicates that the combined presence of the Rh5 nanocluster and
an oxygen vacancy introduces additional gap states. Notably, the CB edge undergoes a
significant downward shift towards lower energy levels, resulting in an elevated energy
HOMO state of the Rh5 nanocluster by approximately 0.3 eV from its position. Remarkably,
the state appearing at –0.72 eV corresponds to the singly occupied molecular orbital
(SOMO), situated on a Ti61 atom on the surface of TiO2, exhibiting an electron gain of
approximately 0.3 e− and giving rise to a polaronic state (as depicted by SOMO in Figure 6).
Furthermore, our investigation shows an electron donation from the Rh5 nanocluster
to the material amounting to +0.3 e−, representing a reduction of half compared to the
configuration without the oxygen vacancy (i.e., the configuration illustrated in Figure 2a).
The formation of the polaronic state is identified as a significant factor contributing to the
absorption of visible-light photons [61]. In summary, the reciprocal presence of the Rh5
nanocluster and the oxygen vacancy synergistically enhances the photocatalytic activity of
the substrate. Consequently, both the Rh5 nanocluster and the oxygen vacancy emerge as
potential catalysts for water splitting, offering promising insights for the systematic design
of highly efficient photocatalysts dedicated to photocatalytic hydrogen generation.
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4. Concluding Remarks

This article delves into the investigation of geometrical stabilities and electronic char-
acteristics of Rh5 nanoclusters on the TiO2 rutile (110) surface, aiming for potential applica-
tions in green hydrogen production through photocatalytic water splitting. The research is
motivated by the need for efficient and sustainable energy sources, particularly focusing on
enhancing the photocatalytic performance of TiO2, a well-established photocatalyst. By em-
ploying DFT with the DFT-D3 technique and the HSE06 hybrid functional, we conducted a
comprehensive examination of the adsorption behaviour, electronic structures, and charge
transfer dynamics of Rh5 nanoclusters on TiO2 surfaces. The computational analysis ex-
plored the stability of Rh5 nanoclusters on both pristine and reduced TiO2 surfaces, along
with their influence on oxygen vacancy formation. The results indicate that trapezoidal Rh5
nanoclusters exhibit superior stability and adsorption energy compared to bipyramidal
structures when deposited on TiO2 rutile (110). The most stable adsorption structures of
the bipyramidal Rh5 nanocluster resulted in a charge transfer of approximately +0.6 e−

to TiO2, inducing oxidation of the nanocluster. Electronic structure analysis reveals the
generation of intra-gap states in the band gap of TiO2 upon Rh5 nanocluster deposition,
suggesting potential implications for visible and ultraviolet photon absorption.

Additionally, this study investigates the interaction of Rh5 nanoclusters with defec-
tive TiO2 surfaces, with a specific focus on the oxygen vacancies’ evolution. The results
indicate that the existence of Rh5 nanoclusters stabilizes TiO2 and increases the oxygen
vacancies’ formation energy, hinting at a potential role in enhancing photocatalytic activity.
To summarise, this theoretical investigation offers valuable insights into the potential of Rh5
nanoclusters as efficient cocatalysts for TiO2-based photocatalytic systems. The results pro-
pose that the bipyramidal configuration of Rh5 nanoclusters, when appropriately adsorbed
on TiO2 rutile (110), may contribute to enhanced photocatalytic performance, providing
opportunities for the rational design of highly efficient photocatalysts for green hydrogen
production. The HOMO state being located at 0.72 eV below the CB edge (see Figure 3),
which possesses high energy, can significantly benefit photocatalytic water splitting for
green hydrogen production. This positioning of the HOMO level enhances the ability
of the photocatalyst to transfer electrons effectively. During water splitting, electrons in
the HOMO can be excited to the CB, leaving holes in the HOMO. These holes can then
participate in the oxidation of water to produce oxygen. The excited electrons in the CB can
reduce protons in water, generating hydrogen. Therefore, the position of the HOMO level is
crucial for efficient photocatalytic activity, influencing the HER in water splitting processes.
The observed effects on oxygen vacancy formation further underscore the intricate interplay
between metal nanoclusters and the semiconductor surface, paving the way for future
experimental validations and practical applications in sustainable energy production.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano14020191/s1, Figure S1: Density of states of pristine rutile TiO2
(110). The green and red curves show the electronic density of states on titanium and oxygen atoms,
respectively. The black vertical dashed line shows the Fermi energy level. Reproduced from our
previous calculations [33]; Figure S2: Oxygen vacancy formation at (a) surface and (b) subsurface
locations of TiO2 rutile (110). The black circles represent the oxygen vacancy position. Repro-
duced from our previous calculations [33]; Figure S3: Oxygen vacancy formation at (a) surface and
(b) subsurface locations of Rh5@TiO2 rutile (110). The black circles represent the oxygen vacancy
position; Table S1: Comparisons of formation energies of oxygen vacancy.
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