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Abstract: Nanomaterials are integrated within consumer products to enhance specific properties
of interest. Their release throughout the lifecycle of nano-enabled products raises concerns; specif-
ically, mechanical strains can lead to the generation of fragmented materials containing nanoma-
terials. We investigated the potential release of single-walled carbon nanotubes (SWCNTs—brand
TUBALL™) from epoxy composite materials. A pin-on-disk-type tribometer was used for the acceler-
ated mechanical aging of the nanocomposites. A pristine nanocomposite material, abraded material
and debris obtained from the abrasion in the tribometer were analyzed by Raman spectroscopy.
The airborne-produced particles were captured using particle collectors. Stat Peel’s Identifier C2
system was used to monitor the SWCNT content of respirable particles produced during the abrasion
test. The SWCNT amounts found were below the LoQ. The Raman spectra conducted on the Stat
Peel filters helped identify the presence of free SWCNTs released from the epoxy matrix, although
they were notably scarce. Raman spectroscopy has been proved to be a crucial technique for the
identification, characterization and assessment of structural changes and degradation in SWCNTs
that occurred during the abrasion experiments.

Keywords: single-wall carbon nanotubes; release; tribology; epoxy; fate; Raman spectroscopy

1. Introduction

Nanoscience and nanotechnology are exciting and rapidly evolving fields that deal
with the manipulation and application of materials consisting of solid particles at the
nanoscale. These fields have the potential to revolutionize various industries and bring
about numerous benefits; as novel technologies and efficient materials, they could have a
profound impact on healthcare with applications in drug delivery, diagnostics, and medical
and energy-efficient processes, among many others. According to the recently updated
European Commission recommendation on the definition of nanomaterial (NM) for leg-
islative purposes, ‘nanomaterial’ means a natural, incidental or manufactured material
consisting of solid particles, where 50% or more of these particles in the number-based size
distribution typically range from 1 to 100 nanometers in sizes in one or more of their exter-
nal dimensions [1]. Additionally, nanomaterials are the particles that have an elongated
shape, such as a rod, fiber or tube, where two external dimensions are smaller than 1 nm
and the other dimension is larger than 100 nm, like the SWCNTs. In case nanomaterials
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are used amongst other ingredients in a formulation, the entire product will not become a
nanomaterial. In this context, advanced multicomponent nanostructured materials may
provide superior functional properties, but they can also exhibit an increased toxicological
risk, and the environmental fate of the involved nanomaterials should be further studied
within the context of human and environmental health [2,3].

It is generally acknowledged that the mechanical, thermal, and electrical properties
of polymers can be greatly enhanced by the incorporation of carbon-based nanoparticles
in their matrix [4,5]. To this end, composites have been proposed in various applications,
several of which have already turned into commercialized products [6]. Among the carbon-
based nanomaterials, carbon nanotubes (CNTs) are the ones that cover many, if not most,
of these applications. Categorized as nanomaterials, there have been extensive studies on
their toxicological effects on humans as well as on the environment [7]. Nevertheless, the
results are not yet straightforward, even though there are studies that claim that several
parameters such as the type of CNTs, as well as their length, aspect ratio, surface area,
degree of aggregation, purity, concentration, and dose, may affect their toxicity [8]. It is
generally understood that although there exist diverse toxicological studies which concern
mainly pristine CNTs, the evaluation and justification of their toxicity in realistic cases
requires specific studies aimed at the release of CNTs from the corresponding nanocom-
posites during their use and lifecycle [9]. Furthermore, it is of considerable importance to
understand the process of carbon-based nanomaterials’ transformation and/or biodegra-
dation, which may facilitate their lifetime regulation [10]. The release pathways of CNTs
into the natural environment during the polymer nanocomposite lifecycle along with the
techniques introduced for their identification/quantification in environmentally relevant
matrices were extensively discussed in the critical review article of E.J. Petersen et al. [11].
That same year, L.G. Cena a and T.M. Peters [12] reported a study on airborne particles
emitted during the handling of MWCNTs as well as after the mechanical processing of their
epoxy nanocomposites. They demonstrated that the nanocomposites, after being sanded,
generate particles in the nanometer scale with protruding CNTs; they pointed out that
the toxicity of these particles is unknown. Schlagenhauf et al. [13,14] published a work
on the release of CNTs from an epoxy–MWCNTs nanocomposite during an abrasive wear
process. They claimed a detection of free-standing individual MWCNTs and suggested
precautions when handling materials of unknown toxicity. The effects of sander speed and
sandpaper grit (determining the abrasion energy) on the airborne particle emission from
CNT-containing materials have been also studied [15], and no free CNTs were observed
apart from tests involving 4% CNT test sticks. Wiesner et al. attempted to study the
release of MWCNTs from polymeric matrices after controlled mechanical action [16]. They
stated that the MWCNTs were largely encapsulated in the polymeric matrix of the abraded
fragments and that although the possibility for MWCNTs to be free from nanocomposites
appears to be low, further investigation on the potential release of free MWCNTs from
abraded plastic materials is required. More recently, the carbon nanoparticles’ structural
degradation after friction testing making use of ball-on-disc friction tests was characterized
by Raman spectroscopy [17]. Raman analysis revealed a direct correlation between pattern
depth, lubricity, and CNT degradation.

The necessity of new and sophisticated methods to measure MWCNT exposures in
realistic release scenarios has already been addressed [18]. Finally, protocols concern-
ing the simulation of mechanical ageing of the composites as well as the sampling and
characterization procedures should be properly defined.

To recapitulate, when a final product containing nanoparticles is used, it is possible that
those particles could become airborne due to wrinkling, folding, breaking, drilling, cutting,
etc. It is important to know whether during the normal use of the product, the release
of inhalable nanoparticles can occur, causing a possible exposure scenario for workers or
consumers. Taking into account the number of parameters involved, the study of CNTs’
release from their composites after mechanical processes is a challenging task.
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The aim of the current work is to study the release of CNTs from a commercial
antistatic flooring material in which SWCNTs are embedded in epoxy resin. A pin-on-
disk-type tribometer was used for the accelerated mechanical aging of the nanocomposites
while sampling of the release fragments was achieved by the utilization of three different
collection procedures (none of which included immersion followed by shaking/sonication):
(i) macroscopically debris collected near the tester; their maximum dimensions being a few
hundreds of microns, (ii) particles (maximum dimensions of few microns) collected from
five distinct filtration slides from a Stat Peel’s Identifier detection system placed inside the
tribometer chamber used to isolate the sliding surfaces during the abrasion test as well as
outside the tribometer chamber (approximately 2 m away), and (iii) particles (maximum
dimensions of few microns) collected from an Apex2 Casella particle collector sampling
aerosol particles from inside the tribometer box. Scanning electron microscopy identified
the morphology of the released particles observed on the surface of the filters used for their
entrapment, while Raman spectroscopy enabled the identification and characterization of
SWCNTs. Raman spectroscopy is a particularly significant technique for the analysis of
carbon-based materials [19,20]. It probes the vibrational modes, and hence the chemical
structure of molecules, providing a unique structural signature (spectrum) that can be used
to identify the structure of materials at molecular level. One of its advantages is that it
requires minimum/no sample preparation which might alter or damage the sample. Raman
spectroscopy was able to characterize the concentration, the dispersion of the SWCNTs in
the composite material, and released fragments as well as identify structural alterations at
the molecular level imposed by the mechanical treatment. Characterization involved (i)
samples freshly prepared, (ii) the same samples after the accelerated mechanical aging, as
well as (iii) isolated macroscopically observed fragments that were collected during the
accelerated aging. It is shown that both the concentration and dispersion of SWCNTs differ
in each type of sample. Raman spectroscopy provides reliable information about free CNT
content and its degradation; this information is valuable for industries and risk assessors
as it aids in evaluating the exposure potential of CNT-based products.

2. Materials and Methods
2.1. Materials

TUBALL™ SWCNTs (single-walled carbon nanotubes brand name with outer diameter
1.6 ± 0.4 nm, length > 5 µm) and TUBALL™ Matrix 207 were provided by OCSiAl- Europe
Sarl (Luxembourg). TUBALL™ MATRIX 207 is a concentrate based on TUBALL™ single-
wall carbon nanotubes specifically designed to provide superior electrical conductivity to
solvent-free epoxy systems while retaining mechanical properties and minimally impacting
the host matrix; it is a mix of Araldite (Oxirane, mono (C12-C14-alkyoxy methyl derivatives)
and SWCNTs in a proportion of 90/10.

For the preparation of specimens for abrasive wear tests, the epoxy resin used was
DER 351 (Olin Corporation, Clayton, MO, USA), which is a C12–C14 aliphatic glycidyl
ether modified bisphenol A/F based epoxy resin of low viscosity. The used curing agent
DEH 488 (Olin Corporation, Clayton, MO, USA) is a low-viscosity, modified cycloaliphatic
polyamine-based curing agent for epoxy. The resin hardener ratio was ratio was 100:34.71.
The nanocomposite was prepared in a 2-step dilution process. The TUBALL™ SWCNTs
were pre-dispersed in a ratio 2 wt.% TUBALL™ MATRIX 207:98 wt.% DER 351, with a
high-speed dissolver and a cowl blade mixer for 20 min, at a mixing speed of 10 m/s. This
Pre-mix was diluted to a final loading of 0.1 wt.% of TUBALL™ MATRIX 207 to the full
system and mixed for 5 min more at 10 m/s. A degassing step was performed in a vacuum
oven, which was subsequently followed by the addition of the curing agent, which was
mixed for 3 min at 4 m/s. The samples were cast on wooden substrates and cured for 24 h
at ambient temperatures (the final thickness of the epoxy resin was ~1 cm), samples are
shown in Figure 1.
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Figure 1. Images of samples for abrasive wear: epoxy reference (left) and epoxy coated with
TUBALL™ Matrix 207 (right). Samples were applied on wood.

The weight fraction of SWCNTs in the nanocomposite is 0.01 wt.%. This is because the
dispersion of 0.1% TUBALL™ Matrix 207, which is a mixture of Araldite and SWCNTs in a
90/10 weight ratio, was incorporated into the epoxy.

2.2. Abrasion and Particle Collection

Tribology tests were used to simulate different wear mechanisms that are imposed
during real-life use in the epoxy coated with SWCNT samples and to evaluate the poten-
tial release of particles. The abrasive wear test was performed on a CSEM pin-on-disc
tribometer following the ASTM G99-05 procedure. During pin-on-disc experiments, the
applied load was 1 N, while stainless steel balls of 6 mm in diameter were used as counter
bodies; the specimens had a rotational speed of 50 rpm. The number of cycles was as
many as necessary to develop deep wear tracks on each specimen surface and consequently
create abrasion debris for further analysis and investigation. Three different approaches
were followed to collect particles from potential release events. (i) Macroscopically debris
were collected on a clean polished metallic surface placed near the tester. (ii) Stat Peel’s
respirable air samplers (Badges) were placed inside the tribometer chamber, while another
air sampling badge was placed 2 m away outside the tribometer chamber (reference). The
badges were run at the nominal flow rate of 91 mL/min for the duration of an abrasion
experiment. (iii) An Apex2 Casella particle collector was used inside the tribometer cham-
ber to collect particles onto a polycarbonate filter. The effective sampling time for particle
collection was about 2 h. A scheme representing the experimental setup for the collection
of abraded particles from the epoxy-TUBALL™ M207 sample is shown in Figure 2.
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We would like to highlight that various studies have demonstrated the efficacy of
carbon nanotubes in diminishing friction and wear. For instance, their application as a rein-
forcement phase in composites, protective films, solid lubricants, or lubricant additives has
shown notable results. This reduction in friction is frequently attributed to the degradation
of CNTs, which leads to the formation of a lubricating carbonaceous tribolayer, transition
from graphitic-like to a more amorphous-like structures [21,22]. It is important to consider
that during tribological test measurements, amorphous graphitic-like structures may be
produced and deposited on the gridding ball’s surface. The quantity of these deposits is
often not factored into the calculation of released CNTs captured by the particle collectors.

2.3. Particle Characterization Methods

Raman spectra were collected via a T-64000 (HORIBA Jobin Yvon, Vénissieux, France)
micro-Raman system equipped with a 2D-CCD Symphony II detector. The excitation
wavelength at 514.5 nm was provided by a DPSS laser (Cobolt Fandango TMISO laser,
Norfolk, UK). The laser power on the sample was maintained at ~1 mW and focused on
the samples by a microscope objective 50× (NA = 0.55). The collected scattered beam
passed through an appropriate edge filter for the removal of the strong elastically scattered
photons (LP02-514RU-25, Laser 2000, Cambridgeshire, UK) and was directed into the slit
of the monochromator using the single spectrograph configuration. The resolution was
kept constant in all experiments (≈6 cm−1). Instrumental calibration was performed via
the standard 520.5 cm−1 Raman peak position of a Si wafer. This Raman system was used
to analyze the surface of pristine and abraded samples, the collected macroscopic debris
and airborne particles collected with the Apex2 Casella particle collector.

An Identifier C2 system (Stat Peel, Glarus, Switzerland) was used for the quantifi-
cation of respirable airborne SWCNTs. The system encompasses respirable air samplers
(Badge, Stat Peel), filtration slides (Stat Peel) and a Raman spectrometer-based Reader (Stat
Peel). The badge collects respirable airborne particles onto two 1-by-1 mm nanoporous
membranes of the Stat Peel filtration slides, stages S and L. The sampling efficiency of the
badges closely adopts the respirable convention as defined in ISO 7708 [23]. The filtration
slides were analyzed by an Identifier C2 Reader. The reader uses a confocal Raman system
for the quantification of materials collected on the filtration slides. A 785 nm laser was used
for the excitation. The laser light was coupled into the Stat Peel optical pickup unit from
the optical fiber via a collimator. The laser light was cleaned by a 785 nm laser line filter
and then reflected into a 50× objective (NA = 0.75, WD = 1.6 mm) by a 785 nm dichroic
filter and a broadband dielectric mirror. The laser spot size on the sample was ~20–25 µm,
and the laser power (at sample position) was set to ~3.5 mW. The collected light follows
the excitation path until the 785 nm dichroic filter, where the light components with longer
wavelengths than 790 nm pass the dichroic filter and are further cleaned by a 785 nm
dichroic long-pass filter. The collected light beam is coupled into an optical fiber by a fiber
coupler, and the collection fiber is attached to a spectrograph equipped with a LDC-DD
CCD camera. The wavelength calibration of the spectrometer was performed using the
laser line and the 520 cm−1 Raman peak of silicon.

The quantification of sampled SWCNT mass was performed by measuring the Raman
spectrum of a 1.2-by-1.2 mm square (100 µm step size) positioned around the membrane.
Each measured spectrum is fitted by the sum of a quadratic polynomial function (back-
ground) and appropriate number of Lorentzian line-shape functions. For the identification
of SWCNTs, the fitted parameters of the line-shape functions are compared to reference
values, and if the parameters are in their predefined acceptance range, then SWCNTs are
considered to be identified in the given spectrum. The area of the Lorentzian functions
of the identified spectra are summed up and normalized by the measured laser power.
The obtained quantity is used for the quantification of SWCNT by comparing the value
to the calibration curve of the given SWCNT. The reference samples of the calibration
curve were prepared by the liquid deposition of reference dispersions of SWCNT using
N-methyl-pyrrolidone as solvent. The residuals of N-methyl-pyrrolidone were removed by
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drying the membranes in a laboratory oven at 150 ◦C for at least 2 h. The airborne SWCNT
exposures were calculated from the quantified masses and sampled air volumes.

3. Results
3.1. Characterization of Pristine, Abraded Samples and Debris

Neat samples as well as samples submitted to tribology tests and the debris collected
were characterized by Raman spectroscopy, making use of the T-64000 micro-Raman
system. In the case of abraded samples, the Raman spectra were obtained on the wear
marks. The macroscopically produced debris by the abrasion of samples were collected
on a clean polished metallic surface placed inside the tribometer. In Figure 3, the Raman
spectra of TUBALL™ SWCNTs, the epoxy resin and the epoxy resin embedded with
TUBALL™ Matrix207 are depicted. TUBALL™ SWCNT presents the characteristic G band
at 1590 cm−1 together with a shoulder at 1570 cm−1, which is associated with vibrations
of carbon atoms along the circumferential direction of the nanotube, while the 2D band
appears at ~2700 cm−1 due to the second-order Raman scattering process [20,24,25]. The
epoxy resin shows a peak at 1610 cm−1 corresponding to the phenyl groups, while the broad
band at 2800–3000 cm−1 is due to the stretching CH2 groups in the aliphatic chain and the
intense peak at 3070 cm−1 to the C-H stretching vibrations in an aromatic phenyl ring. In the
Raman spectrum of the resin embedded with TUBALL™ Matrix 207, peaks corresponding
to SWCNTs and epoxy are noticeable. The spectrum of the neat resin presents a shoulder at
~1590 cm−1; the relative intensities of the peaks at 1590 cm−1 (common to both epoxy resin
and mainly to SWCNTs) and 1610 (only of epoxy resin) cm−1 are used as a probe for the
presence of SWCNTs in the resin. Raman spectra of TUBALL™ SWCNTs and TUBALL™
Matrix 207 are depicted in Figure S1 (Supplementary Information).

Semi-quantitative results can be extracted by spectral decomposition of the contribu-
tion of each component by fitting the spectra of the pristine resin and TUBALL™-SWCNTs
samples each with two peaks with Lorentzian line-shape functions (Figure 4). The com-
posite sample should, in principle, be fitted with four peaks; however, since peaks of the
two pristine materials at ~1590 cm−1 overlap, the fitting was performed using three peaks.
The peak-integrated intensity ratio C = I1590/I1610 (C values) will thus be proportional to
the SWCNT concentration in the composite at the excitation spot. In order to achieve more
reliable results, the contribution of the resin’s peak at ~1590 cm−1 should be subtracted
from the numerator; its integrated intensity value may be approximated as a fraction of
the 1610 cm−1 band of the fitting, taking into account the relative intensity between 1610
and 1586 cm−1 (≈0.2) peaks for the pristine resin. Fittings were performed in the spectral
region of interest for the case of 40 spectra obtained from different spots on the surface
of untreated composite. Statistical analysis was conducted for the C values, yielding a
result of C = 2.4 ± 2.5 for the untreated sample. The integrated intensity ratio values from
the spectra obtained from the surface of the sample before tribology testing exhibit high
inhomogeneity; the latter is straightforward by simple inspection of the variation of the
intensity of the SWCNTs peak recorded from different spots on the sample (Figure 5a). The
above-mentioned procedure associated with spectral decomposition was performed on
spectra recorded from the same sample after the tribological tests (representative spectra
are given in Figure 5b) as well as from the debris collected during the test (spectra are
shown in Figure 5c). Statistics on the C values extracted for each case (number of spectra:
40 for the pristine sample, 26 for the abraded sample and 28 for the debris) are given in
Figure 5d (black color datapoints). Despite the greater statistical sample offered by the
number of accumulated spectra, the untreated sample is characterized by high error bars;
in contrast to the other two sets of data associated with debris and the worn sample’s
surface, the error bars are considerably smaller. Inspection of the C values for the pristine
sample indicates that ~17% of the spectra exhibit C > 4. In contrast, a value C < 4 is
obtained from all spectra recorded from the sample submitted to abrasive wear and for the
debris (this explains the smaller error bars). The statistical analysis suggests that there is
inhomogeneity (possibly aggregations, bundling, etc.) of the CNTs concentration on the
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surface of the untreated sample. The role of the dispersion of CNTs on the release of species
after the application of tribological processes has been invoked [26]. There, it is argued
that the number and size distribution of the released particles depends on the homogenous
dispersion of CNTs; it was shown that the better the dispersion, the lower the number of
particles released from the nanocomposite, which is certainly obvious. In our case, these
highly SWCNTs-concentrated regions are absent on the newly formed surface after the
abrasion test. They are also absent on the collected debris. It appears that the excess of
CNTs (due to the aggregations) is “lost” after the abrasion tests. A possible explanation is
that this excess may be released–transferred to the environment. This hypothesis motivated
the use of particle collectors during the abrasive wear tests to further study the potential
release of free SWCNTs or SWCNT-containing particles.
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Figure 4. Representative fittings of the spectra centered at 1600 cm−1 with (a) two peaks for the epoxy 
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Figure 4. Representative fittings of the spectra centered at 1600 cm−1 with (a) two peaks for the
epoxy sample, (b) two peaks for the SWCNTs sample and (c) three peaks for the composite. Dashed
blue lines denote the individual Lorentzian peaks, solid red lines their addition while white circles
correspond to original experimental data.

Nanomaterials 2024, 14, x FOR PEER REVIEW 9 of 15 
 

 

correspond to original experimental data. 
 

 

Figure 5. Raman spectra on several points on (a) resin-TUBALL™ Matrix 207 composite sample, (b) 
sample after abrasive wear (pin on disc) test, and (c) on several points on debris, indicating the peaks 
at 1590 cm−1and 1610 cm−1 corresponding to SWCNT and epoxy, respectively. The pictures show the 
samples under study. (d) Statistics on the C = ICNTs/Iresin values for the composite before and after test 
for the collected debris. 

Intriguingly, in the spectrum of the collected debris, one can distinctly observe the 
contribution of the D-band. This observation suggests that the abrasion tests have induced 
structural modifications and the introduction of defects in the CNTs. Similar findings have 
been reported by other research groups [17,21,22], where Raman spectra obtained from 
samples containing carbon nanotubes (either SWCNTs or MWCNTs) submitted to ball-
on-plate or pin-on-disk tests presented a broad peak at 1350 cm−1 or increase in this peak 
at the same time that IG/ID decreased, indicating a formation of some amorphous carbon. 
These results may also support the transformation of the SWCNTs during friction. Since 
the peak at 1350 cm−1 corresponds to a Raman-active mode of a defective carbon network, 
the intensity is roughly proportional to the amount of amorphous carbon in the sample.  

1400 1500 1600 1700 1800
0

500

1000

1500

2000

R
el

at
iv

e 
In

te
ns

ity

Raman Shift, cm-1

1590

1610
(a) λ0 = 514.5 nm

1400 1500 1600 1700 1800
0

500

1000

1500

Raman Shift, cm-1

1590 1610
(b) λ0 = 514.5 nm

R
el

at
iv

e 
In

te
ns

ity

1400 1500 1600 1700 1800
0

200

400

Raman Shift, cm-1

1590 1610(c) λ0 = 514.5 nm

R
el

at
iv

e 
In

te
ns

ity

0

1

2

3

4

5

set of 28 spectra

set of 28 spectra

DebrisBefore

 Average over all measurements

After

(d)
set of 40 spectra

I 15
90

/I 1
61

0

Figure 5. Raman spectra on several points on (a) resin-TUBALL™ Matrix 207 composite sample,
(b) sample after abrasive wear (pin on disc) test, and (c) on several points on debris, indicating the
peaks at 1590 cm−1 and 1610 cm−1 corresponding to SWCNT and epoxy, respectively. The pictures
show the samples under study. (d) Statistics on the C = ICNTs/Iresin values for the composite before
and after test for the collected debris.
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A careful examination of the spectra in the spectral region corresponding to the D-
band of the SWCNTs, which is typically associated with structural defects (at ~1340 cm−1

when using the 514.5 nm excitation line or at ~1300 cm−1 when using the 785 nm excitation
line [20,27]), reveals interesting observations. Prior to the abrasive wear test, the intensity
of this D-band in our samples was relatively low, which is comparable to what is seen in
the spectrum of pristine SWCNTs. However, after subjecting the samples to the abrasive
wear test, a noticeable enhancement in the intensity of the D-band is observed in nearly all
spectra obtained from the debris. To illustrate this, Figure 6 presents spectra for pristine
TUBALL™ SWCNTs, a pristine resin-TUBALL™ Matrix 207 composite, and the spectrum
recorded from the collected debris post-abrasive wear test. At ~1340 cm−1, the pristine
resin spectrum exhibits no discernible bands, while the pristine SWCNTs spectrum shows
a very faint band.
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Figure 6. Comparison of SWCNT pristine spectrum (blue line), pristine resin–SWCNT (green line)
spectrum and spectrum corresponding to collected debris (black line). The intensity of the D band in
the latter spectrum indicates modifications caused by the tribological tests.

Intriguingly, in the spectrum of the collected debris, one can distinctly observe the
contribution of the D-band. This observation suggests that the abrasion tests have induced
structural modifications and the introduction of defects in the CNTs. Similar findings
have been reported by other research groups [17,21,22], where Raman spectra obtained
from samples containing carbon nanotubes (either SWCNTs or MWCNTs) submitted to
ball-on-plate or pin-on-disk tests presented a broad peak at 1350 cm−1 or increase in this
peak at the same time that IG/ID decreased, indicating a formation of some amorphous
carbon. These results may also support the transformation of the SWCNTs during friction.
Since the peak at 1350 cm−1 corresponds to a Raman-active mode of a defective carbon
network, the intensity is roughly proportional to the amount of amorphous carbon in
the sample.

We consider that during the tribology test, two scenarios may take place: an increase
in structural/lattice defects or increase in disorder indicated by the increasing intensity of
the D band that could be considered a degradation of carbon nanotubes and/or release of
CNT-containing particles. To examine the 2nd scenario, particle collectors were inserted in
the tribometer chamber during the tests.
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3.2. Particle Collector: STAT PEEL Identifier C2 System

Stat Peel’s Identifier C2 system was used to monitor the SWCNT content of respirable
particles produced during the abrasion test. Two-membrane filtration slides were used
with the air sampling badges that separate the aspirated respirable particles into two size
fractions, which are then deposited onto two separate stages (membranes) S and L in the
filtration slide. The lower limit of quantification (LoQ) for TuballTM SWCNT was estimated
from the measurement of a linear standard calibration series, and it is approximately 5 pg
for a single membrane.

Four respirable air samplers (Stat Peel badges with filtration slides #1, #2, #3 and #4)
were placed inside the enclosure chamber of the tribometer during the abrasion test to col-
lect respirable airborne particles produced by the tribometer. Additionally, one badge was
placed 2 m away outside the tribometer (slide #5) to monitor exposure to CNTs at a certain
distance to the emission source. We assume that all CNTs detected in these experiments
originate from the abrasion of the sample. For Raman, since it is material-specific, it is
irrelevant if other ambient particles are present in the sample, as they can be distinguished
from the target material(s). SWCNT amounts were found above the LoQ on seven out
of ten membranes of the five filtration slides that were used for sampling. The SWCNT
amounts were below the LoQ on the stage L of slides #1, #2 and #4. The quantified mass
and calculated exposure results are summarized in Table 1. All the quantified masses are
close to the LoQ of the system, and the calculated exposures are three orders of magnitude
lower than the NIOSH recommended exposure limit (REL) of 1 µg/m3 [28].

Table 1. Summary of TUBALL™ SWCNT mass and exposure results of the inspected filtration slides
from field sampling. LoQ: limit of quantification (# denotes slide number).

Slide # Respirable Mass,
Stage S (ng)

Respirable Mass,
Stage L (ng)

Respirable
Exposure (µg/m3)

1 0.006 0.002 (<LoQ) 1.54 × 10−3

2 0.017 0.001 (<LoQ) 4.10 × 10−3

3 0.016 0.006 3.49 × 10−3

4 0.021 0.002 (<LoQ) 3.54 × 10−3

5 0.015 0.017 2.82 × 10−3

A Stat Peel Reader unit with a confocal Raman system (785 nm laser) was used for
the acquisition of the Raman spectra. A few measured spectra suggest that the dust
produced by the tribometer contains embedded SWCNTs (see Figure 7a) where the Raman
peak of SWCNT (G-band at ~1590 cm−1) and the Raman peak of the epoxy material at
~1610 cm−1 can be observed together, but mostly, the Raman spectra cannot be decomposed
properly due to the low signal-to-noise ratios, as all detected masses are close to the LoQ of
the method.

Furthermore, almost all the Raman spectra of SWCNTs found on the filtration slides
exhibit a lower G-band height–D-band height ratio (G/D ratio) compared to the pristine
TuballTM SWCNT (Figure 7b). The intensified D-band (located at ~1300 cm−1 when excited
with a 785 nm laser) can refer to the degradation of the SWCNT during the abrasion test in
accordance with the results of the collected debris [22]. Only a few recorded spectra were
observed with higher G/D band ratios (Figure 7c) during the single particle analysis of the
membranes performed with a Renishaw Invia Raman microscope equipped with a 785 nm
laser. The corresponding light microscope image is shown in Figure S3 in the SI.
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Figure 7. Raman spectra measured on the Stat Peel filtration membranes. (a) The green vertical
lines at 1590 cm−1 and 1610 cm−1 denote the G band of TUBALL™ SWCNT and a characteristic
Raman peak of the epoxy matrix, respectively. The red vertical lines depict unidentified Raman peaks.
(b) The lower G/D band ratio might also indicate the degradation of SWCNTs during the abrasion
test. (c) A small fraction of the measured spectra was observed with a high G/D band ratio.

3.3. Particle Collector: Apex2 Casella

The Apex2 Casella particle collector was positioned inside the tribometer chamber
during the abrasion wear tests, and examination of the filter by Raman spectroscopy (T64000
Raman spectrometer −514 nm) was performed. The filter material is polycarbonate, which
presents a Raman peak at 1603 cm−1, which makes it difficult to elucidate between the
filter, TUBALL™ SWCNT and epoxy resin. In Figure 8, the Raman spectra of the filter
and the resin-TUBALL™ Matrix 207 composite together with spectra recorded on random
points on the filter are depicted. From 20 points recorded on the filter, only one presented
a Raman spectrum which indicated the presence of resin-TUBALL™ Matrix 207; all the
others resemble the polycarbonate filter spectrum. This spectrum (the green one in Figure 8)
shows a band at around 1340 cm−1 (with 514.5 nm excitation line), which corresponds
to the D band in carbon nanotubes. Furthermore, it is noted that this band has increased
compared to the resin-TUBALL™ Matrix 207 Raman spectrum, possibly indicating changes
in the sample. The D band in the Raman spectrum of CNTs is associated with disorder-
induced scattering, such as structural defects, impurities, or amorphous carbon content.
An increase in the intensity of the D band suggests an increase in disorder or defects in the
CNTs, indicating a degradation of the CNTS during tribology tests.
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Figure 8. Raman spectra obtained from filter connected to Apex2 Casella. (a) On the bottom (black),
the spectrum corresponding to the polycarbonate filter, in blue and green, the ones corresponding
to random points on the filter and on top, the one corresponding to resin embedded with TUBALL™
Matrix 207. (b) Vibrational window where the bands corresponding to CNTs appear (indicated
with arrows).

4. Conclusions

In this study, the potential release of single-walled carbon nanotubes (SWCNTs—brand
TUBALL™) from epoxy composite materials was investigated. The evaluation of particle
emissions was complemented by abrasive wear experiments conducted in a laboratory pin-
on-disc tribometer setting with the goal of accelerating composite wear (which represent the
worst case scenario), while the airborne particles were captured using particle collectors.

On the µm scale (spatial resolution of µ-Raman spectroscopy), the inhomogeneity
of the CNTs concentration in the epoxy matrix of pristine composite samples (possibly
aggregations, bundling, etc.) was observed. Identification of free SWCNTs released from
the epoxy matrix was identified in a series of Raman spectra performed on the Stat Peel
filters; however, they were found to be scarce. A quantifiable amount of TUBALL™ carbon
nanotubes was detected on all the Stat Peel filtration slides close to the limit of quantification
of the method. However, the carbon nanotube exposures were approximately three orders
of magnitude below the NIOSH REL of 1 µg/m3.

Evidence of structural changes/degradation in SWCNTs in samples that underwent
accelerated wear during abrasive tests were readily observed in the Raman spectra, as
evidenced by the increased intensity of the characteristic band associated with defects
in the nanotubes: the D-band. The increased number of defects corroborates the idea of
SWCNTs rupturing during wear experiments.

Raman spectroscopy has been proved to be a crucial technique for the identification,
characterization and quantification of SWCNTs released during abrasive wear tests on
nanostructures composites. Furthermore, structural changes of the released nanomaterials
can be assessed by Raman spectroscopy This information is valuable for industries and risk
assessors, as it aids in evaluating the exposure potential of CNT-based products.

In conclusion, given the absence of highly concentrated SWCNT regions on the newly
formed surface after the abrasion test, it can be argued that incorporating a finishing,
gentle grinding process into the manufacturing of relevant industrial antistatic floors would
enhance their safety by minimizing the potential release of nanomaterials in subsequent use.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/nano14010120/s1; Figure S1: Raman spectra showing the characteristic
bands attributed to TUBALL™ SWCNT (top), TUBALL™ Matrix 207 (middle) and Araldite™ (bot-
tom). Scanning electron microscopy. Figure S2. SEM images of stage S collection membrane #4 of

https://www.mdpi.com/article/10.3390/nano14010120/s1
https://www.mdpi.com/article/10.3390/nano14010120/s1
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the Stat Peel slides. Figure S3. Light microscope image of analyzed particle during single-particle
analysis. Corresponding Raman spectrum is presented in Figure 7c in the main text.
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