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Abstract: Aerogels are highly porous materials with fascinating properties prepared using sol-gel
chemistry. Due to their unique physical and chemical properties, aerogels are recognized as potential
candidates for diverse applications, including thermal insulation, sensor, environmental remediation,
etc. Despite these applications, aerogels are not routinely found in our daily life because they are
fragile and have highly limited scale-up productions. It remains extremely challenging to improve
the mechanical properties of aerogels without adversely affecting their other properties. To boost the
practical applications, it is necessary to develop efficient, low-cost methods to produce aerogels in a
sustainable way. This comprehensive review surveys the progress in the development of aerogels
and their classification based on the chemical composition of the network. Recent achievements in
organic, inorganic, and hybrid materials and their outstanding physical properties are discussed.
The major focus of this review lies in approaches that allow tailoring of aerogel properties to meet
application-driven requirements. We begin with a brief discussion of the fundamental issues in
silica aerogels and then proceed to provide an overview of the synthesis of organic and hybrid
aerogels from various precursors. Organic aerogels show promising results with excellent mechanical
strength, but there are still several issues that need further exploration. Finally, growing points and
perspectives of the aerogel field are summarized.

Keywords: silica aerogels; organic-modified silica aerogels

1. Introduction

Several approaches have been used to classify aerogels based on their material forms
(monoliths, granules, powders, and films), chemical composition (organic, inorganic, and
hybrid), and microstructure (microporous, mesoporous, and macroporous). Different
forms, compositions, and microstructures can offer different applications for and greater
functionality of aerogels. The present review provides a panorama of aerogels based on their
composition. Aerogels can be essentially divided into three categories: inorganic (metal
and metal oxides), organic (synthetic polymers and biopolymers), and organic–inorganic
hybrid materials (Figure 1). Carbon aerogels are another important class of aerogels with
different physical properties that are obtained from pyrolysis of organic and organic and
inorganic composite aerogels. Carbon aerogels are characterized by excellent thermal and
electrical conductivity, high porosity, and high specific surface area (>2000 m2/g). A good
introduction to carbon-based aerogels can be found in the literature [1–5].
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Figure 1. Classification of aerogels based on precursor composition.

1.1. Inorganic Silica Aerogels

Inorganic aerogels were the first widely studied aerogels and have been applied the
most [6,7]. Nearly all metal alkoxides are known to form porous aerogels. Synthesis of
metal oxide aerogels (titanium, zirconium, tin, aluminum, etc.) with different geometries
has been comprehensively reviewed by Sui and Charpentier [8]. Among the inorganic, silica
aerogels are the most widely studied commercially important class of material, and enjoy
exclusive attributes such as high porosity, large surface area, and exceptionally low thermal
conductivity [9–11]. The choice of precursors helps to control the properties of the final
materials, thus leading to products with tailored physical and chemical properties. Overall,
silica aerogels are divided into three categories derived from (1) pure silica, (2) organically
modified silicas (ORMOSILs), and (3) organic–inorganic composite aerogels as illustrated
in Figure 2.
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Figure 2. Classification of silica aerogels based on precursor composition.

1.1.1. Sodium-Silicate-Based Aerogels

Silica aerogels stand out as the most studied inorganic aerogels, although galaxy gel-
forming materials are known in the literature. Silica aerogels have played a dominant role
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in both academics and industry since their first report in the 1930s [12]. The architecture
of silica aerogels consists of a mesoporous structure with interconnected Si-O-Si bonds.
Kistler demonstrated the first example of silica aerogels by treating an aqueous solution of
sodium silicate (water glass) with hydrochloric acid. The reaction mechanism is illustrated
in Scheme 1. The aquagel obtained from this precursor is obtained using the sol-gel
transition via a simple neutralization or via a two-stage reaction, followed by a supercritical
drying technique.
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Scheme 1. Reaction mechanisms of neutralization and condensation of sodium silicate.

Native silica aerogels are hygroscopic; the residual Si–OH bonds on the silica surface are re-
sponsible for their hygroscopic nature. To counteract this, surface modification is required to improve
the stability of aerogels. This is normally performed using silane containing hydrophobic
organic groups (TMCS, HMDZ, HMDSO, TMMS, DMDMS, MTMS, etc.), which confers
a hydrophobic nature to aerogels [13–15]. The structures of different silylating agents are
represented in Scheme 2. These precursors react with Si–OH on the surface of the wet
gel, forming methylsilyl groups. Recently, Rao has reviewed synthesis and applications of
silica-aerogel-based silica aerogels [16].
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Scheme 2. Chemical structure of silylating agents used for surface modification.

Different methods to prepare hydrophobic silica aerogels were intensively studied by
many authors. It was observed that TMCS drastically reduced the shrinkage of aerogels
derived from sodium silicate, yielding a sturdy light-weight material with high poros-
ity [17,18]. A crack-free silica aerogel was prepared using subcritical drying via surface
modification of wet gels using IPA/TMCS/n-hexane solution [19]. The obtained aero-
gels possessed high porosity and low density (0.12–0.15 g/cm3). More recently, Park and
coworkers studied the effect of silylation by varying the molar ratios of silylating agents
(MTMS, DMDMS, and TMMS) [20] and further explained the silylation mechanism based
on the molecular structures by considering the number of methoxy/methyl groups. They
concluded that MTMS was not helpful for surface modification, whereas DMDMS showed
a similar degree of silylating ability as TMCS. Aerogels modified with DMDMS exhibited
high porosity (90%), high surface area (475 m2/g), low bulk density (0.19 g/cm3), and high
hydrophobicity with a water contact angle (WCA) of 132◦.

Parvathy Rao and coworkers systematically optimized conditions for synthesizing
aerogels from sodium silicate by varying acid catalyst and silylating agents [21,22]. The
physical properties of these aerogels were affected by the strength and concentration of
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acid [23]. Strong acids (HCl, H2SO4) resulted in higher shrinkage (70–95%) and required
longer gelation time. In contrast, weak acids (citric acid, tartaric acid) resulted in low
shrinkage (34–50%) due to the systematic network formation during gelation. Additionally,
the percentage of silylating agent in the mixture, time interval of addition, and volume
of silylating mixture affected the density, porosity, and optical transparency of the aero-
gels [24]. The mixture of TMCS and HMDSO provided transparent, hydrophobic (WCA
152◦) aerogels with low density and low refractive index. In parallel, Bhagat and coworkers
reduced the processing time (1 day) by utilizing the co-precursor method for surface modi-
fication in the hydrogel to obtain aerogel beads [25]. The beads were obtained with pore
diameters ranging from 3.2 to 4.9 nm and a specific surface area of 591 m2/g. A simple,
cost-effective method was introduced to obtain silica aerogels via surface modification
of hydrogels with a very low concentration of HMDZ [26,27]. Initially, sodium silicate
was treated with the mixture of HNO3/HMDZ, where HNO3 promoted the hydrolysis
of HMDZ. Both surface modification and solvent exchange occur simultaneously and, as
a result, superhydrophobic aerogels were obtained within 5 h. Table 1 summarizes the
properties of silica aerogels prepared from various precursors.

In another report, transparent low-density silica aerogel beads were fabricated through
acid-base sol-gel polymerization of sodium silicate via ball dropping method [28]. The
surface area and the pore volume of the aerogel beads increased with an increase in
the volumetric percent of TMCS, and with 10%V TMCS aerogel beads with low density
(0.081 g/cm3) and high surface area (917 m2/g) were obtained. Recently, Park et al. synthe-
sized silica aerogels to improve the optical transmission using a two-step sol-gel process
via ambient pressure drying [29]. They observed that the aerogels prepared using 3 wt% of
silica had low density (0.11 g/cm3), low thermal conductivity (0.12 W/mK), and a surface
area of 590 m2/g. The preparation of aerogels with sodium silicate via APD is the cheapest
method. However, surface modification and solvent exchange steps make this process
tedious. In addition, there has not been a report on monolithic aerogels from sodium silicate
via APD due to considerable crack formation. The application of monolithic silica aerogels
would be enhanced by future developments in the chemical and engineering processes for
solving these issues.

1.1.2. Tetraalkoxysilane-Based Aerogels

The process for aerogel production using the Kistler method is tedious and time con-
suming. The whole process of aerogel preparation from sodium silicate takes more than a
week due to troublesome washing and solvent exchanging steps. There was no follow-up
interest in the field of aerogels until the 1960s. Interestingly, in 1968, a research team headed
by Teichner improved the process of making aerogels by dissolving tetramethoxysilane
(TMOS) in methanol and was able to prepare aerogels within 12 h [30]. This method elimi-
nated the formation of inorganic salt and the need for a solvent exchange step. Following
this, multiple research groups began working on silica aerogels for a number of different
technological applications.

The chemical reactions of an alkoxysilane precursor during sol-gel polymerization are
described in Figure 3a. The hydrolysis reaction replaces the alkoxy group with hydroxy
groups, and subsequently, the silanol groups form siloxane bonds (Si-O-Si) via conden-
sation reactions along with the release of alcohol or water as byproducts. In most cases,
condensation initiates in parallel with the hydrolysis reactions and persists during the
whole sol-gel process. Additional linkage of silica tetrahedral species via polycondensation
reactions leads to open and cyclic oligomers, which subsequently forms a network of silica
gel. Intermediate species with functionalities S-OR (R is typically methyl or ethyl) and
Si–OH remain in the final gel structure. Due to the relatively low reactivity of alkoxysilanes
compared with other metal alkoxides, hydrolysis proceeds rapidly in the presence of acid
or base catalyst. Generally, mineral acids or ammonia are used in the sol-gel reaction. Gel
formation from alkoxysilanes can proceed using a one-step process in the presence of acid
or base or using a two-step process in which hydrolysis and polycondensation are catalyzed



Nanomaterials 2023, 13, 1498 5 of 31

separately by acid and/or base. More extended controls over the microstructure and pore
size of aerogels are possible with the two-step acid–base reaction, since the kinetics and
equilibrium in hydrolysis and polycondensation can be controlled separately.

Hrubesh et al. proposed a two-step process of TMOS and obtained transparent
silica aerogels with a wide density range [31]. To reduce processing time and enhance
the sol-gel reactions of TMOS in supercritical CO2 drying method, Loy and coworkers
fabricated aerogels using formic acid as an alternative to water [32]. Large monolithic
hydrophobic silica aerogels were easily prepared from TMOS by controlling the molar
ratio of catalysts [33,34]. Low-density translucent and transparent monoliths were easily
obtained from TMOS (Figure 3). However, the toxic nature of TMOS is a barrier for its
usage for industrial productions.
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Concurrently, many authors studied formulation with tetraethoxysilane (TEOS), which
is mild, less harmful, and a convenient precursor for the synthesis of silica aerogels [35–38].
Rao’s research team studied the effect of various parameters (such as catalyst concentration
and pH) and prepared transparent aerogels using TEOS as the precursor [39,40]. The physi-
cal properties of aerogels derived from TEOS, TMOS, and Na2SiO3 were compared [41].
They concluded that the TMOS-derived aerogel possessed excellent hydrophobicity with
the highest water contact angle (149◦). Later, Carroll et al. prepared silica aerogel monoliths
using rapid supercritical extraction, adapting a TEOS-based recipe from Rao et al. [42].
Light-weight aerogel materials were prepared by varying the aging period under ambient
pressure, which increased the stiffness [43]. Rao and coworkers further studied the effect
of different solvents in the solvent exchange steps [44]. Materials possessing low density,
high porosity (96.5%), and low thermal conductivity (0.090 W/mK) with good optical
transmission were successfully obtained from TEOS by employing HMDZ as a silylating
agent. They obtained superhydrophobic aerogels (WCA 172◦) when xylene was used
for solvent exchange; however, the level of hydrophobicity decreased over time. Lu and
coworkers developed TEOS-derived monolithic silica aerogels using ambient pressure
drying through a multiple modification approach using TMCS [45]. They concluded that
the multiple treatments of the wet gel helped to reduce drying-induced surface tension
force to maintain integrity and high porosity.

In 1995, Prakash and coworkers developed an ambient pressure drying protocol to
prepare aerogel films using TEOS as precursor followed by surface modification with
TMCS [46,47]. They obtained aerogel films with 98.5% porosity. This method enables
the spring-back phenomenon, in which temporarily shrunk gel networks recover to their
original form like a sponge. Later, Kim et al. fabricated TEOS-derived aerogels modified
with TMCS using isopropanol as preparative solvent via APD. The resulting materials
possessed low densities (0.041 g/cm3) with high surface areas (1150 m2/g) [48]. However,
the conventional APD alcogels need tedious repetitive gel washing and solvent exchange
steps. To reduce the processing time, Mahadik et al. developed TMCS-modified aerogel
granules derived from TEOS by using various base catalysts (TBAF, TEAF, TMAF, NH4OH,
and NH4F) to obtain aerogel [49]. The combination of NH4OH and NH4F catalysts resulted
in transparent, low density (0.067 g/cm3), hydrophobic aerogels with high optical trans-
mittance (90%). Furthermore, they fabricated TEOS-based silica aerogels via a two-step
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sol-gel process and demonstrated that the surface free energy of aerogels can be tuned
by modifying their surface using varied concentrations of TMCS and HMDZ silylating
reagents over a wide range (5.5892 to 0.3073 mJ/m2) [50]. They observed an increase in
WCA (123◦ to 155◦) with a corresponding reduction in surface energy. Recently, Cok and
Gizli prepared TEOS-derived silica aerogels via two-step surface modification using differ-
ent silylating agents (TMCS, MTMS, MTES, and MEMO) followed by APD [51]. Among
different silanes, MTES showed a homogenous pore network, high surface area (964 m2/g)
and high hydrophobicity (WCA 137◦).

1.1.3. Trialkoxysilane-Based Aerogels

Another interesting precursor for polysiloxane aerogels is trialkoxysilane, which em-
pirically leads to hydridosilsesquioxane (HSQ). Since a hydrogen atom is not classified
as an organic substituent, HSQ is included in this section. The hydrogen substituent
is small and possibly forms hydrogen bonds with silanols. The sol-gel system of HSQ
consequently shows similar behaviors to the TMOS-based one. The Si-H is vulnerable
to hydrolysis during the sol-gel process. Under basic conditions, nucleophilic attack of
hydroxide on the trialkoxysilane precursor results in cleavage of the Si-H moiety. This
restricts the sol-gel route for HSQ to neutral or weakly acidic paths. Ozin and coworkers
made considerable progress in the preparation of periodically mesoporous particles from
triethoxysilane (HTES) in an acid-catalyzed system with Pluronic P123 [(poly(ethylene
oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide), denoted as EO20PO20EO20]
as surfactant [52]. The resulting SiO2 nanocomposite materials were brightly luminescent
and exhibited size-controlled photoluminescence, which bodes well for the development
of light emitting devices and biological sensors. Later, in 2013, Kanamori and coworkers
fabricated HSQ monoliths with well-defined macropores and mesopores from trimethoxysi-
lane (HTMS) in the presence of poly(ethylene oxide) as phase separation inducer [53].
These HSQ materials offer surface reactivity such as reduction, which is advantageous for
preparing metal nanoparticle-supported porous materials, and were shown to be promising
as heterogeneous catalysts, exhibiting reusability and recyclability.

Despite their outstanding properties and potential applicability, most of the conven-
tional silica aerogels suffer from low mechanical strength and their hydrophilic nature
makes them unstable in atmospheric conditions, which makes processing and handling
difficult [54]. From the viewpoint of practical applications, monolithic materials are easier
to be handled compared with powder forms. Alkoxysilanes (TEOS or TMOS) are the most
favored precursors as monoliths are easily obtained. However, the alkoxysilane precur-
sors are significantly more expensive compared with sodium silicate. The combination
of sodium silicate and ambient pressure drying is the most promising route to produce
silica aerogels at low cost. At present, silica aerogel granules are manufactured by Cabot
Aerogels on an industrial scale using sodium silicate [55].

Table 1. Some examples of precursors used for synthesis of silica aerogels.

Precursor/
Silylating Agents Drying Properties Ref.

Na2SiO3 SCF Density of 0.1 g/cm3, 95% porosity, hard and brittle. [56]
Na2SiO3-TMCS APD Density of 0.066 g/cm3, 95% porosity, hydrophobic (145◦). [17,21]

Na2SiO3-DMDMS APD Density of 0.19 g/cm3, porosity (90%), SSA of 475 m2/g with
contact angle 132◦.

[20]

Na2SiO3/TMCS/HMDSO/HMDZ APD
Transparent, density of 0.042–0.18 g/cm3, 90–97% porosity,

thermal conductivity of 0.05–0.192 W/mK, SSA of
450–590 m2/g.

[22]

Na2SiO3-TMCS APD Low thermal conductivity of 0.09 W/mK, density of 0.086 g/cm3,
95% porosity, hydrophobic with contact angle 148◦.

[23]
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Table 1. Cont.

Precursor/
Silylating Agents Drying Properties Ref.

Na2SiO3-HMDZ APD Aerogel powder with density of 0.1–0.3 g/cm3 and SSA
559–618 m2/g.

[26]

TMOS SCF Density of 0.039–0.2 g/cm3 and SSA of 123–947 m2/g. [33,34]
TEOS SCF Hydrophobic (145◦), density of 0.12–0.18 g/cm3, SSA 620 m2/g. [40]

TEOS-HMDZ APD Superhydrophobic (160◦) with thermal conductivity of
0.07 W/mK. [44]

TEOS-TMCS APD
Monoliths, with high porosity (97%), SSA of 777 m2/g, thermal

conductivity of 0.036 W/mK, hydrophobic with contact
angle 143◦.

[45]

TEOS-TMCS APD Aerogel films with high porosity (98.5%). [47]
TEOS-TMCS APD Density of 0.074–0.041 g/cm3 and surface area 1150 m2/g. [48,50]

HTES APD Improved mechanical properties with surface area of 434 m2/g. [52]
HTMS APD Monolithic aerogel with high surface area ~800 m2/g. [53]

1.2. Organically Modified Silica Aerogels

Hybridization is a promising way to improve the mechanical properties of silica
aerogels to extend their applications. Nevertheless, synthesis of organic–inorganic hybrids
from organotrialkoxysilane is challenging due to the hydrophobicity of condensates and
steric effects exerted by the organic moiety. Therefore, a significant fraction of recent
studies have been associated with the development of hybrid aerogels [57–60]. These
hybrid materials are categorized into two classes, class I and class II, depending on the
connectivity between organic and inorganic counterparts [60,61]. Class I hybrid aerogels
are prepared by mixing two separate organic and inorganic compounds via sol-gel process.
These composites are the results of physical interactions such as van der Waals forces,
electrostatic forces, and hydrogen bonding between organic and inorganic phases [62].

The class II hybrid materials involve strong chemical interactions (such as covalent
and iono-covalent bond) between organic and inorganic phases. There are two types
of hybridization strategies: (1) employment of organoalkoxysilanes as a precursor, and
(2) formation of composites with polymers [63] or structural supports. Silica aerogels can
be strengthened by introducing organic groups using a co-precursor into an inorganic
framework through a Si-C bond [64]. The resulting hybrid materials are termed “Organi-
cally Modified Silica” (ORMOSILs) or organically modified ceramics. The organic group,
which comprises around 40–60% of the material, remains an integral part of the network.
They can be varied in terms of the length, rigidity, and geometry of the substituent, thus
providing an opportunity to modulate the bulk properties of aerogels. Typical examples
of ORMOSILs include silsesquioxanes and bridged silsesquioxanes, depending on the
precursor used. The synergetic combination of organic and inorganic moieties in a single-
phase material provides unique possibilities to tailor the thermal, mechanical, and optical
properties. The presence of nonpolar alkyl or aryl groups attached to a silica-based network
may result in flexible three-dimensional networks. The general preparation method, prop-
erties, and applications of organically modified aerogels can be found in some outstanding
review papers [65,66].

1.2.1. Silsesquioxanes

Among the family of hybrid aerogels, silsesquioxane are based on compounds with
RSiO1.5 repeat units, and this group has grown dramatically [67–69]. The first commer-
cialization of silicones began with silsesquioxane chemistry. Silsesquioxanes derived from
trifunctional silanes structurally exhibit siloxane networks or cages with varied pendent
groups (Figure 4). Typically, there are two types of materials: polymers based on random
networks (T resins) and oligomeric molecules known as polyhedral oligosilsesquioxane
(POSS). The structures of monofunctional (R3SiX, X = alkoxy, halogen, etc), difunctional
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(R2SiX2), and trifunctional (RSiX3) organosilane used in the preparation of silsesquioxane
are described in Scheme 3. All these precursors are characterized by the presence of Si–O
covalent bonds. The network material can be formed from RSiX3 via condensation with
tetrafunctional monomers such as TEOS or TMOS. The resulting morphology of hybrid
material is modulated via RSiX3/TEOS ratio. Due to high thermal and mechanical stabili-
ties with variable porosity, silsesquioxanes are used in various applications such as ionic
liquids [70], organic semiconductors for electronics [71], electrolytes for lithium ion batter-
ies [72], water desalination [73], gas/liquid phase separation [74], and optical materials [75].
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In an altogether different approach to develop low-density aerogels, Novak et al.
introduced the concept of interpenetrating networks of inorganic and organic moieties.
Polyvinylpyridine (PVP) was introduced into silica networks through the addition of
CuCl2, and the organic polymer was generated in situ via radical polymerization of a vinyl
monomer [76]. Later, Kramer et al. successfully reinforced silica aerogels with a silicone us-
ing TEOS with varying amounts of polydimethylsiloxane (PDMS) via a two-step acid/base
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catalyzed process [77]. These organically modified aerogels displayed optical transparency,
improved mechanical strength, and possessed a surface area of up to 1200 m2/g.

The gelation behavior of trialkoxysilane is much more complicated than that of
tetraalkoxysilanes due to cyclization and premature phase separation [78]. In most cases,
using only trialkoxysilane as a precursor results in failure to form a monolithic gel because
of the steric hindrance and hydrophobicity derived from the organic moiety [79]. Schubert
and Hüsing fabricated a series of hybrid aerogels using tetraalkoxysilane with a broad range of
trialkoxysilanes including MTMS, MPTMS, APTMS, GPTMS, and MAPTMS [80–83]. They
observed higher shrinkage and longer gelation time with an increasing fraction of trialkoxysilanes
due to the incomplete hydrolysis and condensation reaction of the trialkoxysilanes. Moreover, in
most cases, aerogels became turbid with the increasing concentration of trifunctional monomers
due to cyclization and macroscopic phase separation in polar solvents [79,84], which prevented the
formation of 3D random networks and resulted in the formation of domains larger than submicrons,
which lowered the visible-light transmittance.

The fabrication of flexible superhydrophobic aerogels has attracted extensive interest
from a practical point of view. In 2006, Rao et al. reported a novel synthetic approach to
prepare flexible aerogels using an MTMS precursor (Figure 5). The nonpolar methyl groups
present in MTMS impart hydrophobicity, and the reducing number of Si-O-Si bonds leads
to fewer cross-linked structures, which provides mechanical flexibility to the aerogels as
shown in Figure 5. They used a mixture of trialkoxy and tetraalkoxysilanes to develop transparent,
superhydrophobic aerogels [85–88]. Generally, MTMS-derived aerogels are prepared via a one-step
base catalyzed or two-step acid-base catalyzed sol-gel process. It was observed that the two-step
process is more suitable to obtain a monolithic polysiloxane network. However, increasing the
molar ratio of MTMS/TMOS decreased the transparency and specific surface area with a
Young’s modulus of 0.03–0.06 MPa due to enhanced phase separation. In later studies, Bhagat
et al. produced monolithic MTMS-derived aerogels via ambient pressure drying, but they
did not provide a detailed discussion on the flexibility performance [89].
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molar ratios MeOH/MTMS (b) 28 and (c) 35. (d) Photograph showing three states of flexible aerogel
sample. Reprinted with permission from Ref. [90], copyright 2006 Elsevier.

When employing MTMS as a single precursor, the concentration of MTMS influences
the mechanical properties of the aerogels, and Young’s modulus decreased from 0.141 to
0.0343 MPa [90]. As the molar ratio of MeOH/MTMS increased from 14 to 35, there was an
increase in the flexibility and a decrease in the density. This occurred because the silica networks
were separated from each other and linear networking was enhanced. These random networks
derived from MTMS are termed as polymethylsilsesquioxane (PMSQ). They are composed of
polymeric random networks with the ideal chemical formula CH3SiO1.5. Although both silica and
PMSQ aerogels consist of Si-O-Si bonds in their networks, their properties differ in mechanical
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durability due to the incorporated methyl groups. Recently, Borzecka et al. investigated the
kinetics of formation of MTMS-based silica aerogels prepared using sol-gel polymerization
and described the dynamics of the condensation reaction [91]. They concluded that both
a numerical model and experimental test can be used in the mass prediction of aerogels
during modification of the materials.

Recently, Yun and coworkers prepared large-sized (240 cm3) monolithic MTMS-based
aerogels via facile sol-gel method [92]. The resulting APD dried superhydrophobic aerogels
showed macropore structures with low density, low thermal conductivity (0.036 W/mK),
and good thermal stability. It was observed that the Young’s modulus of the aerogels
increased (0.043 to 1.102 MPa) with an obvious increase in the density (0.075 to 0.14 g/cm3).
The simple fabrication method and the superior performance of these aerogels make them
useful in long-term and large-scale thermal applications. Hydrophobic aerogels based on TEOS
are prepared by incorporating ETES and PhTES as co-precursors with varied molar ratios [93,94].
Depending on the molar ratio (<0.1), transparent monolithic aerogels were obtained.

In pursuit of aerogels with improved mechanical properties, Roig et al. integrated
organically modified silica aerogel by using TMOS/MTMS and TMOS/TMSPMA [95].
They found that surface area increased with an increase in the concentration of MTMS
and the contact angle reached 160◦ in the TMOS/MTMS system. Meanwhile, TMSPMA-
based aerogels did not withstand high temperature supercritical drying. Macroporous
PMSQ monolithic materials with various sol-gel systems (acid/base and acid/acid method)
containing MTMS were fabricated by Dong et al., leading to improvements in terms of
controlling phase separation and gelation time [96–98]. They were able to produce bimodal
and trimodal PMSQ monoliths, depending on the conditions employed.

The practical applications of aerogels are limited due to the reduced transparency
and the lack of control over thickness and porosity. Incorporating trifunctional monomers
with alkyl trialkoxysilanes makes the resultant aerogel surface hydrophobic, but sacrifices
the transparency and surface area due to induced macroscopic phase separation. In 2007,
Kanamori et al. explored phase separation-gelation behavior of MTMS-based aerogels
using various ionic (CTAC, CTAB) and nonionic (Pluronic F127) surfactants and obtained
transparent PMSQ aerogels with uniform porosity for the first time [99–102]. The molecular
structures of surfactant are presented in Table 2. Cationic surfactant CTAB interacts with
the silica domain by settling the polar head groups toward the silica, which effectively sup-
presses the macroscopic phase separation, while nonionic surfactants facilitate hydrogen
bonding between the silanol groups (Si–OH), and urea helps to accelerate the polymer-
ization of MTMS by raising the solution pH. Because of the elastic nature of the PMSQ
network, the PMSQ aerogels obtained displayed reversible “spring-back” behavior against
compressive deformation. They also exhibited high porosities (94%) with low bulk densities
(0.1 g/cm3). Later, Kanamori and coworkers explored the effects of the molecular structure
of nonionic surfactants on the properties of the resultant PMSQ aerogels by employing
surfactants of different molecular weights [103]. They concluded that transparent aerogels
cannot be obtained from surfactants with very low molecular weight (L35) or very high
hydrophobicity (P123).

Xiaodong and coworkers produced flexible aerogels by applying MTMS/TEOS co-
precursors and CTAC as surfactant via ambient pressure drying technique [104]. The
resulting aerogels showed excellent flexibility, and exhibited a hydrophobic nature (CA
of 153.9◦) with a superior thermal insulating property. More recently, Li and coworkers
developed MTMS-based monolithic silica aerogels in the presence of CTAB as surfactant in
pure water within 4 h [105]. They also investigated the effect of MTMS/H2O ratio, CTAB
content, and NH3·H2O concentration on the properties of aerogels. They observed that
aerogels with higher volume ratios of H2O/MTMS exhibit larger Young’s modulus and
smaller compressive stress because of the difference in microstructure. This process could
help in the fast massive production of aerogels.

There are numerous reports on aerogels with trifunctional alkoxysilane, but very few
reports on mono- and dialkoxysilanes because of their tendency toward phase separation
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at levels that are too high, arising from the hydrophobicity of the network. To obtain
low-density bendable materials, Hayase et al. developed “marshmallow-like” aerogels
from an MTMS-dimethyldimethoxysilane (DMDMS) co-precursor system using CTAC
surfactant [106–108]. As DMDMS concentration increased, samples recovered their original
shape after unloading, when compressed to 80% of their original size. These marshmallow-
like gels showed bending flexibility and can be used in oil–water separation. Variations of
the marshmallow-like gels have been demonstrated by using VTMS, MPTMS, and PhTMS,
among others. The marshmallow-like gel can also be tailored in a powder form [109]. A
more advanced surface design can be achieved when precursors with reactive groups are
employed to prepare flexible aerogels. The co-condensation reaction between VTMS and
VMDMS followed by the thiol-ene reaction on the surface is illustrated in Scheme 4. Per-
fluoroalkyl groups were introduced for surface modification [110]. These flexible material
designs are beneficial for developing multifunctional porous materials. Table 3 summarizes
the physical properties of organically modified aerogels.
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The use of surfactants suppresses the phase separation and, as a result, flexible,
superhydrophobic, and transparent aerogels were obtained, but in general surfactants
are very expensive and the residual surfactant causes serious shrinkage and cracks in the
monoliths during drying. Therefore, Kanamori et al. developed a surfactant-free method to
obtain hydrophobic PMSQ aerogels by copolymerizing with N-[3-(trimethoxysilyl)propyl]-
N,N,N-trimethylammonium chloride (TMAC), which helps in suppressing undesirable
phase separation [111]. The obtained materials revealed low-density, high visible-light
transmittance, and good thermal insulation (0.0136 W/mK) properties equivalent to those
prepared in the presence of surfactant.

To ascertain the effect of the molar concentration of precursor and drying parameters
on the properties of aerogels, Durães et al. fabricated aerogels by varying the molar ratio of
MTMS, MTES, and ETMS [112–114]. The ETMS co-precursor led to a significant increase in
the product density with a reduction in surface area. Therefore, MTMS is a more suitable
precursor, yielding hydrophobic aerogels with low density, average surface area (400 m2/g),
and good flexibility. Aerogels prepared from MTMS as a precursor followed by ambient
pressure drying not only maintain excellent monolithic properties, but also reduce the
manufacturing cost [115]. However, the methyl group does not play an effective role in
improving the compressive strength of silica aerogel. Yang et al. fabricated silica aerogel
using MTMS and VTES as precursor and demonstrated that the replacement of methyl
with vinyl groups enhances the mechanical properties (compressive stress 0.57 MPa) [116].
In addition, including propyl groups in the underlying silica skeleton of MTMS-derived
aerogels can also improve their flexibility such that they can be compressed to 70% of
their original height [117]. Recently, Smitha et al. fabricated hydrophobic aerogel coating
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made from a composite of MTMS and GPTMS (1:0.5) and demonstrated oil adsorption
properties [118]. The authors also prepared low density porous silica aerogel by varying
the molar ratio of TEOS/GPTMS through ambient pressure drying [119]. Recently, Hüsing
and coworkers prepared flexible aerogels with reactive functional groups by co-condensing MTMS
with various organosilanes (VTMS, CPTMs, MPTMS, TMSPMA) with the aid of CTAB surfac-
tant [120]. The ratio of MTMS and organosilane was kept above 8.5:1.5 to retain their interesting
properties. The resulting functional gels exhibited excellent elastic compression behavior up to 60%.
They observed that density, porosity, and linear shrinkage remained the same with the increasing the
size of functional groups, whereas surface area decreased with further modification of gels.

Silica aerogels with more flexibility have been fabricated using methyltriethoxysi-
lane (MTES) as a sole precursor. Nadargi and coworkers prepared monolithic aerogels
by employing a two-stage acid-base catalyzed sol-gel process followed by supercritical
drying. Aerogels with different densities were obtained by varying the molar ratio of
MeOH/MTES(S) [121,122]. It was observed that low dilution of MTES led to less flexibility,
and the aerogels with the highest S ratio showed the highest flexibility. However, further
bending of these samples resulted in crack formation. Furthermore, Aravind et al. syn-
thesized porous hydrophobic MTES-based silica aerogel under ambient pressure drying
with a surface area of 727 m2/g [123]. However, the Young’s modulus and shrinkage were
not mentioned. Cui and coworker studied the temperature-dependent microstructure of
silica aerogels using 0.5 molar ratios of MTES/TEOS. Aerogels were subject to heat at
different temperatures (200–500 ◦C for 2 h). They found temperature-driven transition from
hydrophobic to partially hydrophilic to completely hydrophilic [124]. Transparent flexible
silica aerogels are prepared by replacing the traditional solvent (alcohol) with water, using
MTES and CTAB, via an acid-base two-step method [125]. The resulting flexible, transpar-
ent, hydrophobic (151◦) silica aerogels exhibited low thermal conductivity (0.0215 W/mK)
with an initial decomposition temperature of up to 511 ◦C.

Alternatively, organotrialkoxysilanes with longer alkyl groups (ethyl, vinyl, and
propyl) are used to prepare aerogels. Itagaki et al. have investigated the phase sepa-
ration behavior by varying the molar ratio of VTMS and TMOS as co-precursors in the
presence of formamide under an acidic condition and prepared monolithic amorphous
alkylsiloxane gels with well-defined macropores [126]. Shimizu et al. developed trans-
parent hydrophobic polyethylsilsesquioxane (PESQ) and polyvinylsilsesquioxane (PVSQ)
aerogel using ETMS and VTMS precursors in the presence of nonionic surfactant EH-208
(polyoxyethylene 2-ethylhexyl ether) [127], as represented in Figure 6. Micrographs clearly
show a thick gel skeleton with large pores (100 nm), and the presence of a coarsened porous
structure causes visible-light scattering. Typical stress–strain curves of PESQ aerogels are
presented in Figure 6e, which exhibits flexible behavior on uniaxial compression of up to
50% without collapse. The mechanical properties of PVSQ aerogels are further strengthened
by radical polymerization of vinyl groups in the solid network using AIBN radical initiator.
These aerogels had the desired transparency and compressibility. However, the density
was high and they possessed low elastic modulus.

Trifunctional precursors with long alkyl chains are also employed to prepare silica aero-
gels. Yang et al. fabricated superhydrophobic silica aerogel by incorporating PTES/TEOS
co-precursors employing ambient pressure drying [128]. The resulting aerogels exhibited
low density, high surface area, and can endure up to 70% maximum linear compression
with few cracks. They also possess a high absorption capacity (8–10 times their own weight).
Recently, Li and coworkers prepared silica-polymethylmethacrylate composite aerogel using
TMOS and TMSPMA via load transfer across a static electric phase interface [62]. Rao et al.
used monofunctional silica precursor trimethylethoxysilane (TMES) with TMOS to prepare
hydrophobic silica aerogels [129]. TMES/TMOS molar ratio (S) was varied from 0 to 2.35.
As the S value increased, the hydrophobicity of the aerogels increased, but the optical
transmission diminished from 93% to less than 5% in the visible range.
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Figure 6. (a) Synthesis of PESQ and PVSQ aerogels, (b,c) SEM images of PESQ aerogels, (d) PESQ
aerogel showing large volume shrinkage after SCF drying, (e) stress–strain curves on uniaxial
compression of PESQ aerogels at different concentrations, (f) photograph of PVSQ aerogels and
xerogels. Reproduced with permission from Ref. [127]. Copyright 2016 American Chemical Society.

Table 2. Physical properties of ionic and nonionic surfactants.

Type Surfactant Molecular Structure Appearance Ref.

Cationic
CTAC CH3(CH2)15N(Cl)(CH3)3 transparent [99]
CTAB CH3(CH2)15N(Br)(CH3)3 transparent [99]

Nonionic

P123 EO20PO70EO20 opaque [103]
P105 EO37PO56EO37 transparent [103]
L35 EO11PO16EO11 opaque [103]
F127 EO106PO70EO106 transparent [99]
F108 EO132PO50EO132 transparent [103]
F68 EO78PO30EO78 transparent [103]

EH-208 C8H17O-(C2H4O)n-H transparent [127]

Polyhedral oligomeric silsesquioxane (POSS) is also used to construct novel organic–
inorganic materials. Many research groups have developed unique silica aerogels based on
POSS which have resulted in some inspiring improvements to aerogel properties [130–132].
Jana et al. evaluated a POSS molecule carrying phenyl, iso-butyl, and cyclohexyl organic
side groups as a multifunctional reinforcing agent within the silica aerogel [133]. Schematic
illustration of TEOS and POSS molecules are displayed in Figure 7. The compressive
modulus increased six-fold with less than 5 wt% trisilanol phenyl-POSS, with negligible
increases in density. Recently, Li and coworkers prepared octa [2-((3-(trimethoxysilyl)-
propyl)thio)ethyl]silsesquioxane (OTS)-based superhydrophobic aerogels using MPTMS
and POSS via thiol-ene click chemistry and studied the effects of OTS:H2O molar ratio on
the physical properties of aerogels (Figure 8) [134]. Benefiting from the alternating rigid
inorganic nanocage skeleton, the resulting flexible OTS aerogels had high surface area
(542–834 m2/g) and high compression strengths (4.96–6.48 MPa), with a better compression
modulus (18.79–25.84 MPa). The good oil–water separation efficiency of OTS aerogels can
be utilized for practical application.
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Silica aerogels are made using monomeric or polymeric precursors through bimodal
or spinodal decomposition phase separation. Kanamori et al. prepared a series of mate-
rials using pre-polymerized precursor before gelation [135]. They concluded that using
pre-polymerized precursor significantly improves the thermal and mechanical properties
of resulting aerogels. As a follow-up to this, a new class of transparent, superflexible silica-
based aerogels has been prepared using pre-polymerized silica precursor prior to gelation.
This novel approach was first introduced by Zu et al. They initially polymerized mono-
functional (VDMMS), bifunctional (VMDMS, VMDES, and AMDMS), and trifunctional
(VTMS, ATMS) precursors and later cross-linked the network with siloxane bonds to form a
polymeric backbone in the presence of a di-tert-butyl peroxide (DTBP) initiator via ambient
pressure drying (Figure 9) [136–138]. The resulting aerogel network consisted of polysilox-
ane as cross-linker and hydrocarbon chain as the backbone, which led to excellent flexibility
and processability while maintaining the superinsulating properties (15.2 mW/mK). This
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double-cross-linking approach significantly enhanced the skeletal structure of aerogels to
resist cracking during the drying process. This method is low-cost and is scalable from
molecular level to robust networks, and the aerogels exhibit hydrophobicity [139]. However,
this strategy requires higher temperatures and a prolonged aging process.
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Figure 9. Double-cross-linking method and resultant aerogels. (a) PVPSQ, (b) PAPSQ, (c) PVPMS, and
(d) PAPMS from different precursors, (e) bending flexibility and excellent machinability of PVPMS
aerogels. Reproduced with permission from Ref. [137]. Copyright 2018 American Chemical Society.

Polyvinylpolymethylsiloxane (PVPMSA) aerogels were reported by Feng et al. using a
DTBP initiator and following Zu’s double-cross-linking approach, and they systematically
studied the effect of temperature and pressure on the thermal properties [140]. They
concluded that the thermal conductivity of PVPMSA aerogels is greatly affected by the
temperature. Polyvinylmethyldimethoxysilane (PVMDMS)-reinforced MTMS aerogels
were also developed, which showed elastic recovery properties and super high surface
area (1479 m2/g), mainly due to the long aliphatic hydrocarbon chain and the presence
of excess methyl groups [141]. Furthermore, Park et al. used pre-polymerized VTMS and
GPTMS precursors to create a nonparticulate structure through spinodal decomposition
phase separation [142,143]. This approach reduced the aging process and offered aerogels
with enhanced mechanical properties.

All data support the notion that alkyltrialkoxysilane-based aerogels have huge po-
tential for commercialization as they possess desirable properties such as flexibility, hy-
drophobicity, and good mechanical properties. The nature of flexible alkyltrialkoxysilanes
offers additional advantages, but they also come with a higher price tag. Therefore, they
are still not ready for large-scale fabrication. Although incorporating ORMOSILs in the
silica backbone performed well with regard to increasing the mechanical strength, this
property was only improved to a limited extent and further mechanical reinforcement is
still required.
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Table 3. Literature works reporting the synthesis of silica aerogels and their properties.

Precursors Drying Properties Ref.

MTMS/TMOS SCF Monolithic, transparent (85% to visible light), and hydrophobic. [85]

MTMS SCF Highly flexible and superhydrophobic (158–164◦) with Young’s modulus
of 0.0343–0.1411 MPa. [90]

MTMS APD Monoliths with variable pore size and pore volume, SSA 426.4 m2/g. [98]

MTMS-CTAB SCF/
APD Transparent, hydrophobic, density of 0.15–0.24 g/cm3, SSA of 622 m2/g. [99]

MTMS- F127 SCF/
APD Transparent, density between 0.18 and 0.23 g/cm3, and SSA of 588 m2/g. [99]

MTMS-CTAC SCF Transparent (91% light transmittance), density of 0.045 g/cm3, and
90% porosity.

[100]

MTMS/TEOS- CTAC APD SSA of 895.5 m2/g, hydrophobic with contact angle 153.9◦. [104]
MTMS/CTACB APD Low density (0.064 g/cm3), hydrophobic with contact angle 143.4◦. [105]

MTMS/DMDMS-CTAC SCF Highly flexible with density of 0.115 g/cm3. [107]

MTMS/ETMS APD/
SCF Hydrophobic with contact angle of 142◦ and SSA of 416.3 m2/g. [113]

MTMS/VTES APD Hyperelastic, hydrophobic (146◦), SSA of 321 m2/g with compressive
stress of 0.571.

[116]

MTMS/GPTMS- CTAC SCF Flexible, SSA of 410 m2/g, thermal conductivity of 0.0388 W/m K,
Young’s modulus of 0.46 MPa.

[117]

MTES SCF Monolithic, superhydrophobic with contact angle 163◦. [121]
MTES APD Monolithic with SSA of 727 m2/g. [123]

MTES-CTAB SCF Flexible, transparent, thermal conductivity of 0.0215. W/mK,
hydrophobic with contact angle 151◦. [125]

ETMS-EH-208 SCF Flexible, transparent with SSA of 383 m2/g. [127]

VTMS- EH-208 SCF Transparent, flexible, SSA of 510 m2/g, and thermal conductivity of
15.3 mW/mK.

[127]

PTES/TEOS-CTAB APD Monolithic, superhydrophobic with SSA of 215 m2/g and modulus of
0.55 MPa.

[128]

TEOS/PDMS SCF Transparent with SSA of 1200 m2/g. [77]

TEOS/POSS SCF Density of 0.083–0.11 g/cm, 6-fold increase in compressive modulus
(0.8–3.2 MPa) with SSA of 597–695 m2/g. [133]

MPTMS/POSS APD Density (0.34–0.41 g/cm3), superhydrophobic (153◦), SSA of
542–834 m2/g, Young’s modulus between 18.79 and 25.84 MPa.

[134]

VMDMS APD Superflexible, low density (0.16–0.22 g/cm), high transparency, and
thermal conductivity between 15.0 and 15.4 mW/mK. [136]

VTMS APD Density of 0.13–0.22 g/cm3, SSA of 965–1029 m2/g, and thermal
conductivity of 15 mW/mK.

[137]

ATMS APD Density of 0.18–0.22 g/cm, SSA of 1021–1059 m2/g, and thermal
conductivity of 15.3 mW/mK.

[137]

VMDMS APD SSA of 716–950 m2/g, density between 0.13 and 0.23 g/cm3, and thermal
conductivity of 14.5–15.4 mW/mK.

[137]

AMDMS APD Density between 0.23 and 0.26 g/cm3, SSA of 766–778 m2/g, and thermal
conductivity of 16.4 mW/mK.

[137]

VDMMS FD Low density, highly porous structure, superflexible in compression and
bending, superhydrophobicity (157o). [138]

VDMMS/VMDMS APD Low density (0.19–0.20 g/cm3), thermal conductivity
(16.2–17.6 mW/mK).

[138]

VMDMS SCF Thermal conductivity of 14.69 mW/mK, SSA of 1218 m2/g with density
of 0.177 g/cm3.

[140]

PVMDMS/MTMS SCF High SSA (1479 m2/g) with low thermal conductivity of 0.029 W/mK. [141]

VTMS SCF Density between 0.05 and 0.22 g/cm3, SSA of 316 m2/g, elastic modulus
ranging from 0.5 to 13.8 MPa.

[142]

GPTMS/BF3OET2 SCF Flexible with low density (0.05–0.22 g/cm3), SSA of 124–570 m2/g, and
thermal conductivity of 15.9 mW/mK.

[143]
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1.2.2. Bridged Polysilsesquioxanes

Bridged polysilsesquioxane (BPS) is a class of highly cross-linked organic–inorganic
hybrid materials prepared from molecular precursors ((R’O)3Si-R-Si(OR’)3, where R is
typically alkyl or aryl) [144]. These precursors contain variable organic bridging groups
attached to two or more trifunctional silyl groups (Scheme 5). The bridging group allows
the synthesis of final materials with tunable physical, chemical, and mechanical proper-
ties [145]. BPS networks (O1.5Si-R-SiO1.5)n with periodic mesopores are known as periodic
mesoporous organosilicas (PMOs) [146–148]. The organic linkers will increase separation
between Si atoms and further decrease cross-linking density. A typical schematic pre-
sentation of BPS is illustrated in Figure 10. BPS aerogels exhibit distinct properties such
as high flexibility, light weight, and low thermal conductivity. Therefore, they are used
as adsorbents for cleaning up organic contaminants [149], catalyst supports [150], low
dielectrics materials [151], etc. However, in recent decades, BPS has been reported with
different applications ranging from catalyst to drug delivery. Loy and Shea have extensively
explored BPS using aliphatic and aromatic bridging groups in order to tailor the physical
properties of the resulting aerogels [152–155]. These studies focused on porosity, relative
surface area, and reactivity of the precursor.
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Loy and coworkers prepared alkylene-bridged polysilsesquioxane using various
bis(triethoxysilyl) alkanes and studied the effect of catalysts and the length of alkylene
bridging group [156,157]. They concluded that base-catalyzed materials had higher degrees
of condensation and were more hydrophobic than those prepared under acidic conditions.
Among typical alkoxysilanes 1,6-bis(trimethoxysilyl)hexane (BTMSH) with a relatively
long and flexible bridging group was an attractive candidate that imparted flexibility to the
polysiloxane-based network [158]. Preparations of hexylene-bridged polysilsesquioxane
aerogels and xerogels with a high degree of condensation and low bulk density were
reported [159,160]. The resulting opaque aerogels exhibited improved flexural strength.

For many applications, it is desirable to have flexible materials. Aoki et al. introduced
hexylene-bridged polysilsesquioxane to prepare flexible, transparent aerogels from BTMSH
in dimethylformamide (DMF) solution followed by SCF drying [161]. The DMF solvent
prevents phase separation of BTMSH-derived condensates in the course of gelation. Al-
though the resulting aerogels showed good flexibility, an insufficient spring-back behavior
upon compression was observed, which can be attributed to the remaining silanol groups
on the pore surface. Surface modification with HMDZ was performed to minimize the
residual silanol groups. The resulting gels dried under ambient pressure exhibited high
transparency (71% transmission) with low density (0.13 g/cm3). Meador et al. explored
porous, hydrophobic aerogels using a mixture of bis [3-(triethoxysilyl)propyl]disulfide
(BTSPD), TMOS, and VTMS. Aerogels prepared using the optimum BTSPD concentration
provided excellent elastic recovery at all TMOS concentrations [162]. The soft disulfide
segments, which act as an organic spacer, endow the aerogels with excellent elasticity,
which recovers nearly completely after a compression of 75%.

Wang et al. produced soft and durable aerogels from bridged precursors containing
C–S bonds using MPTMS and VTMS precursors by employing UV-initiated thiol-ene click re-
action [163,164]. The alkoxy groups of the precursor influence the performance of aerogels
and the flexible thioether bridge contributes to robustness. Recently, Guo and coworkers
demonstrated highly flexible BSAs by introducing C–O and C–S bonds into the molecular
chain using VTES and 2,2′-(ethylenedioxy)-diethanethiol (EDDET) as co-precursors fol-
lowed by ambient pressure drying [165]. The BSA aerogels were easily compressed and
recovered their original shape. Furthermore, the aerogels retained their integrity even after
bending at 180o, as seen from Figure 11. In addition, these materials showed excellent
repeatable absorption for organic liquids.
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Figure 11. (a) Synthesis of bridged silsesquioxane aerogels from VTES and EDDET, (b–d) BSA
compressed by finger pressure demonstrating full recovery, (e,f) BSAs retaining their integrity while
being bent to 180◦. Reproduced with permission from Ref. [165]. Copyright 2015 Royal Society
of Chemistry.

To investigate the relationship between catalytic method and properties of aerogels,
Wang and coworkers fabricated amine-bridged polymethylsiloxane using APTMS and
3-(2,3-epoxypropoxy) propyltrimethoxysilane (EPTMS) precursor based on reactions be-
tween epoxy and amine groups [166]. The BSQ aerogels obtained exhibited low density
(0.22 g/cm3) and high compression modulus (20.4 MPa). Recently, molecular bridged
silica aerogels (MBSAs) were prepared to study the influence of catalysts using N,N-
bis(propyltriethoxysilyl)carbamide (bPTSCA), which was synthesized from APTES and
3-isocyanatopropyltriethoxysilane (IPTES) using different catalysts (HCl, NH4OH, and
NH4F) [167]. They observed that urethane-bridged silica aerogels showed adjustable me-
chanical properties ranging from rigid to elastic by varying their density. To improve the
thermal stability of BSA, it was necessary to introduce thermally stable groups as bridging
groups. In this regard, Zou et al. developed thiourethane-bridged polysilsesquioxanes from
MPTMS via triethylamine initiated thiol-isocyanate reaction, the sulfur analog of urethane
with exceptional elastic properties [168]. Three types of diisocyanates were used to investi-
gate the influence of the rigidity of the bridging groups. The resulting aerogels exhibited
low density, low thermal conductivity, and good mechanical properties to withstand 50%
deformation under compression.

An ethylene-bridged polymethylsiloxane (EBPMS) network has been investigated.
EBPMS is analogous to the PMSQ network, except that one-third of the siloxane oxygens
are substituted with a bridging ethylene group [169]. Schematic presentation of the synthe-
sis of EBPMS aerogels from 1,2-bis(methoxydithoxysilyl)ethane (BMDEE) using EH-208
surfactant is shown in Figure 12. Compared with PMSQ, the EBPMS aerogels exhibit higher
bending stress and strain. This enhanced tolerance of the EBPMS against bending reflects
the effect of substituted ethylene groups. As observed from Figure 12d, the slope of the
stress–strain curves dramatically decrease with an increase in bending strain. In order
to study the influence of organic bridging groups on the mechanical properties, Shimizu
et al. further fabricated transparent ethylene (CH2-CH2) and ethenylene (CH=CH)-bridged
polymethylsiloxane (Ethy-BPMS) aerogels focusing on bulk density and mechanical prop-
erties [170]. The Ethy-BPMS aerogel was composed of a network similar to that of PMSQ,
except for a partial substitution of the ethylene bridge for the oxygen bridge in the siloxane
bond. The Ethy-BPMS aerogels obtained were more flexible than PMSQ aerogels. The
curves obtained from three-point bending tests show that Ethe-BPMS and Ethy-BPMS
both exhibited different flexural moduli but similar bending strength. In addition, the
compressive modulus of the bridged aerogels was much higher than that of PMSQ aerogels
(Figure 12h). The results suggest that the molecular structure of the cross-linked network
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affects the macroscopic mechanical properties of the aerogels. Table 4 presents a summary
of the literature related to the properties of BSQ aerogels.
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In another report, Schaefer et al. evaluated arylene-bridged polymethylsiloxane by
inserting organic rigid-rod spacers at regular intervals into the silicate network, which
formed an integral part of the chemical connectivity of the material [171]. They obtained
highly porous aerogels with high surface areas (1880 m2/g) benefiting from the rigid
arylene bridge. Aromatic containing bridges are stiffer, but provide excellent control over
pore size and the distribution of pores. Because of the stiff bridge, the phenylene-bridged
BSQ synthesized by Boday et al. had a flexural strength of 0.048 MPa, which is stronger
than that of hexylene-bridged aerogels and 30% stronger than that of silica aerogels of the
same density [159]. More recently, our group synthesized multi-functional dihydroxy- and
trihydroxybenzene-bridged silica aerogels using various isomers [172,173]. A schematic
presentation of the synthesis of trioxybenzene cross-linked silica aerogels is shown in
Figure 13. The obtained aerogels exhibited improved mechanical strength, high surface
area (1150–1250 m2/g), high porosity (96%), low density (0.024–0.06 g/cm3), and low
thermal conductivity in the range of 0.033–0.06 W/mK. In addition, these bridged aerogels
showed hydrophobic natures without the use of silylating reagents.

Molecular-bridged silica aerogels (MBSA) are good candidates for oil–water separation.
MBSAs were synthesized based on the catalyst-free bridging of APTES and terephthalalde-
hyde (TPAL) via Schiff base condensation through a one-pot autocatalytic approach [174].
The aerogels obtained exhibited good mechanical properties with 90% deformation and
high absorption capability (11–24 times their own weight). Recently, Chen et al. devel-
oped a facile method to prepare MBSAs using TPAL, APTES, and MTMS co-precursors in
the presence of acetic acid as catalyst followed by vacuum during. The resulting mono-
lithic aerogels exhibited low density and excellent flexibility, with a Young’s modulus of
0.029 MPa (Figure 14) [175]. They also showed good absorption for different organic liquids.
To further study the influence of precursor and solvent, Chen and coworkers synthesized
two types of aerogels by reacting m-phthalaldehyde (MPA) with APTES and APDEMS
dried at ambient pressure [176]. MPA/APTE-based aerogels were hydrophilic with small
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particle sizes. In contrast, MPA/APDEMS-based aerogels were hydrophobic with large
particle sizes and thick networks due to the presence of methyl groups and slow reaction
rates. Recently, Tang et al. prepared bismaleimide-bridged silsesquioxane (BMIT-BSA) by
utilizing MPTES and (4,4′-diphenylmethylene)bismaleimide (BMI) via thiol-maleimide
click reaction followed by vacuum drying [177]. The aerogels obtained showed excellent
heat resistance (0.044 W/mK), were superhydrophobic, light-weight, and had enhanced
thermal stability (336 ◦C).
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Incorporating flexible, organic linking groups into the silica backbone has been shown
to be a versatile way to improve the elastic properties of aerogels. The aerogels can recover
from compression up to as much as 50% strain and are flexible in some cases. The flexible
linking groups also result in greater hydrophobicity and provide a means to tailor pore struc-
ture. Use of flexible polymer-cross-linked aerogels is a promising route to making robust
aerogel monoliths, thin films, and sheets, enabling a multitude of aerospace applications.
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Table 4. Literature studies on bridged silsesquioxane aerogels.

Precursor Drying Properties Ref.

BTSHM SCF Density of 0.093 g/cm3, SSA of 778 m2/g with Young’s modulus 0.079 MPa. [159]
BTSHM SCF Transparent, low density (0.14–0.22 g/cm3), SSA of 874 m2/g. [161]

BTSHM-HMDS APD Flexible, transparent, low density (0.13 g/cm3), 90% porosity with SSA of
924 m2/g.

[161]

BTSPD/TMOS/VTMS SCF Density of 0.126–0.257 g/cm3, porosity (86–94.8%), SSA between 3.42 and
718 m2/g, and Young’s modulus 0.5–3.7 MPa.

[162]

MPTMS/VTMS VD Density ranging from 0.064 to 0.085 g/cm3, SSA of 338–363 m2/g, and
Young’s modulus of 29.4–117.2 kPa.

[163]

EDDET/VTES APD Density of 0.125–0.237 g/cm3
, SSA between 58 and 135 m2/g, thermal

conductivity of 0.037–0.043, Young’s modulus 0.11–1.31 MPa.
[165]

Amine-bridged SCF Density of 0.1–0.22 g/cm3, SSA of 321–416 m2/g, Young’s modulus
3.1–20.4 MPa.

[166]

Urethane-bridged SCF Density of 0.049–0.59 g/cm3, SSA of 157–472 m2/g, with Young’s modulus
of 0.028–34 MPa.

[167]

Thiourethane-bridged VD Density of 0.05–0.082 g/cm3, thermal conductivity of 0.018–0.021 W/mK,
and Young’s modulus of 0.004–0.43 MPa.

[168]

Ethylene-bridged SCF Transparent, density of 0.19 g/cm3 with SSA of 599–797 m2/g. [169]
Ethenylene-bridged SCF Transparent, low density (0.14 g/cm3) with SSA of 946 m2/g. [170]

1,4-phenylene-bridged SCF Density of 0.097 g/cm3, SSA of 808 m2/g with Young’s modulus 0.553 Mpa. [159]
1,4-phenylene-bridged SCF SSA of 958–1670 m2/g with density of 0.08–0.064 g/cm3. [171]

4,4′-biphenylene-bridged SCF Density of 0.71 g/cm3. [171]
1,3,5-phenylene-bridged SCF Density of 0.28 g/cm3, SSA of 756 m2/g. [171]

TPAL/APTES SCF Low density (0.053–0.07 g/cm3) with SSA of 38.7–57.9 m2/g. [174]

TPAL/APTES/MTMS VD Flexible, SSA of 16.8–91.2 m2/g, density of 0.71–0.21 g/cm3 with Young’s
modulus of 0.029 MPa.

[175]

MPA/APTES APD Low density (0.112–0.149 g/cm3) with Young’s modulus of 0.12–0.16 MPa. [176]

MPA/APDEMS APD Density of 0.08–0.064 g/cm3 with Young’s modulus of 1.12–1.14 MPa,
thermal conductivity of 0.051–0.058 W/mK.

[176]

MPTES/BMI VD Hydrophobic, low density (0.09 g/cm3), thermal conductivity of
0.044 W/mK, elastic modulus of 10.3–25.8 kPa.

[177]

2. Current Status of Aerogels

For a long time, aerogels have been seen as curious materials existing mainly in
labs. However, today silica aerogels at least, as well as some organic (polyurethane) and
carbon aerogels, are commercially available and are produced in a batch-wise manner.
Today, the material cost for aerogel insulation is twenty times higher than that of standard
insulation products. The chances of aerogel products to be transferred to the market mainly
depends on the further reduction in cost associated with the production process. Therefore,
a fundamental understanding of thermodynamics and kinetics of the precursor, solvent
exchange, and drying method is required. In addition, reactor design and effective use of
reactor volume should be considered.

Concerning silica aerogels, sodium silicates and alkoxysilane are well-known precur-
sors. With the increasing adoption of silica aerogels by various industries, the demand
for silica aerogels is estimated to rapidly increase over the forecasted period. Silica is also
found in different types of biomass (ash). Recently, ashes of various (industrial) biowastes
containing silica species, such as rice husk, bagasse, oil shale, and wheat husk, have been
used as a silica source for aerogel production. Green Earth Aerogels (GEAT) has already
commercialized the production of silica aerogels from rice husks.

Currently, the main market application of aerogels is thermal insulation. However,
further applications such as for carriers and filler materials (cosmetics, pharmaceutics) and
absorbers (environmental cleanups) are already developed. Aerogels are now commer-
cialized by several companies. The primary products are powder, granules, monoliths,
and blankets (Table 5). Cabot Corporation uses aerogels as insulators for windows, the
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Aspen Aerogels Company as flexible insulation products, and the American Aerogel Corp.
as open-cell foams. Kobel et al. provided some insight into the size of the global market
for aerogels [178], which was about USD 80 million in 2008 and USD 230.82 million in
2016. Aspen Aerogels is the global leader in this industry, with a gross production of USD
115.34 million in 2016. With increasing commercialization, the silica aerogel market had a
value of USD 250 million in 2020 and is likely to witness significant growth over the next
seven years owing to its rising demand from various industries.

Table 5. Primary manufacturers of aerogels. Reproduced with permission from Ref. [55]. Copyright
2017 Elsevier.

Region Country Manufacturer Chemical Nature of
Aerogels Aerogel Form

Asia

Japan Tiem Factory Inc., Tokyo Silica (APD) Powder, granules,
and monoliths

South Korea JIOS Aerogel Corp, Seoul Silica Powder, granules,
and blankets

China
Nano High-Tech Co., Ltd., Daejeon Silica, organic Diverse

Alison Hi-Tech Co., Ltd., Guangdong Mainly silica Blankets, granules,
and panel

Surnano Aerogel Co., Ltd., Shaoxing City Mainly silica Granules, sheet, and panel

Malaysia Gelanggang Kencana Sdn. Bhd.,
Kuala Lumpur Silica Powder

North
America

USA

Aspen Aerogels, Northborough, MA Silica incorporated in
textiles Blankets

Aerogel Technologies, Boston, MA Organic aerogels Panels and particles

Nano Pore Inc., Albuquerque, NM Silica Thin films and
related products

TAASI Corporation Marketech
International, Phoenix, AZ Silica Powder and monoliths

CDT Systems Inc., Addison, TX Carbon, composite
materials Monoliths

Dow Corning, Midland, MI Silica Powder

Europe

Germany Cabot aerogels, Frankfurt Silica incorporated in
support matrix

Powder, blankets, sheets,
and granules

Spain
Green Earth Aerogels, Barcelona Silica from rice husk Powder and granules

Enersens SAS, Rochetoirin Silica Powder and monoliths

Keey Aerogels, Habsheim Silica and silica
incorporated in matrix Particles

Sweden
Airglass AB, Staffanstorp Transparent silica Monoliths and panels
Svenska Aerogel, Gävle Silica Powder and adsorbents

Switzerland Nexaero, Berlin Hydrophobic silica Particles

France Enersens, Rochetoirin Silica Powder, granules, blankets,
and panels

Portugal Active Aerogels, Coimbra Silica composite Powder, granules, blankets,
and adsorbents

UK Thermablok Aerogels, Ashford Silica Blankets

3. Conclusions

Aerogel synthesis is one of the major research areas in the field of materials science. A
systematic literature survey revealed that there are several challenges in the commercial-
ization of aerogels. This comprehensive review discusses the synthetic progress that has
been made in the developments of aerogels and provides guidelines for finding suitable
precursors for specific applications. Regardless of the chemical makeup, aerogels offer
many fascinating properties. These exceptional properties have drawn a great deal of
interest from researchers around the world for their use in many different applications.
The use of superinsulating materials is considered a most promising market for build-
ing retrofits, where it allows a significant reduction in energy requirements for existing
buildings. However, the inherent fragility, hydrophilic nature, low elasticity, and high
costs associated with the supercritical drying method affect the overall production and
handling of aerogels, which limits their practical applications. Despite progress toward
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environmental stability and drying under ambient pressure, the slow commercialization of
aerogels is ultimately traced to their fragility.

To date, efforts aimed improving the mechanical properties of aerogels have been
dedicated via different approaches, such as by incorporating organic monomers, poly-
mers, and biopolymers. Additionally, by choosing cheaper precursors, the production
cost of aerogels can be effectively reduced. Hybrid materials offer an unlimited poten-
tial for further development. Unfortunately, increasing organic content does not only
inevitably boost inhomogeneity, but comes at the cost of a noticeable decrease in surface
area and porosity. Although organic, inorganic, and composite aerogels made with different
precursors each have their own advantages, none of them can fulfill all of the required
properties, particularly flexibility, density, surface area, low shrinkage, moisture resistance,
and thermal stability. Therefore, aerogel commercialization is still in its infancy and needs
further advancement.

Overall, a viable aerogel requires synthetic parameters and precursors that reach a
balance between density, porosity, flexibility, and thermal conductivity. Aerogel flexibility
is highly sought, yet difficult to achieve. Regardless of their drawbacks, industrial applica-
tions of aerogels under current attention are back in line with their fundamental properties
focusing on thermal insulation. The development of improved alternative methods must
continue to achieve sufficient mechanical strength with low production cost and scalable
drying procedures. It is to be hoped more researchers will focus on the preparation of
novel single-component aerogels, material designs of composite aerogels, and industrial
applications, to give this state of matter a bright future.
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