# Polarization-Dependent Metasurface Enables Near-Infrared Dual-Modal Single-Pixel Sensing

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Principle

#### 2.1. Principle of the Device

#### 2.2. Fourier Modulation

#### 2.3. Hadamard Modulation

#### 2.4. Binary Random Modulation

## 3. Simulations and Analysis

#### 3.1. Design of Metasurface

#### 3.2. Full-Process Simulations

#### 3.3. Generalization Analysis

#### 3.4. Robustness Analysis

## 4. Biomedical Applications

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Huang, K.; Fang, J.; Yan, M.; Wu, E.; Zeng, H. Wide-field mid-infrared single-photon upconversion imaging. Nat. Commun.
**2022**, 13, 1077. [Google Scholar] [CrossRef] - Chen, C.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens.
**2013**, 52, 574–581. [Google Scholar] [CrossRef] - Radwell, N.; Mitchell, K.J.; Gibson, G.M.; Edgar, M.P.; Bowman, R.; Padgett, M.J. Single-pixel infrared and visible microscope. Optica
**2014**, 1, 285–289. [Google Scholar] [CrossRef] - d’Acremont, A.; Fablet, R.; Baussard, A.; Quin, G. CNN-based target recognition and identification for infrared imaging in defense systems. Sensors
**2019**, 19, 2040. [Google Scholar] [CrossRef] [PubMed] - Liu, H.C.; Yang, B.; Guo, Q.; Shi, J.; Guan, C.; Zheng, G.; Mühlenbernd, H.; Li, G.; Zentgraf, T.; Zhang, S. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram. Sci. Adv.
**2017**, 3, e1701477. [Google Scholar] [CrossRef] [PubMed] - Wang, Y.; Huang, K.; Fang, J.; Yan, M.; Wu, E.; Zeng, H. Mid-infrared single-pixel imaging at the single-photon level. Nat. Commun.
**2023**, 14, 1073. [Google Scholar] [CrossRef] - Vodopyanov, K.L. Laser-Based Mid-Infrared Sources and Applications; John Wiley & Sons: New York, NY, USA, 2020. [Google Scholar]
- Hermes, M.; Morrish, R.B.; Huot, L.; Meng, L.; Junaid, S.; Tomko, J.; Lloyd, G.R.; Masselink, W.T.; Tidemand-Lichtenberg, P.; Pedersen, C.; et al. Mid-IR hyperspectral imaging for label-free histopathology and cytology. J. Opt.
**2018**, 20, 023002. [Google Scholar] [CrossRef] - Wang, Z.; Wang, Z.; Zheng, Y.; Chuang, Y.Y.; Satoh, S. Learning to Reduce Dual-Level Discrepancy for Infrared-Visible Person Re-Identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Solli, D.R.; Jalali, B. Analog optical computing. Nat. Photonics
**2015**, 9, 704–706. [Google Scholar] [CrossRef] - Yang, H.; Xie, Z.; He, H.; Zhang, Q.; Li, J.; Zhang, Y.; Yuan, X. Switchable imaging between edge-enhanced and bright-field based on a phase-change metasurface. Opt. Lett.
**2021**, 46, 3741–3744. [Google Scholar] [CrossRef] - Badri, S.H.; Gilarlue, M.; SaeidNahaei, S.; Kim, J.S. Narrowband-to-broadband switchable and polarization-insensitive terahertz metasurface absorber enabled by phase-change material. J. Opt.
**2022**, 24, 025101. [Google Scholar] [CrossRef] - Badri, S.H.; SaeidNahaei, S.; Kim, J.S. Polarization-sensitive tunable extraordinary terahertz transmission based on a hybrid metal–vanadium dioxide metasurface. Appl. Opt.
**2022**, 61, 5972–5979. [Google Scholar] [CrossRef] - Li, Y.B.; Li, L.L.; Cai, B.G.; Cheng, Q.; Cui, T.J. Holographic leaky-wave metasurfaces for dual-sensor imaging. Sci. Rep.
**2015**, 5, 1–7. [Google Scholar] [CrossRef] [PubMed] - Ye, W.; Zeuner, F.; Li, X.; Reineke, B.; He, S.; Qiu, C.W.; Liu, J.; Wang, Y.; Zhang, S.; Zentgraf, T. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun.
**2016**, 7, 11930. [Google Scholar] [CrossRef] - Wang, Z.; Li, T.; Soman, A.; Mao, D.; Kananen, T.; Gu, T. On-chip wavefront shaping with dielectric metasurface. Nat. Commun.
**2019**, 10, 3547. [Google Scholar] [CrossRef] [PubMed] - Chen, S.; Liu, W.; Li, Z.; Cheng, H.; Tian, J. Metasurface-empowered optical multiplexing and multifunction. Adv. Mater.
**2020**, 32, 1805912. [Google Scholar] [CrossRef] - Hu, Y.; Wang, X.; Luo, X.; Ou, X.; Li, L.; Chen, Y.; Yang, P.; Wang, S.; Duan, H. All-dielectric metasurfaces for polarization manipulation: Principles and emerging applications. Nanophotonics
**2020**, 9, 3755–3780. [Google Scholar] [CrossRef] - Rubin, N.A.; Chevalier, P.; Juhl, M.; Tamagnone, M.; Chipman, R.; Capasso, F. Imaging polarimetry through metasurface polarization gratings. Opt. Express
**2022**, 30, 9389–9412. [Google Scholar] [CrossRef] - Deng, Y.; Cai, Z.; Ding, Y.; Bozhevolnyi, S.I.; Ding, F. Recent progress in metasurface-enabled optical waveplates. Nanophotonics
**2022**. [Google Scholar] [CrossRef] - Joseph, S.; Sarkar, S.; Joseph, J. Grating-coupled surface plasmon-polariton sensing at a flat metal–analyte interface in a hybrid-configuration. ACS Appl. Mater. Interfaces
**2020**, 12, 46519–46529. [Google Scholar] [CrossRef] - Lio, G.E.; Ferraro, A.; Kowerdziej, R.; Govorov, A.O.; Wang, Z.; Caputo, R. Engineering Fano-Resonant Hybrid Metastructures with Ultra-High Sensing Performances. Adv. Opt. Mater.
**2022**, 2203123. [Google Scholar] [CrossRef] - Abdollahramezani, S.; Hemmatyar, O.; Adibi, A. Meta-optics for spatial optical analog computing. Nanophotonics
**2020**, 9, 4075–4095. [Google Scholar] [CrossRef] - Zangeneh-Nejad, F.; Sounas, D.L.; Alù, A.; Fleury, R. Analogue computing with metamaterials. Nat. Rev. Mater.
**2021**, 6, 207–225. [Google Scholar] [CrossRef] - Zhao, Z.; Wang, Y.; Ding, X.; Li, H.; Fu, J.; Zhang, K.; Burokur, S.N.; Wu, Q. Compact logic operator utilizing a single-layer metasurface. Photonics Res.
**2022**, 10, 316–322. [Google Scholar] [CrossRef] - He, S.; Wang, R.; Luo, H. Computing metasurfaces for all-optical image processing: A brief review. Nanophotonics
**2022**. [Google Scholar] [CrossRef] - Badloe, T.; Lee, S.; Rho, J. Computation at the speed of light: Metamaterials for all-optical calculations and neural networks. Adv. Photonics
**2022**, 4, 064002. [Google Scholar] [CrossRef] - Huo, P.; Zhang, C.; Zhu, W.; Liu, M.; Zhang, S.; Zhang, S.; Chen, L.; Lezec, H.J.; Agrawal, A.; Lu, Y.; et al. Photonic Spin-Multiplexing Metasurface for Switchable Spiral Phase Contrast Imaging. Nano Lett.
**2020**, 20, 2791–2798. [Google Scholar] [CrossRef] - Xiao, T.; Yang, H.; Yang, Q.; Xu, D.; Wang, R.; Chen, S.; Luo, H. Realization of tunable edge-enhanced images based on computing metasurfaces. Opt. Lett.
**2022**, 47, 925–928. [Google Scholar] [CrossRef] - Wang, Y.; Yang, Q.; He, S.; Wang, R.; Luo, H. Computing Metasurfaces Enabled Broad-Band Vectorial Differential Interference Contrast Microscopy. ACS Photonics
**2022**. [Google Scholar] [CrossRef] - Zeng, B.; Huang, Z.; Singh, A.; Yao, Y.; Azad, A.K.; Mohite, A.D.; Taylor, A.J.; Smith, D.R.; Chen, H.T. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl.
**2018**, 7, 51. [Google Scholar] [CrossRef] - Yan, J.; Wang, Y.; Liu, Y.; Wei, Q.; Zhang, X.; Li, X.; Huang, L. Single pixel imaging based on large capacity spatial multiplexing metasurface. Nanophotonics
**2022**, 11, 3071–3080. [Google Scholar] [CrossRef] - Yan, J.; Wei, Q.; Liu, Y.; Geng, G.; Li, J.; Li, X.; Li, X.; Wang, Y.; Huang, L. Single pixel imaging key for holographic encryption based on spatial multiplexing metasurface. Small
**2022**, 18, 2203197. [Google Scholar] [CrossRef] [PubMed] - Zhang, Z.; Ma, X.; Zhong, J. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun.
**2015**, 6, 6225. [Google Scholar] [CrossRef] [PubMed] - Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Sun, T.; Kelly, K.F.; Baraniuk, R.G. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag.
**2008**, 25, 83–91. [Google Scholar] [CrossRef] - Watts, C.M.; Shrekenhamer, D.; Montoya, J.; Lipworth, G.; Hunt, J.; Sleasman, T.; Krishna, S.; Smith, D.R.; Padilla, W.J. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics
**2014**, 8, 605–609. [Google Scholar] [CrossRef] - Sun, B.; Edgar, M.P.; Bowman, R.; Vittert, L.E.; Welsh, S.; Bowman, A.; Padgett, M.J. 3D computational imaging with single-pixel detectors. Science
**2013**, 340, 844–847. [Google Scholar] [CrossRef] - St-Charles, P.; Bilodeau, G.; Bergevin, R. Online Mutual Foreground Segmentation for Multispectral Stereo Videos. 2019. Available online: https://www.polymtl.ca/litiv/codes-et-bases-de-donnees (accessed on 1 December 2022).
- Seo, H.; Badiei Khuzani, M.; Vasudevan, V.; Huang, C.; Ren, H.; Xiao, R.; Jia, X.; Xing, L. Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state-of-art applications. Med. Phys.
**2020**, 47, e148–e167. [Google Scholar] [CrossRef] - Zhang, Z.; Fu, H.; Dai, H.; Shen, J.; Pang, Y.; Shao, L. Et-net: A generic edge-attention guidance network for medical image segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI, Shenzhen, China, 13–17 October 2019; Springer: Cham, Switzerland, 2019; pp. 442–450. [Google Scholar]
- Valanarasu, J.M.J.; Sindagi, V.A.; Hacihaliloglu, I.; Patel, V.M. Kiu-net: Towards accurate segmentation of biomedical images using over-complete representations. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI: 23rd International Conference, Lima, Peru, 4–8 October 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 363–373. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar]
- WWW: Web Page of the Em Segmentation Challenge. Available online: http://brainiac2.mit.edu/isbi_challenge/ (accessed on 1 March 2023).

**Figure 1.**The framework of the near-infrared dual-modal single-pixel sensing metasurface-based device.

**Figure 2.**Design of the polarization-dependent metasurface. (

**a**) is a side view of a typical unit cell with the period (P), height (H), and varying cross sizes (a and b). (

**b**) is schematic for the numerical calculation of the transmission coefficients (${t}_{x},{t}_{y}$) and phase shifts (${\delta}_{x},{\delta}_{y}$). (

**c**,

**d**) are simulated propagation phase ${\delta}_{x}$ and transmission coefficient distribution ${t}_{x}$ for an XLP incident beam. (

**e**,

**f**) are simulated propagation phase ${\delta}_{y}$ and transmission coefficient distribution ${t}_{y}$ for an YLP incident beam.

**Figure 3.**(

**a**,

**b**) are ideal phase profile distributions of the designed metasurface when illuminated by an XLP or YLP incident beam. (

**c**,

**d**) are real phase profile distributions of the designed metasurface when illuminated by an XLP or YLP incident beam.

**Figure 4.**(

**a**,

**b**) are, respectively, simulated intensity and phase distribution of our designed metasurface under the illumination of an XLP incident beam. (

**c**,

**d**) are, respectively, simulated intensity and phase distribution of our designed metasurface under the illumination of a YLP incident beam.

**Figure 5.**Metasurface-based computing results of bright-field filtering and edge-enhanced filtering. (

**a**–

**c**) are computing results using a “BIT” plus cardiogram image, an infrared image, and USAF.

**Figure 6.**The proposed dual-modal single-pixel sensing of our device and conventional single-pixel imaging [34].

**Figure 7.**The proposed dual-modal single-pixel sensing results of our device under different modulations.

**Figure 8.**The proposed dual-modal single-pixel sensing results of our device under different noise levels.

**Figure 9.**The proposed dual-modal single-pixel sensing of our device under different fabrication errors. (

**a**) shows results of bright-field imaging under different fabrication errors, (

**b**) shows results of edge-enhanced imaging under different fabrication errors.

NUM | a(nm) | b(nm) | ${\mathit{\delta}}_{\mathit{x}}$ | ${\mathit{t}}_{\mathit{x}}$ | ${\mathit{\delta}}_{\mathit{y}}$ | ${\mathit{t}}_{\mathit{y}}$ |
---|---|---|---|---|---|---|

1 | 78 | 160 | 3.07 | 0.85 | 0.62 | 0.4 |

2 | 82 | 156 | −2.81 | 0.83 | 0.32 | 0.74 |

3 | 86 | 152 | −2.32 | 0.83 | 0.36 | 0.68 |

4 | 88 | 150 | −2.11 | 0.88 | 0.44 | 0.53 |

5 | 92 | 160 | −1.46 | 0.92 | 0.23 | 0.95 |

6 | 96 | 160 | −1.10 | 1 | 0.38 | 0.94 |

7 | 104 | 40 | 1.48 | 0.96 | 0.69 | 0.98 |

8 | 104 | 158 | −0.60 | 0.96 | 0.53 | 0.91 |

9 | 112 | 152 | −0.24 | 0.99 | 0.49 | 0.91 |

10 | 116 | 40 | 1.86 | 0.95 | 0.72 | 0.98 |

11 | 126 | 144 | 0.18 | 0.98 | 0.50 | 0.92 |

12 | 130 | 40 | 2.33 | 0.97 | 0.76 | 0.98 |

13 | 140 | 40 | 2.73 | 0.9 | 0.79 | 0.98 |

14 | 144 | 136 | 0.62 | 0.96 | 0.50 | 0.92 |

15 | 152 | 40 | −3.14 | 0.78 | 0.82 | 0.98 |

16 | 160 | 130 | 1.03 | 0.85 | 0.47 | 0.92 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yan, R.; Wang, W.; Hu, Y.; Hao, Q.; Bian, L.
Polarization-Dependent Metasurface Enables Near-Infrared Dual-Modal Single-Pixel Sensing. *Nanomaterials* **2023**, *13*, 1542.
https://doi.org/10.3390/nano13091542

**AMA Style**

Yan R, Wang W, Hu Y, Hao Q, Bian L.
Polarization-Dependent Metasurface Enables Near-Infrared Dual-Modal Single-Pixel Sensing. *Nanomaterials*. 2023; 13(9):1542.
https://doi.org/10.3390/nano13091542

**Chicago/Turabian Style**

Yan, Rong, Wenli Wang, Yao Hu, Qun Hao, and Liheng Bian.
2023. "Polarization-Dependent Metasurface Enables Near-Infrared Dual-Modal Single-Pixel Sensing" *Nanomaterials* 13, no. 9: 1542.
https://doi.org/10.3390/nano13091542