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Abstract: A systematic investigation of the dynamic clustering behavior of active particles under
confinement, including the effects of both particle density and active driving force, is presented based
on a hybrid coarse-grained molecular dynamics simulation. First, a series of scaling laws are derived
with power relationships for the dynamic clustering time as a function of both particle density and
active driving force. Notably, the average number of clusters N assembled from active particles in
the simulation system exhibits a scaling relationship with clustering time t described by N ∝ t−m.
Simultaneously, the scaling behavior of the average cluster size S is characterized by S ∝ tm. Our
findings reveal the presence of up to four distinct dynamic regions concerning clustering over time,
with transitions contingent upon the particle density within the system. Furthermore, as the active
driving force increases, the aggregation behavior also accelerates, while an increase in density of
active particles induces alterations in the dynamic procession of the system.

Keywords: active particles; simulation; aggregation; confined environment

1. Introduction

Active particles, distinguished by their autonomous operations at the nano- and
microscales within fluids, can be differentiated from particles which passively react to
their environment. Their unique ability to self-propel and impart energy to a system
has recently garnered considerable attention. The applications of active particles span
a diverse array, encompassing catalysis [1], toxin detection [2,3], cellular marking [4],
wastewater treatment [5–12], CO2 scrubbing [13], chemical and biological warfare agent
neutralization [14–17], on-the-fly hydrogel polymerization [18], micropatterning [19], and
even energy generation [20]. Indeed, the lion’s share of interest in active particles has
been concentrated in the realm of medicine and chemistry, particularly in drug delivery
and synthesis [21–36]. Magnetically controlled active particles, such as those made of iron
oxide, have shown great promise in drug delivery as well as in the removal of blockages
from blood vessels within the body [37–39]. In applications where active particles are
abundantly present, such as in microfluidics devices or the human body, systems can be
considered confined fluid systems [40]. However, depending on factors like driving force
and particle density, active particles within the body may exhibit tendencies to aggregate
and cluster together, which could raise potential risks yet to be investigated in biomedical
applications [21,41]. One notable feature of active particles is their enhanced diffusion
within a fluid system compared to similar passive particles. Moreover, an increase in active
particle density corelates with a greater effective diffusion coefficient [42]. Active colloids
operate by dissipating energy at the level of the active particles in order to cause motion
with no equilibrium equivalent, resulting in clustering under low dissipation and collective
motion under high dissipation [43]. The coexistence of active and passive colloidal particles
has been shown to prompt clustering and phase separation, forming chains or clusters [44].
The collective behavior of active particles introduces numerous effects not observed in the

Nanomaterials 2024, 14, 144. https://doi.org/10.3390/nano14020144 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano14020144
https://doi.org/10.3390/nano14020144
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-3710-4159
https://orcid.org/0000-0003-2461-3015
https://doi.org/10.3390/nano14020144
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano14020144?type=check_update&version=1


Nanomaterials 2024, 14, 144 2 of 20

behavior of individual particles, surpassing the simple summation of individual behaviors
due to interactions arising between active particles [45–50]. The tendency of colloids to
aggregate can likewise demonstrate complexity when considering the autonomous motion
of active particles.

Recent research has demonstrated that the directed assembly of colloidal disper-
sions can be used to synthesize a diverse range of functional materials in a controlled
fashion [51–53]. While self-assembly is inherent to passive colloids, systems composed of
active particles exhibit an augmented capacity for self-assembly, due to the driven nature
of these particles [54,55]. This type of active aggregation has been shown to create dynamic
clusters that evolve over time, propelled by both fluid velocity and the individual motion of
active particles. This mechanism effectively overcomes the long-range repulsion commonly
observed in colloidal systems [56,57]. The aggregation of active colloidal particles has
been shown to occur naturally in systems with colloidal volume fractions ranging from
3% to 50% [58]. The complexity of active particle aggregation is noteworthy, with behavior
resembling living cell aggregates emerging as active colloids self-organize into clusters [59].
Motility-induced clustering and phase separation have been demonstrated in quasi-2D
environments [60]. Under weak confinement, autophoretic active particles exhibit both
clustering and dispersion modes, dependent on the driving force and interparticle inter-
actions [61]. In many cases, the presence of geometrical confinement grants far different
dynamics to active particles as compared to the more widely modeled unbounded cases,
highlighting the importance of considering explicit confinement when modeling non-bulk
systems [62,63]. The presence of physical or other manner of confinement has a profound
effect on the behavior of active particles, as the existence of a boundary introduces complex-
ity to the motion of the driven motors, leading to phase separation, boundary clustering,
and other emergent behaviors [64–67]. Confinement also serve as a tool for predicting and
controlling the behavior of active particles such as micromotors [68]. Active colloidal parti-
cle aggregation has been shown in previous works in the literature to be heavily dependent
on the size and surface properties of the particles [69,70]. In addition, the application of
external electric or magnetic fields can also drive the aggregation process [51,71]. However,
there remains a lack of research towards the confined collective behavior of active colloids,
specifically covering a range of volume fractions and driving forces, especially as it relates
to their aggregation [72–74]. Consequently, the micrometer-scale behavior of active parti-
cles, especially within confined systems, warrants comprehensive investigation, in order
to supplement the rapidly growing literature on computational methods for modeling
active matter [75].

The focus of this work is to investigate the effects of the density and driving force of
active colloidal particles on their clustering behavior within a confined fluid system. To
achieve this, a hybrid coarse-grained molecular dynamics model is employed to simulate
the clustering and aggregation dynamics of micrometer-sized colloidal particles. Given
the crucial role of hydrodynamics in the clustering process, an explicit representation
of the fluid is incorporated into the model. Stochastic rotation dynamics, also known
as multiparticle collision dynamics, is used to well replicate both long- and short-range
hydrodynamic behaviors at a low Reynolds number. The key variables of interest are
the particle coverage ratio θ and the driving force F. Here, θ denotes the 2D projection
area coverage ratio of the colloidal particles to the 2D size of the simulation box, while
F indicates the driving force acting on the colloidal particles along their axial direction.
Results reveal that both coverage and driving force have strong effects on the aggregation
behavior of the colloidal particles. A set of empirical power laws were derived to describe
the rate of cluster formation over time, in which the scaling exponents strongly depend on
the particle coverage ratio and driving force applied on each particle. This comprehensive
investigation sheds light on the nuanced interplay between particle density, driving force,
and clustering behavior, providing valuable insights into the underlying dynamics of active
colloidal systems within confined fluid environments.
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2. Methods and Models

The system of interest involves passive or active particles at the micrometer scale,
which can be termed as colloids [76–78]. In these colloidal systems, the suspended
particles may interact through hydrodynamic, interparticle, and Brownian (or thermal)
forces [79]. Our system directly modeled hydrodynamic and Brownian forces through
stochastic rotation dynamics, and the interparticle interactions were modeled with the
Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction. A multiparticle collision-based
method was used to model the solvent. An extended explanation on the choice of DLVO
theory to model this system can be found in the Supplemental Materials.

2.1. SRD—Explicit Hydrodynamic Solvent

There is a tremendous difference in scale for both length and kinematic time between
colloidal particles and solvent beads. For example, a typical colloidal particle (1 µm diameter)
occupies a volume comparable to that of 103 water molecules. Thus, coarse graining of
the solvent is necessary in order to reasonably reach significant scales of time and size
for the simulated system. In this work, we used stochastic rotation dynamics (SRD),
also called multiparticle collision dynamics, to establish a computationally efficient and
hydrodynamically accurate fluid system capable of handling thermal noise [80]. The coarse-
graining length scale was chosen to be smaller than that of mesoscopic colloidal particles
but much larger than the natural length scales of the solvent molecules (in this case, water).
By adhering to local momentum conservation, the SRD method reproduces Navier–Stokes
hydrodynamics at larger length scales. A detailed rationale for choosing SRD in this work
is given in the Supplemental Materials (Section of stochastic rotation dynamics).

In the framework of SRD, the solvent is represented by a large number of point-like
beads, each possessing a mass of 1 ms (an explanation of units is given below). These beads
are termed as the fluid beads, and it is crucial to note that they are not merely composite
particles or clusters composed of aggregates of water molecules. Instead, these beads
can be considered as a convenient computational tool to facilitate the coarse graining of
fluid properties. The SRD works as follows: first is the streaming step, during which the
positions and velocities of the fluid beads are calculated directly by integrating Newton’s
equations of motion:

xi → xi + vi·ti. (1)

The forces acting on the fluid beads are produced through collisions with the system
walls or active colloidal particles. Notably, there are no direct forces considered between
fluid beads, and the simplification of such pairwise calculations significantly contributes
to the overall efficiency of the SRD method. Moving to the second step, the collision step
simulates the collisions between fluid beads. The system is partitioned into cubic cells, each
having a length of 1 σ. During this step, the velocities of all fluid beads are rotated relative
to the center of mass velocity (V) of their respective cell, as given below:

vi → V + ω̂[vi −V]. (2)

During this step, momentum is effectively transferred between the fluid beads, and
the rotation procedure can, thus, be viewed as a coarse graining of particle collisions
across both time and space. As a result of the local conservation of mass, momentum, and
energy, accurate Navier–Stokes hydrodynamic effects can be captured, including those
stemming from thermal noise. The SRD method’s coarse graining of the fluid allows
for easy control over viscosity and coupling properties, enabling the depiction of phase
segregation and reactive hydrodynamics arising from complex solutes. As a validation
study to prove the suitability of SRD for studying the behavior of the fluid beads under a
confinement environment, Figure S1 illustrates the inverse relationship between velocity
and size in Stokes flow for spherical beads of different radii traveling through the SRD
beads, with the simulation results aligning well with theory. Figure S2 shows the mean
squared displacement curves for beads subjected to different applied forces, along with
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their trajectories, showcasing the enhanced diffusion resulting from the driving force acting
on the active particles. Notably, the absence of an applied driving force is equivalent to the
Brownian motion observed in passive colloidal particles. All simulations were conducted
using the LAMMPS software (2 August 2023 version) [81].

2.2. Coarse-Grained Molecular Dynamics (CGMD) Active Particles and DLVO Potential

The system of interest in this paper involves a group of attractive colloidal active
particles immersed in a fluid under a quasi-2D confinement scheme, as shown in Figure 1.
In this configuration, the active particles (schematically depicted as gray beads in Figure 1a)
are subjected to various influences, including a driving force resulting from external fields
(such as a magnetic field or electric field), DLVO interactions originating from neighboring
active colloids, drag force due to hydrodynamic effects, and random forces arising from
the thermal fluctuations within the system. In the simulation, colloidal spheres with a mass
M are propagated through the velocity Verlet algorithm using a timestep of 0.01 τ. These
colloids are immersed in the fluid and interact with the fluid beads through a repulsive-
only Weeks–Chandler–Andersen potential (van der Waals force). While the fluid–fluid
interactions are coarse-grained using SRD, the colloid–colloid and colloid–fluid interactions
are integrated using a normal molecular dynamics procedure.
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Figure 1. (a) Schematic of the spherical active particles, with on-axis driving force, under confinement.
The particles can attract each other (cluster) at close distances due to the DLVO interactions. The
explicit SRD fluid grants hydrodynamic effects such as drag forces in the opposite direction of motion
and random thermal forces. Model setup: (b) The CGMD beads (red) in SRD solvent, and (c) the
solvent with transparent beads to show solvent density. Solvent beads are colored as a function of
their relative velocity, to demonstrate the distribution.
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The CGMD colloid–colloid interaction potential is described by the DLVO potential
specifically developed for colloidal interactions [82]:

U = UvdW + UCoul + UHertz (3)

Here, the total potential energy between two colloidal particles is the summation of
the van der Waals (attractive) force, Coulombic (screened electrostatic) force, and Hertz
(hard repulsive contact) force. The interparticle colloidal forces are given as:

UvdW = −AH
12

[
d2

r2 − d2 +
d2

r2 + 2ln
(

r2 − d2

r2

)]
, (4)

UCoul = πεrε0

[
4kBT

q
tanh

(
qΨ0

4kBT

)]2 d2

r
e−κ(r−d) , (5)

where, for the van der Waals interaction, AH is the Hamaker constant, d is the colloidal
particle diameter (1 µm), and r is the distance between the colloidal particle centers. For
the Coulombic interaction, εr is the electric permittivity of the fluid, ε0 is the vacuum
permittivity (8.854 × 10−12 F/m), q is the colloidal particle charge, Ψ0 denotes the effective
surface potential of the colloid, and κ is the inverse Debye screening length. To model steric
repulsion between colloidal particles and prevent overlap or penetration of the particles, a
Hertz contact force is included:

UHertz = K(d− r)
5
2 , r < d (6)

The SRD fluid beads interact with the CGMD particles via the Weeks–Chandler–
Anderson potential:

UWCA =

{
4ε
((

σ
r
)12 −

(
σ
r
)6
)
+ ε, r ≤ 2

1
6 σ

0, r > 2
1
6 σ

(7)

The hydrodynamic volume fractions of interest range from 5% to 30%; at higher
volume fractions, steric interactions between the colloids start to dominate and frustrated
systems can occur [83]. All quantities are described in dimensionless units with mass in
units of ms (the mass of the solvent particles), energy in units of ε, length in units of σ, force
in units of ε

σ , and time in units of τ =
√

msσ2/ε.
Figures 1b and 1c shows a representative snapshot of the CGMD–SRD hybrid model

used for the simulations with CGMD active colloids and without active colloids in SRD
solvent, respectively. In these snapshots, solvent beads are colored based on their relative
velocities to illustrate their distribution. The SRD beads effectively capture both long-
and short-range hydrodynamic behaviors, while the CGMD particles serve as models
for colloidal micron-sized active particles (micromotors). The CGMD active particles are
finite-sized spheres with a radius of 1σ and a density of 1ms/σ3. The simulation box spans
256 σ × 256 σ in the x–y plane and 10σ in the z dimension. The confinement size was
specifically chosen, designed to have an energy minimum width equivalent to that of
a single CGMD bead. This selection allows beads to pass by one another, preventing
geometric frustration. Simultaneously, the confinement force ensures that there is no
appreciable cluster size in the z direction; thus, the 2D x–y spectral analysis is directly
indicative of the size of the cluster.

A harmonic restraining force, applied perpendicular to the z direction, acts solely
on the CGMD colloidal particles. The simulation box is periodic in all dimensions. To
maintain a quasi-2D setup with a geometric confinement environment, a collision force
between CGMD active particles and the system wall is implemented. This ensures that
the CGMD active particles move within a plane of approximate thickness 3σ at the center,
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discouraging particle stacking in the z dimension while permitting particles to cross over
and pass each other.

Initially, all CGMD active particles are regularly placed on a square lattice, as illus-
trated in Figure S3, with an areal density or particle coverage ratio (the 2D projection area
coverage ratio of the colloidal particles to the 2D size of the simulation box) denoted as
θ = 30%. In the simulation, θ = 5%, 10%, 15%, 20%, 25%, and 30%, each value corre-
sponding to the number of active particles N = 1089, 2116, 3136, 4225, 5184, and 6241,
respectively. Upon particle creation, each particle has its orientation randomly set, ini-
tiating the driving force to act in a random direction at the beginning of the simulation.
The driving force applied to the active particles is consistently directed along the axis of
each particle. Due to the reorientation of spherical particles in a fluid, there is no net direc-
tional movement resulting from the driving force. Each active particle imparts a constant
driving force F through its geometric center, with F = 0, 0.5, 1, 5, and 10. As a specific
case study, Figure S4 demonstrates the clustering of particles over time and depicts their
nearest neighbors.

3. Results and Discussion
3.1. Dynamic Clustering Behavior

The fundamental quantities of interest for this system are the number and distribution
of clusters, which change over time due to the diffusion-limited aggregation of individual
particles and clusters. In the context of this confined setup with a predetermined num-
ber of particles, the system tends to converge towards fewer and larger clusters. Individ-
ual particles aggregate to form clusters, and as time progresses, these clusters undergo
further aggregation.

3.1.1. Time Evolution of Cluster Number and Cluster Size

Figure 2 gives a visual representation of how both time and driving force affect the
clustering behavior for a given coverage (in this case, θ = 15%). An increase in the active
driving force causes more rapid clustering behavior, especially in the initial stages of the
simulation. This leads to quicker formation and aggregation of clusters compared to the
passive colloidal particles (those with no driving force; F = 0). The dynamics of clustering
are intrinsically changed by the addition of a driving force, exhibiting more complex effects
than a simple acceleration of the observed clustering. As evidenced in Figure 3, both
coverage and driving force significantly contribute to the time evolution of clustering
behavior, with snapshot times at t = 1000τ. Higher coverages promote faster clustering,
particularly at smaller times, due to the decreased average inter-bead distances resulting
from the geometrical realities of increased particle coverage. As particle aggregation into
clusters proceeds, the cluster size becomes a crucial metric used in conjunction with total
cluster number to determine the uniformity of clustering behavior. For this section, cluster
size is calculated as the total number of particles within each cluster.

Figure 4 illustrates the cluster size distribution P
(
S
)

and the mean cluster size S,
where S represents the number of particles within an individual cluster. Fitting lines are
provided to determine the time evolution of S and the peak of the probability distribution,
demonstrating how the exponents can be used to scale the cluster size distributions to a
single curve. The figure shows that, for a given section of the curve, clustering behavior can
be effectively represented by a simple power law. This form of scaling law for diffusion-
limited cluster aggregation and growth has been shown to fit quite well with findings in
previous works in the literature [84,85]. This power law allows for the documentation of
not only instantaneous but also dynamic behavior in such a clustering process, providing
a comprehensive characterization for future reference. This scaling is based upon the
stochastic nature of clustering, which tends to smooth out for large sample sizes. Figure S5
further demonstrates power-law behavior and collapse to a single curve for θ = 20%,
F = 0.5, 465τ < t < 6000τ. The lower number of clusters in this case may result in more
obvious scattering from the fit observed at lower time intervals.
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Figure 4. Cluster size distributions over time for θ = 15%, F = 5. (a) The mean of the cluster number
distribution, with fitting line for the region t = 150 τ to t = 3000 τ; (b) the peak height of the cluster
number distribution, with fitting line. (c) The circularly averaged FFT peak center for k0, with fitting
line for the region of interest; (d) the peak intensity of k0, with fitting line for the region of interest.
Dotted lines show the beginning and end of the region of interest.

The gamma distribution has a shape parameter (a > 0), a scale parameter (b > 0), a
cluster size (S > 0), and Γ(a) is the gamma function. As shape parameter (a) increases, the
distribution tends to approach a normal distribution. The gamma distribution is useful
in applications where there is a physical lower bound but no non-statistical upper bound.
Figure S6 demonstrates a fitting of the gamma distribution to the cluster size over time for
various θ and F. The fitting parameters, a and b, can be plotted to visualize the skewness
and mean of the distribution. Specifically, the mean of the distribution S is calculated as
a ∗ b, and the skewness is inversely proportional to the shape, 2/

√
a. The plot of the scale

parameter, closely linked with cluster size, reveals a flattening or reduced clustering in
the middle region, as shown in Figure S6. Additionally, the mean cluster size is observed
to increase as a power function of elapsed time, following the form S ∝ tm, where m is
dependent on coverage and force.

3.1.2. Cluster Dynamic Spatial Distribution

Another aspect of clustering behavior, along with cluster size and number, is the phys-
ical distribution of the clusters in space [86]. The periodic system can be analyzed through
fast Fourier transformation (FFT) of snapshots captured in the x–y plane, as the quasi-2D
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nature of this system facilitates spatial analysis. Figure S7 illustrates a representative FFT
transformation of a clustering image, including the circularly averaged power profile for
θ = 15%, F = 0, t = 5000τ. For each snapshot used for analysis, an image is generated as
seen in Figure S7a. Images are composed of 1024× 1024 pixels for the 256 × 256 µm system
(16 pixels/µm2 resolution) and generated as completely black and white. Figure S7b shows
a representative 2D fast Fourier transform (FFT) of a clustering image where white pixels
(background) are treated as zeros, while black pixels (colloidal particles) are treated as ones.
The circular average of the power of the FFT transform is calculated, and the k-space power
spectra are plotted as seen in Figure S7c,d. To find the representative length k0, a Gaussian
curve was fitted to the first peak for every snapshot. The values of k0 and PSD(k0) were
determined and plotted, as shown in Figure 4c,d. Figure 5 demonstrates that, for each given
dynamic region, a fitting power law allows for scaling of the FFT spectra by the power-law
exponent. This scaling allows all snapshot spectra over the given region to collapse onto a
single curve after scaling. More information on the FFT image analysis is provided in the
Supplemental Material.
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Figure 5. Cluster dynamics over time for θ = 15%, F = 5. (a) The cluster size distributions for
t = 150 τ to t = 3000 τ. (b) The same cluster size distribution after being scaled by the scaling
function for the pertinent region. (c) The circularly averaged FFT spectra for t = 150 τ to t = 3000 τ.
(d) The same spectra after being scaled by the scaling function for the pertinent region.

The pre-clustering, individually separated particles prior to clustering were not suit-
able for FFT calculation, as demonstrated by Figure S8. In this figure, the initial square-
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lattice geometrical configuration of particles at setup causes crystalline FFT spectra, and
the crystalline peaks gradually disappear as the system evolves to amorphous clustering.
Notably, there is little to no clustering happening during this period, and consequently,
no scaling laws for cluster distribution or spacing are presented or discussed for the pre-
clustering behavior in this work. Figure 3 shows representative snapshots of low, medium,
and high coverage and force to demonstrate how the snapshots used for FFT analysis
change as a function of these parameters.

Figure S9 shows the same cases as Figure 3, but at a timestep of 5000τ. Over this dura-
tion, clustering proceeds towards fewer, larger clusters across each of the cases. However,
the spatial distribution of clusters remains relatively uniform, as observed consistently
across the five independent runs for every variation of F and θ. Due to this spatial uni-
formity, the FFT analysis used can reasonably be relied upon to determine the average
intercluster spacing distance, as portrayed by Figure S7. This intercluster spacing distance
is represented by its inverse, k0. It can be seen that higher coverage and driving force both
accelerate the rate of clustering. At higher θ, there are more particles in solution and, thus,
the rate of collision and clustering is increased. For higher F, the effective diffusion constant
for the colloidal particles is higher and, thus, clustering proceeds following a scaling law
with a higher exponent. Both FFT spatial distribution and clustering number can be well
represented by their power-law scaling exponents.

3.1.3. Phase Diagram of Dynamic Characteristics

This section presents definitions and descriptions of the different dynamic regions
observed during clustering, considering the evolution of the number of clusters, cluster size
distribution, as well as the spatial analyses which are discussed in detail in the preceding
sections. Figure 6 shows the power-law curves fitting the different dynamic regions, and
their intersection is termed as the critical time for the distinction of regions. As seen
in Figure 6, there are only two distinct dynamic regions for θ = 5% and 10%, but for
θ = 15%–30%, four distinct dynamic regions occur. Table 1 briefly describes the different
dynamic regions, with a detailed description as follows: The first dynamic region, Region I,
is pre-clustering, where the average cluster size is approximately one (monomer region).
As the coverage density grows higher, the time for this region becomes shorter due to
the decrease in inter-bead spacing in the initial configuration. The length of Region I also
decreases over time with an increase in driving force F, due to the increased average velocity
of the active particles. In Region I, virtually no clustering can be seen; this pre-clustering
region can be considered as a preliminary stage where the average cluster size is effectively
zero. This region is visible in Figure 4a at t < 100 τ or in the initial stages of Figure 7c.
Region I becomes vanishingly small as the coverage or the driving force increases, due to
the accelerated initiation of clustering at higher particle densities and velocities (Figure 7).

Table 1. Different dynamic regions.

Region 1 Effectively no clustering seen All θ, F

Region 2 Initial rapid clustering θ = 15–30%

Region 3 Marked slowing of clustering θ = 15–30%

Region 4 Long-time clustering behavior θ = 15–30%

Region II can be considered as the initial clustering behavior, and this region dominates
for θ = 5–10%. As seen in Figure 7d, the driving force F has minimal effect on the
clustering behavior of this region at higher coverage densities. Region III demonstrates a
marked slowing of clustering, especially prominent at higher θ and lower F. This region
is characterized by larger clusters and a near-complete disappearance of the monomer
phase, as seen in the 500 τ snapshots given in Figure 2. At exceptionally large driving
forces, this region becomes far less prominent. The final region is Region IV, representing
the long-time clustering behavior. The clustering here is comparable to that observed in
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Region II. Clustering in this region is characterized by large clusters flocculating towards
the limit of one single cluster within the system. Figure 8 displays a 3D representation of
the different dynamic regions, highlighting the critical time separating them as a function
of both driving force F and coverage θ. It can be seen that the transition between Region I
and Region II is smooth and monotonic across all F and θ, while the transition between
Region III and Region IV exhibits greater variation. Table 2 offers a detailed breakdown
of the critical times for transitions between dynamic regions. Figure S10 demonstrates
that, for each given dynamic region (represented by Region IV, θ = 15% and F = 0), a
fitting power law allows for scaling of the FFT spectra by the power-law exponent, which
allows for all snapshot FFT spectra over the given region to collapse to a single curve.
Figures S11–S15 show the representative clustering behavior evolution over time for each
coverage θ and driving force F, providing a comprehensive overview of the procession of
the clustering process.
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Nanomaterials 2024, 14, 144 13 of 20

Table 2. Critical time for region transitions (t1, t2, t3). Units are in τ.

F = 0 F = 0.5 F = 1 F = 5 F = 10
θ = 5% 129.4 93.82 65.05 23.88 19.52

θ = 10% 22.05 20.71 18.42 11.83 9.78
9.49 9.17 8.72 6.44 5.21
99.93 84.58 75.60 55.16 44.21θ = 15%
1114 1186 1207 1180 1519

θ = 20%
5.19 5.09 5.56 4.22 3.61
69.41 65.74 70.78 67.26 60.06
1094 464.3 497.2 501.7 636.7
3.66 3.15 3.11 2.88 2.25
75.41 72.80 72.29 64.64 59.54θ = 25%
1014 901.6 803.6 687.7 383.2

θ = 30%
2.01 1.99 1.98 1.49 1.31
102.2 91.96 88.46 80.81 73.54
1234 589.4 623.5 1813 1013

3.2. Scaling Laws and Relationships
3.2.1. Particle Coverage-Governed Scaling

One of the most important parameters influencing the clustering of colloidal particles
is their packing density, represented in this work by the coverage, θ. The distinct behaviors
observed in Figure 7 at low and high coverages are primarily influenced by the increased
particle proximity at the beginning of the simulation and the overall larger and more nu-
merous clusters as time proceeds. Herein, we leverage the qualitative behaviors discussed
in the previous section and use the fitting exponents to quantitatively describe and scale
the behavior. For each given dynamic region, the power-law fitting exponent is given in
Table 3. Figure 7 demonstrates different clustering evolution behaviors for various F and θ.
As can be seen, driving force F tends to flatten and accelerate the clustering behavior, in
line with previous reports of driving force causing an increased effective diffusion coef-
ficient for active particles. The clustering coverage θ, however, has a pronounced effect
on the shape of the cluster number curve, with simple clustering behavior observed for
low coverage (θ = 5%, 10%) and a more complex time evolution of the cluster number for
higher coverage (θ > 10%).

Table 3. Dynamic region scaling exponent m for Regions II–IV.

F = 0 F = 0.5 F = 1 F = 5 F = 10
θ = 5% 0.5454 0.5837 0.5781 0.7252 0.8177

θ = 10% 0.4867 0.5078 0.5587 0.6969 0.8226
0.6388 0.6484 0.7126 0.8629 0.9273
0.4065 0.4115 0.4859 0.6931 0.7962θ = 15%
0.4824 0.5433 0.5779 0.7468 0.8922

θ = 20%
0.6840 0.7057 0.7327 0.8302 0.8711
0.3039 0.3100 0.3595 0.6246 0.8389
0.4793 0.4939 0.5018 0.7161 0.8896
0.6682 0.6946 0.7227 0.7740 0.8778
0.2197 0.2379 0.2886 0.6132 0.7971θ = 25%
0.5359 0.4422 0.5107 0.6647 0.9489

θ = 30%
0.6660 0.7582 0.7302 0.7729 0.8195
0.1432 0.1323 0.1848 0.6006 0.7693
0.3621 0.3955 0.4053 0.7583 0.9453

3.2.2. Driving Force-Governed Scaling

Figure S16 shows all of the five independent runs for θ = 5% at different driving
forces. The similarity between cases remains consistent across different θ and F, while at
F = 10, occasional temporary detachment of a bead from a cluster is observed due to the
similar magnitude of the driving force and inter-bead attractive potential. From Figure S16,
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we can see that the average cluster number and cluster size can be taken as a good approxi-
mation for all runs across each variation of driving force F for a given coverage density θ.
Figure S17 shows that only θ matters in terms of cluster number over time, and absolute
bead number is not significant. For systems with 16x more or fewer beads, there was no
big difference in clustering behavior over time, although there were minor size effects
towards the end of the run when the number of beads was small (N0 < 500). This can
be attributed to the discrete behavior of very few (N < 10) clusters when compared with
the more continuous behavior of many (N ≥ 100) clusters. Figure S18 shows the absolute
cluster number over time for various θ and F (rather than the normalized number shown in
Figure 7). This visualization helps to highlight the rapid clustering behavior seen at higher
θ and also the similarities in long-time behavior (t > 3000 τ).

Figure 9 compiles different scaling exponents for the cluster size distribution and 2D
cluster spatial distribution power laws across all coverages and driving forces for Region II.
Within a given region, clear variations in clustering behavior as a function of θ are observed,
with more pronounced differences in Region III and Region IV. Figure 10 demonstrates the
differences between cluster size scaling exponents for Region II. The scaling exponent for
Region II is not heavily affected by the coverage percentage, suggesting that early clustering
behavior can be attributed to diffusion-driven or enhanced diffusion for F > 0, with less
dependence on the density of colloidal particles or micromotors. Figure 11 illustrates the
differences between cluster scaling exponents (mk) and cluster spatial distribution scaling
exponents (hk) for Regions II, III, and IV for θ = 15–30%. As θ becomes larger, the scaling
exponent for Region III decreases, indicating a marked slowing of the clustering behavior.
However, as F increases, the scaling exponent for Region III increases rapidly, reaching
a near-constant value for F = 10 (near 0.8 as seen in Table 3). The different behaviors
observed at low and high driving forces highlight the distinction between passive colloidal
clustering and the clustering of active colloidal micromotors. Active motion not only
increases the effective diffusion coefficient of Brownian particles but influences the scaling
of clustering times as well [87–89].
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4. Conclusions

In summary, we have established a hybrid coarse-grained molecular dynamics sim-
ulation model to investigate the dynamic clustering behavior of active particles under
confinement. Several scaling laws were identified, capturing both cluster behavior and
overall morphological changes. For the cluster behavior, the average cluster size S was
found to scale with time (t) as S ∝ tm (0 < m < 1), and the amplitude of the cluster distri-
bution probability P

(
S
)

followed P
(
S
)

∝ th (−1 < h < 0). For the morphological behavior,
the representative wavevector k0, characterizing the quasi-periodic spatial distribution of
clusters, scaled as k0 ∝ tmk (−1 < mk < 0), and the power spectral density value at k0,
PSD(k0), obeyed PSD(k0) ∝ thk (0 < hk < 1). Detailed study shows that, depending on
the colloidal particle coverage θ, the dynamic clustering process can be divided into four
different regions: Region I (pre-clustering), Region II (initial clustering), Region III (initial
cluster–cluster merging), and Region IV (final cluster–cluster merging). The behaviors in
these regions were shown to strongly depend on θ and F: at low θ and F, diffusion-induced
aggregation dominates the clustering dynamics; and cluster–cluster merging plays the
most important role at high θ. The role of F was primarily observed in shortening the
periods of Regions I and II and accelerating the cluster–cluster merging process. Due to
limitations of computational resources, it is determined that a 2D system would provide
valuable insights into clustering, as may occur on films or liquid surfaces or two liquid
interfaces, at a larger scale than would be possible with a 3D system. However, future
experiments may pursue whether the scaling laws observed in this work also present in
cluster formation in 3D systems.

The study of active particles is irrevocably tied to the future of various scientific fields,
especially those pertaining to medicine or health. Active particles, such as micromotors,
hold promise in performing controllable tasks at the microscale, akin to natural bacteria
or cells. As the field of active matter advances, active particles may become integral in
scientific research work and potentially find applications in our daily lives. This work
contributes to the understanding of the aggregation and possible removal of micromotors
in medical and waste removal fields, particularly within laminar blood flow at biologically
relevant Reynolds numbers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano14020144/s1, Figure S1: Low Reynolds regime for laminar flow
test cases. Cases are for spheres of different radii under driving force (a) F = 0.1, (b) F = 0.5, (c) F = 1,
(d) F = 5. The dotted lines are derived from theory; Figure S2: Path of a single bead (a) and MSD (b)
comparisons; Figure S3: Axes and initial experimental setup for θ = 30%; Figure S4: Coordination
during clustering for θ = 30% F = 5. (a) τ = 275, (b) τ = 2500. The color bar indicates coordination
of the beads; Figure S5: Labeled Regions 4 for θ = 20%, F = 0.5. (a) Mean size fitting, (b) size peak
probability fitting, (c) cluster sizes for Region 4, (d) scaled cluster sizes for Region 4. m and h are
scaling exponents; Figure S6: Gamma function a (shape) and b (scale) parameters over time for
(a) θ = 5%, F = 0, (b) 5; (c) θ = 15%, F = 0, (d) 5; (e) θ = 30%, F = 0, (f) 5. The solid vertical lines
mark the transition between regions; Figure S7: Cluster spatial distributions. (a) FFT of image
in (b) for θ = 15%, F =0, t = 5000 τ (c,d) show the circularly averaged intensity profile; Figure S8:
(a,c,e) Cluster distribution and (b,d,e) FFT power spectra showing presence and disappearance of
crystalline peaks due to the initial setup geometry for θ = 5%, F = 0 for (a,b) τ = 0, (c,d) τ = 100,
(e,f) τ = 500; Figure S9: τ = 5000 for the cases shown in Figure 3; Figure S10: 2D circularly averaged
FFT spectra over time for θ = 15%, F = 0. (a) The peak center for k0, with fitting line for Region 4;
(b) the peak intensity of k0, with fitting line for Region 4. (c) The FFT spectra for t = 1000 τ to t = 4000 τ.
(d) The same spectra after being scaled by the scaling function for the pertinent region;
Figure S11: Clustering behavior over time for θ = 5%; Figure S12: Clustering behavior over time for
θ = 10%; Figure S13: Clustering behavior over time for θ = 20%; Figure S14: Clustering behavior over
time for θ = 25%; Figure S15: Clustering behavior over time for θ = 30%; Figure S16: Different runs for
θ = 5%, (a) F = 0, (b) F = 1, (c) F = 5, and (d) F = 10; Figure S17: Size effects of the system. On clustering
behavior. θ = 25% F = 0; Figure S18: (a) Cluster number for F = 0, (b) F = 1, (c) F = 5, (d) F = 10.
(See Refs. [87,90–100]).
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