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Methods 
DLVO Theory: Depending on the individual particle properties, as well as the dispersion fluid, 

colloids can aggregate, flocculate, or remain discrete within the fluid environment. Due to the fluid 

inertia and small length scales, most mathematical models for the base fluid on these scales use 

the Navier-Stokes equations of state for fluids, assuming incompressibility, and Neo-Hookean or 

rigid body material for the solid particles; the associated approximations included in these 

assumptions are favorably validated with experiments [1-4]. DLVO theory, named after Boris 

Derjaguin, Lev Landau, Evert Verwey, and Theodoor Overbeek, quantitatively describes the 

aggregation behavior of aqueous dispersions, and as such is very useful for the modeling of 

colloidal interactions, which generally present long-range repulsion and short-range attraction 

between dispersed particulates [5-7]. DLVO describes the force between two spheres interacting 

through a combination of Lennard-Jones and doubly-screened electrostatic interactions, and with 

a certain amount of modification can also be used to describe nonspherical particles [8]. Due to 

the doubly-screened electrostatic interactions felt by the particles, aggregation behavior of charged 

particles is strongly dependent on the screening potential / chemical makeup of the suspending 



fluid, with the polar solvent water being the most commonly used [9]. Thus, in this work, DLVO-

based interaction potentials are used for colloid-colloid interactions, with a multiparticle collision-

based method used to model the solvent.  

Stochastic Rotation Dynamics: SRD is a dynamic mesoscopic coarse graining technique which 

has been previously used to capture the behavior of passive and active colloidal particles under 

low Reynolds numbers and low to moderate Peclet numbers [10-12]. SRD was developed for cases 

when fluid dynamics are important, but the detailed chemical properties can be neglected. 

Compared to DPD, where transport coefficients and effective viscosities can vary by up to 50%, 

SRD values are generally within 1% of experimental results. The lattice Boltzmann method for 

solvent particles can be more efficient than SRD, but is also far less accurate in regimes where 

thermal fluctuations are needed (such as the effect of Brownian motion). Brownian dynamics can 

be more efficient than SRD, but less accurate if inertia and full hydrodynamics are necessary. The 

fluid-representative solvent is composed of point masses, and SRD draws from both Monte Carlo 

and lattice methods with no numerical instabilities. It can also be easily coupled with MD 

simulations. The SRD method maintains synchronous, discrete-time dynamics with continuous 

velocities and local multiparticle collisions used to efficiently describe the dynamics of the solvent, 

while colloidal particles are coupled to the solvent through explicit interaction potentials [10]. 



 

Figure S1: Low Reynolds regime for laminar flow test cases. Cases are for spheres of different 
radii under driving force (a) F = 0.1, (b) F = 0.5, (c) F = 1, (d) F = 5. The dotted lines are derived 
from theory.  



 

Figure S2: Path of a single bead (a) and MSD (b) comparisons. 

  



 

 

Figure S3: Axes and initial experimental setup for θ = 30%. 

 

  



 

Figure S4: Coordination during clustering for θ = 30% F = 5. (a) τ = 275, (b) τ = 2,500. The 
color bar indicates coordination of the beads. 

 

  



 

Figure S5: Labeled Regions 4 for θ = 20%, F = 0.5. (a) Mean size fitting, (b) size peak probability 
fitting, (c) cluster sizes for Region 4, (d) scaled cluster sizes for Region 4. 𝑚 and ℎ are scaling 
exponents. 

  



 

Figure S6: Gamma function a (shape) and b (scale) parameters over time for (a) θ = 5%, F = 0, (b) 
5; (c) θ = 15%, F = 0, (d) 5; (e) θ = 30%, F = 0, (f) 5. The solid vertical lines mark the transition 
between regions.  



 

Figure S7: Cluster spatial distributions. (a) FFT of image in (b) for θ = 15%, F =0, t = 5000 τ (c) 
and (d) show the circularly averaged intensity profile. 
  



 

Figure S8: (a, c, e) Cluster distribution and (b, d, e) FFT power spectra showing presence and 
disappearance of crystalline peaks due to the initial setup geometry for θ = 5%, F = 0 for (a, b) τ = 
0, (c, d) τ = 100, (e, f) τ = 500.  



 

 

Figure S9: τ = 5,000 for the cases shown in Figure 3. 

 

  



 

 

 

Figure S10: 2D circularly averaged FFT spectra over time for θ = 15%, F =0. (a) The peak center 
for k0, with fitting line for Region 4; (b) the peak intensity of k0, with fitting line for Region 4. (c) 
The FFT spectra for t = 1,000 τ to t = 4,000 τ. (d) The same spectra after being scaled by the scaling 
function for the pertinent region. 
  



 

Figure S11:  Clustering behavior over time for θ = 5%. 

  



 

Figure S12: Clustering behavior over time for θ = 10%. 

  



 

Figure S13: Clustering behavior over time for θ = 20%. 

  



 

Figure S14: Clustering behavior over time for θ = 25%. 

  



 

Figure S15: Clustering behavior over time for θ = 30%. 

  



 

Figure S16: Different runs for θ = 5%, (a) F = 0, (b) F = 1, (c) F = 5, and (d) F = 10. 

  



 

Figure S17: Size effects of the system. On clustering behavior. θ = 25% F = 0. 

  



 

 

Figure S18: (a) Cluster number for F = 0, (b) F = 1, (c) F = 5, (d) F = 10. 
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