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Abstract: Nanocellulose (NC) isolated from natural cellulose resources, which mainly includes cellu-
lose nanofibril (CNF) and cellulose nanocrystal (CNC), has garnered increased attention in recent
decades due to its outstanding physical and chemical properties. Various chemical modifications have
been developed with the aim of surface-modifying NC for highly sophisticated applications. This
review comprehensively summarizes the chemical modifications applied to NC so far in order to intro-
duce new functionalities to the material, such as silanization, esterification, oxidation, etherification,
grafting, coating, and others. The new functionalities obtained through such surface-modification
methods include hydrophobicity, conductivity, antibacterial properties, and absorbability. In addition,
the incorporation of NC in some functional materials, such as films, wearable sensors, cellulose
nanospheres, aerogel, hydrogels, and nanocomposites, is discussed in relation to the tailoring of
the functionality of NC. It should be pointed out that some issues need to be addressed during
the preparation of NC and NC-based materials, such as the low reactivity of these raw materials,
the difficulties involved in their scale-up, and their high energy and water consumption. Over the
past decades, some methods have been developed, such as the use of pretreatment methods, the
adaptation of low-cost starting raw materials, and the use of environmentally friendly chemicals,
which support the practical application of NC and NC-based materials. Overall, it is believed that as
a green, sustainable, and renewable nanomaterial, NC is will be suitable for large-scale applications
in the future.

Keywords: nanocellulose; surface functionality; TEMPO-mediated oxidation; periodate oxidation;
esterification; etherification; silanization; surface coating; grafting; potential application

1. Introduction

Environmental awareness has focused significant attention on the better utilization of
sustainable natural polymers, such as cellulose, chitin, and starch [1,2]. Cellulose, which
has a polysaccharide structure, is abundantly available across the Earth, and it is present
in woody and non-woody plants, as well as some sea animals, such as tunicates [3,4].
Cellulosic fibers were used as lumber, Chinese Xuan paper, textiles, and cordages for
thousands of years [5]. The French chemist, Anselme Payen, first isolated cellulose from
plants in 1839, and Staudinger later determined the polymeric structure of cellulose in
the 1920s [6]. In nature, all plants, even tall trees (some of which are over 120 m in
height), are supported by the hierarchical structures of wood-cell walls, which consist of
the primary cell, the secondary wall, and the lumens (Figure 1a) [7]. In particular, the
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secondary wall (thickness ≈ 4 µm) can be further subdivided into three concentric layers,
S1–S3, and the lumen forms the hollow center [8]. Furthermore, the S2 layer holds most
of the cellulose microfibrils (MFs), with diameters in the range of 10–30 nm and lengths
reaching more than 2 µm [9–11]. The MFs can be further divided into tens of elementary
fibrils (EFs), with diameters ranging from 3 to 5 nm and lengths reaching more than
1 µm [12]. Furthermore, the fact that EFs are surrounded by hemicellulose and lignin and
hierarchically packed together endows MFs with extraordinary structural stability. The
EFs are formed from cellulose-molecule chains, which are considered fundamental parts of
the wood cell wall. Each cellulose molecule has abundant hydroxyl (–OH) groups that can
form intra-hydrogen bonds, thus stabilizing the nanofibers through inter-hydrogen bonds
and promoting parallel chain stacking [13]. Hemicellulose constitutes 20–30% of the wood
dry mass. Compared to cellulose, hemicellulose has a shorter crosslinked chain structure
(DP ≈ 200) (Figure 1b) [14]. Additionally, hemicellulose is made of several monomers
(e.g., glucose, xylose, and arabinose), whereas cellulose is comprised of glucose monomers
only [15]. Moreover, compared to cellulose, the remarkable aspect of hemicellulose is
its diversity in terms of the types of side group, the units of composition, the molecular
weights, and the branching sites [16]. The diversity of hemicellulose present challenges
when examining the relationship between its intrinsic heterogeneity and the properties
of its final products. Furthermore, hemicellulose combines with cellulose, via hydrogen
bonds, and lignin, via hydrogen bonds and ether bonds, strengthening the stability of
the cell wall [17]. Lignin is a complex phenolic polymer of aromatic compounds with
three main aromatic subunits (p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol),
which are mainly linked together by C-C bonds and ether bonds, leading to a complex and
irregular macromolecular structure (Figure 1b) [18,19]. Lignin is hydrophobic by nature,
and has a much higher degree of crosslinking than hemicellulose, which contributes to the
elasticity and mechanical strength of the plant [20].
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Figure 1. Hierarchical structure of cellulose in plants (a); molecular structures of cellulose, hemicellu-
lose, and lignin (the three primary components of the plant cell wall) (b); schematic illustration of the
preparation of CNC and CNF (c); TEM images of CNC (d) and CNF (e) [21].
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Nickerson and Habrl [22] extracted nanomaterials named nanocellulose (NC) from
cotton linters by using sulfuric-acid hydrolysis in 1947. Since then, various physical and
chemical properties of NC, such as its low weight, low cost, high strength, stiffness, and non-
toxic properties have been comprehensively investigated in both academia and industry.
Due to the presence of abundant surface hydroxyl groups, NC can be easily functionalized
by amination, silanization, carboxylation, or esterification to obtain different cellulose
derivatives. Moreover, some small molecular substances, such as dopamine, tannic acid,
acrylate, and acrylamide, can be coated or grafted on the surface of cellulose to obtain
functional NC. The functionality of NC is of vital importance for its final applications.
However, there is a comprehensive summary focused on the introduction and definition of
NC substrates, the chemical modification routes applied so far for the functionalization
of NC, and NC-based functional materials is still lacking. Moreover, it still remains a
challenge to modify NC simply and efficiently without destroying the original morphology
and crystalline structure. Herein, this review summarizes the conceptual methods applied
to, the current status of chemical modification routes for, and the morphologies and reac-
tions of different functionalized NCs, including TEMPO-mediated oxidation, periodate
oxidation, esterification, etherification, silanization, surface coating, and grafting. Most
importantly, the functionality of NC is strongly linked to its application performance. There-
fore, we correspondingly introduce NC-based functional materials, such as paper-based
devices, antimicrobial packaging, pollutant absorption, conducting polymer hydrogels,
wearable sensor, and flexible electrodes. In short, unlike other reviews, this review paper
mainly summarizes the up-to-date functionalization modification of NC and NC-based
functional materials.

2. Structures and Characteristics of Cellulose and Nanocellulose
2.1. Cellulose

Driven by the awareness of the better utilization of sustainable natural polymers,
cellulose could serve as a promising alternative material for petroleum-based materials
due to its virtues of abundance, sustainability, degradability, and biocompatibility [1].
Cellulose is abundantly available from plants and other sources, such as trees, bamboo,
hemp, cotton, agricultural crops, bacteria, tunicates, and algae [23–25]. Moreover, as a green
polymer, cellulose is suitable for utilization in sustainable materials engineering. From
a top-down perspective, lignin and hemicellulose need to be dissolved/depolymerized
from plants, followed by processing to obtain cellulose for various end uses [26]. Cellulose
with repeated cellobiose units is the most abundant natural polysaccharide. As shown in
Figure 1b, the cellobiose unit is assembled by two anhydroglucose rings rotated by 180◦

relative to each other and connected by β-1,4 glycosidic bond [24]. The general formula
of cellulose is (C6H10O5)n, where n is the degree of polymerization (DP), depending on
the cellulose’s source material and the preparation approach [14]. Each cellulose chain has
a hemiacetal group and chemically reducing functionality, and the other end possesses a
pendant hydroxyl group, the nominal non-reducing end.

Moreover, bacterial cellulose (BC, a kind of microbial cellulose), with high levels of
water retention and a specific surface area, is typically synthesized by Gram-negative or
Gram-positive bacteria (including Acetobacter xylinum, Acetobacter, Alcaligenes, Pseudomonas,
and others) [27,28]. The DP of BC varies from 2000 to 6000, with diameters in the range
of 10–50 nm and lengths in the range of 100–1000 nm [29,30]. Bacterial cellulose has been
widely used in food additives, bio-medical sectors, and bio-based nanocomposites due to
its high purity, distinct physicochemical characteristics, and biodegradability [31]. Different
forms of BC can be produced by changing its mode of fermentation. Under agitation or
stirring, sharp or irregular sphere-like BC particles are formed, while BC materials with
three-dimensional interconnected structures can be produced in static conditions.
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2.2. Nanocellulose

As is widely known, various chemical pulping and bleaching reactions are adopted to
fully remove lignin and partially remove hemicelluloses to obtain cellulose pulp [7]. Next,
mechanical treatments (e.g., high-pressure homogenization, high-intensity ultrasonication,
or ultrafine grinding) or inorganic acid hydrolysis (e.g., sulfuric, hydrochloric, maleic, or
phosphoric acid) are used to refine the cellulose pulp (Figure 1c) [32–36]. Subsequently,
NC derived from lignocellulose is divided into two generic forms, cellulose nanofibril
(CNF) and cellulose nanocrystal (CNC) [37]. In general, CNF is a flexible, fiber-like, and
semicrystalline cellulose nanomaterial with diameters of less than 100 nm, typically ranging
from 3 to 50 nm, and lengths reaching over 1000 nm (Figure 1d) [38]. Cellulose nanocrystal
is a rigid rod-like cellulose nanomaterial with a diameter of 10–30 nm and a length of
5–200 nm, which is mostly crystalline in nature (Figure 1e) [39]. The properties (length,
diameter, aspect ratio, modulus, strength, and specific surface area) of NC generally depend
on the cellulose source, as well as the preparation method and conditions (such as the
concentration of chemicals, the treatment temperature, and the treatment time).

It is possible to produce CNFs with a high aspect ratio (>100), excellent tensile mod-
ulus, and entangled morphologies, by using mechanical nano-fibrillation methods such
as homogenization, ultrasonication, microfluidization, and grinding. In particular, high-
pressure homogenization is the most commonly used method for producing CNFs with
high quality, which can break down cellulose-pulp fibers and release nanofibrils through
various forces, such as rapid changes in high pressure, strong shear, high speed, and
turbulence [40,41]. However, some issues need to be carefully addressed when using
this method, particularly its large energy consumption and relatively low production
yield. Thus, some pretreatments were invented recently to address these drawbacks, such
as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, formic acid (FA)
hydrolysis, ionic liquid (IL) treatment, enzymatic hydrolysis, carboxymethylation, and
others [42,43]. These pretreatments contribute to the swelling of the fiber wall, which effec-
tively loosens the interfibrillar hydrogen bonds, which supports the subsequent mechanical
treatment. It should be pointed out that some pretreatment methods (such as TEMPO-
mediated oxidation and FA hydrolysis) do not only reduce the energy consumption of the
subsequent mechanical homogenization during NC production, but also simultaneously
introduce some new functional groups (carboxyl and ester groups, accordingly) into NCs
during pretreatment, which endow the NCs with different surface properties, which are
heavily linked to its application performance. Enzyme pretreatments, such as cellulase,
hemicellulases, and ligninases, have been used to facilitate the production of CNF, which
breaks down targeted bonds in pulp [44]. However, the efficiency and activity of enzymatic
pretreatments depend on the enzyme dosage, reaction time, pH, and reaction temperature,
which limit its application in the large-scale production of CNF. Additionally, green solvents
(e.g., ILs, DES) have been extensively used in pretreatments in NC fibrillation because of
their ability to loosen the cellulose network by disrupting hydrogen bonds [45].

Unlike CNF, CNC, which has a relatively low aspect ratio, is typically obtained through
the strong inorganic acid hydrolysis of cellulosic pulp, which is used to remove disordered
and paracrystalline regions in cellulose, such as sulfuric acid, phosphoric acid, hydrochloric
acid, nitric acid, and hydrobromic acid [35,46,47]. Among these hydrolyzed acids, sulfuric
acid has been widely used for the production of CNC, since CNC demonstrates exceptional
dispersity in water, high hydrolytic efficiency, and simple and time-saving process [48].
Generally, the disordered regions (amorphous structure) are mostly degraded during acid
hydrolysis due to the loose structure, while the crystalline structure of cellulose remains
as CNC due to its stability [49]. However, the issues in the use of sulfuric acid for CNC
production, such as the large usage of water, the harsh corrosion of the equipment used,
and the relatively low production yield, need to be rigorously addressed [50]. Thus, some
recoverable organic acids and solid acids, such as oxalic acid, maleic acid, FA, and phospho-
tungstic acid, have been used to prepare CNC through a sustainable and environmentally
friendly process. For instance, oxalic acid was used to hydrolyze hardwood pulp to prepare



Nanomaterials 2023, 13, 1489 5 of 22

CNC, and the highest yield of the CNC was around 25 wt% [51]. Furthermore, the incom-
pletely hydrolyzed solid cellulosic residue was used as feedstock to produce CNF through
homogenization. In recent years, FA, as a recyclable organic carboxylic acid, has been used
to hydrolyze cellulose for producing CNC [21]. Compared with other inorganic strong
acids, FA can be easily recovered and reused due to its lower boiling point (100.8 ◦C), which
is less corrosive to equipment [52]. Additionally, FA can efficiently hydrolyze hemicellulose,
remove lignin, and maintain cellulose; thus FA has been widely used to pretreat various
cellulosic materials in the production of CNC.

The modification of NC is of crucial importance to ensure the functionality of its vari-
ous final applications. In general, chemical modifications, such as silanization, esterification,
and etherification, occur in reaction of different chemicals with the hydroxyl groups of NC.
In contrast, some chemical modifiers, such as dopamine, tannic acid, acrylates, and acry-
lamides, can also be coated/grafted on the surfaces of cellulose materials. These reactions
are sensitive to water and are typically present at low concentrations, which increase the
reagent consumption and make the whole process environmentally unfriendly and difficult
to scale up. Various modification processes have been applied because different NCs have
different features. For these reasons, it remains challenging to modify NC surfaces simply
and efficiently. Herein, we focus on the chemical modification of NC, and the main surface
chemistries of NC mentioned in this paper are presented in Figure 2.
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3. Tailoring Functionality of NC

As mentioned above, the chemical modification of NC is of great interest in both
academia and industry. In this section, we focused on recent chemical modifications of NC,
including oxidation, coupling, grafting, surface coating, and others.
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3.1. TEMPO-Mediated Oxidation of NC

As is known, due to the presence of surface hydroxyl groups, NC can be oxidized by
different kinds of oxidizer (e.g., TEMPO, hydrogen peroxide, and periodic acid) to fabricate
various cellulose derivatives and introduce many active groups (e.g., carboxyl, aldehyde,
and carbonyl functional groups).

The TEMPO oxidation of cellulose is a kind of pretreatment to isolate NC and obtain
CNF or CNC with carboxyl groups (i.e., TOCNF or TOCNC). This reaction selectively
replaces OH groups at C6 with aldehydes, after which the aldehyde groups are further
oxidized into carboxylic groups at C6 of the glucose unit. This process can be carried out
through the TEMPO/NaBr/NaClO reactant system [43]. In general, the oxidation process
is conducted using TEMPO with NaClO2 or NaClO as a secondary oxidant to recycle the
TEMPO at pH 9–11. Furthermore, NaBr is the most commonly used reagent to increase the
rate of oxidation through the formation of NaBrO in situ. The mechanism underlying the
whole process is illustrated in Figure 3a.
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Figure 3. Mechanisms of TEMPO oxidation (a) [53]; TEM images of the TOCNF with carboxylate
contents of 1.5 (b) and 0.9 mmol/g (c) [54]; SEM image of the cross-section of the pressed CNF bulk
material (d,e) [55]; AFM image of dialdehyde TEMPO-oxidized NC (f) [56]; the recorded relative
resistance changes of the strain in forefinger bending (prepared using dialdehyde TEMPO-oxidized
NC) (g) [56]; schematic illustration of fabrication of antibody protein (SY5)-conjugated TOCNF
(h), and the corresponding AFM images (i) [57]; schematic illustration of fabrication of pendant
arginine (Arg) and tryptophan (Trp) into the TOCNC by amide coupling (j) [58].
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As shown in Figure 3b,c, the TOCNF with low carboxylate content (0.9 mmol/g)
formed lateral aggregates, and the TOCNF with the carboxylate content of 1.5 mmol/g
was mostly converted to homogeneous cellulose fibrils with high average aspect ratios
of >150 [54]. In accordance with a previous report, TOCNF-lignin bulk material was pre-
pared [55], and this material exhibited excellent flexural strength (~198 MPa), an extremely
light weight (~1.35 g/cm3), and good toughness (~8.5 kJ/cm2) (Figure 3d,e). Further-
more, TEMPO oxidation is now also used as a pretreatment to further functionalize the
surface groups of NC. A dialdehyde TEMPO-oxidized NC was prepared through a TEMPO-
oxidation pretreatment followed by NaIO4 oxidation [56], and these NCs were used to
pre-reinforce gelatin nanocomposite hydrogel (Figure 3f). As the wearable assembly sensor,
this hydrogel recorded the relative resistance changes in the strain in forefinger bend-
ing with good strain sensitivity and compressive sensitivity (Figure 3g). Furthermore, a
TEMPO-oxidized NC was used to prepare hydrogels and films using a conjugated antibody
protein or amino acid moieties for a variety of biomedical applications. It was reported
that an antibody protein (SY5) was conjugated with TOCNF to produce antigen–antibody
interaction with involucrin, which improved wound healing by essentially providing a
tissue environment [57]. A schematic illustration of the fabrication of the antibody protein
(SY5)-conjugated TOCNF and the corresponding AFM images are presented in Figure 3h,i.
As shown in Figure 3i, SY5 with a size of 10 nm was generated along the TOCNF; this was
caused by the coupling reaction between the SY5 and the TOCNF. Moreover, cellulose films
were fabricated by grafting pendant arginine (Arg) and tryptophan (Trp) onto cellulose,
which could be used to control the mechanical properties of cellulose films (Figure 3j) [58].

In addition, the properties of the resultant TOCNF are also dependent on the sources
of the raw materials. Usually, wood fiber (cellulose I) is TEMPO-oxidized to obtain surface-
modified TOCNF, whereas mercerized and regenerated cellulose (cellulose II and amor-
phous) are oxidized to obtain water-soluble salt. Saito et al. [59] used bleached sulfite
cotton, bacterial cellulose, tunicin, and wood pulp to produce NC. It was found that the
restrictive degree of oxidation was reduced in the following order: wood pulp > cotton
pulp > tunicin and bacterial cellulose. Although the TEMPO oxidation of cellulose is a
simple pretreatment to produce TOCNF, certain issues, such as the long duration of the
reaction (1–3 days), severe environmental pollution, and large water usage need to be
addressed in the future. Thus, various approaches have been developed to partially replace
TEMPO-oxidized chemicals, such as periodate [60], periodate-chlorite oxidation [61], nitric-
acid/sodium-nitrite oxidation [62], N-hydroxyphthalimide (NHPI) [63], and ammonium
persulfate (APS) oxidation [64]. Among these oxidation methods, APS oxidation is cheaper
than TEMPO oxidation for the production of NC at the same oxidation degree. The oxida-
tion ability of APS is attributed to the activated S2O8

2−, which can destruct amorphous
regions of cellulose. It should be noted that although APS oxidation can be a strong alter-
native to other oxidative methods for CNF production, it produces CNC instead of CNF,
which may limit its application in some respects. On the other hand, compared to TEMPO
oxidation, NHPI-oxidizing systems can produce higher contents of carboxylic groups and
preserve the morphologies of original samples without the further depolymerization or
degradation of cellulose. Additionally, NHPI combined with NaIO4 was used to produce
highly water-soluble 2,3,6-tricarboxy cellulose, eliminating the water-soluble limitation
of cellulose caused by the highly ordered hydrogen-bond network and high crystallinity,
which can be used in many practical and scalable purposes [65].

3.2. NaIO4 Oxidation of NC

Among the modified NC samples, dialdehyde NC (DANC) can be prepared through
selective NaIO4 oxidation, which breaks the C2–C3 bond in the glucose repeat units of
cellulose and introduces two aldehyde groups per glucose unit (Figure 4a) [66]. Moreover,
cellulose can be pretreated by alkali, ultrasound, or molten-salt hydrates, and then oxidized
to improve the reaction efficiency. As shown in Figure 4b,c, the DANC produced by
periodate oxidation (for 42 and 84 h, respectively) consisted of rigid and straight rods with



Nanomaterials 2023, 13, 1489 8 of 22

similar diameters, ranging from 5 to 10 nm [67]. However, their lengths decreased from 240
to 100 nm at 42 h and DANC 84 h, respectively. These results indicated that the morphology
of DANC can be effectively controlled by the amount of periodate and the reaction time.
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the fabricated hydrogel (k) [72,73].

Furthermore, DANC, which contains multiple aldehyde groups, can be further oxi-
dized, sulfonated, or reacted with chemicals with amino groups to produce cellulose-based
materials for different applications. Larsson et al. [68] used periodate oxidation and
sodium borohydride (NaBH4) reduction to produce dialcohol NCs 4–10 nm in diameter
and 0.5–2 µm in length (Figure 4d). Subsequently, a strong and tough film with a breaking
strength of 175 MPa and a breaking strain of 15% was fabricated (Figure 4e). Further-
more, the dialdehyde groups created by periodate oxidation were converted to carboxylic
acid using sodium chlorite (NaClO2) to form 2,3-dicarboxylic acid NC [69,70,74,75]. As
shown in Figure 4f, dicarboxylic acid NCs ranging from 3 to 5 nm were prepared, while
their lengths reached the micrometer-scale [70]. Next, a film was fabricated with tensile
strength and Young’s modulus values up to 211 ± 3 MPa and 12 ± 1 GPa, respectively
(Figure 4g). Because of the well-organized structures of the hybrids and small pore sizes,
the as-fabricated film possessed good oxygen-barrier properties [69]. In addition, periodate
oxidation is also an attractive route for the introduction of sulfonated groups into cellu-
lose fibers, which takes place through the addition of potassium persulfate (K2S2O8) or
NaHSO3 [71,76,77]. The TEM analysis indicated the rod-like aggregates of the sulfonated
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NC (SCNF, Figure 4h), and the AFM image further exhibited the surfaces of the cellulose
nanospheres obtained from the SCNF (Figure 4i). It was found that the water absorbency of
the cellulose nanospheres was improved from 8% to 199% with this oxidation/sulfonation
protocol [71]. Additionally, NC oxidation by periodate has been used to introduce amine
groups using benzylamine [72,73]. Methylamine was used to adjust the hydrophobicity
of the NCs, and the obtained NCs exhibited lengths of 73–131 nm and widths of 5–6 nm
(Figure 4j) [73]. Moreover, NCs with high hydrophobicity were prepared using octyl moi-
eties to improve the hydrophobic interactions, and the modified NC resulted in stiffer and
stronger hydrogels compared to hydrogels reinforced with hydrophilic NCs (Figure 4k) [72].

Periodate oxidation followed by reduction, sulfonation, or oxidation was recently
applied for the introduction of functional groups into cellulose fibers. However, these
processes are time-consuming and use toxic products, which make them unsustainable and
environmentally unfriendly. Thus, further studies are needed to develop a greener process
to produce homogenous and functional NC.

3.3. Esterification of Cellulose and NC

As is widely known, there has been extensive research in the esterification of cellulose,
which began about 140 years ago. Cellulose esterification can usually be classified as
inorganic (e.g., cellulose nitrate, cellulose sulfate, and cellulose phosphate) and organic
(e.g., carboxylate esters, transesterification), and it can be used to modify both cellulose
and NC [4]. Among these esterification methods, both cellulose nitrate and cellulose
sulfate are produced through the esterified hydrolysis of cellulose, and this is followed
by homogenization to produce NC [78,79]. Cellulose sulfate was made through the direct
esterification of cellulose using sulfuric acid in 1947, by introducing sulfate-half-ester
groups onto the surface of cellulose. Subsequently, various methods, including sulfur
trioxide, chlorosulfonic acid, or sulfuryl chloride, were widely used for the production of
cellulose sulfates [80]. Cellulose sulfates with DS between 1 and 2.6 were prepared through
the direct sulfation of cellulose, which exhibited excellent dispersity in water [81]. After
the sulfation, the cellulose sulfates, with compact, smooth, and porous surfaces, exhibited
completely different morphologies from the cellulose (Figure 5a,b). It was found that the
molecular weight of the cellulose was remarkably decreased during the sulfation, which
was attributed to the amount of sulfating agent and the sulfation temperature. Cellulose
nitrate is one of the most important inorganic cellulose esters, and it can be used in many
application fields, including plastics, explosives and coatings [82]. Cellulose nitrate is
synthesized by the reaction between cellulose and the classical nitrating acid mixture
(nitric acid and sulfuric acid) or nitrating-agent systems (nitric acid/acetic acid/acetic
anhydride) [83]. It was reported that miscanthus cellulose was nitrated using an industrial
sulfuric-nitric acid mixture to produce cellulose nitrate (Figure 5c,d) [84]. The miscanthus
cellulose exhibited a curved and heterogeneous ribbonlike surface, which changed to a
three-dimensional fibrous texture after the nitration.

Generally, native cellulose was employed as a starting material to obtain cellulose
sulfate, which led to nonuniformly distributed substitution, leading to poor solvability
in water [4]. To overcome this limitation, partially modified cellulose derivatives can
be used to fabricate cellulose sulfate by means of the displacement of an ester or ether
group already present in the cellulose [4]. Furthermore, cellulose sulfates with various
substitution patterns can be realized via this method. Carboxyl cellulose sulfates with both
sulfate and carboxyl groups were obtained by two synthesis routes [85]. In one, cellulose
was sulfated to produce cellulose sulfate, followed by TEMPO-mediated oxidation. In the
other, the cellulose underwent TEMPO-mediated oxidation, followed by acetosulfation.

The introduction of organic functional groups onto cellulose via esterification effi-
ciently allows the fabrication of a wide range of valuable products. Cellulose acetate,
a typical example of a cellulose-carboxylate ester, is prepared by the reaction between
cellulose and the mixture of acetic acid and acetic anhydride, with sulfuric acid as the
catalyst [83]. As shown in Figure 5e,f, a cellulose-acetate film was fabricated with glycerol
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as a plasticizer and n-propanol as a transparent agent [86]. The film exhibited a high
transmittance value and a low haze degree of 93.75% and 1.42%, respectively. Further-
more, the film presented a compact structure and a smooth surface, leading to an excellent
water-vapor-barrier property (Figure 5f). Additionally, another cellulose ester, cellulose
formate (CF), can be fabricated through the esterification between cellulose and FA via
a clean and sustainable process (Figure 5g) [87]. The FA is easy to recycle in comparison
with conventional inorganic acid, and it can hydrolyze cellulose and react with hydrox-
yls on the surface of cellulose, thus introducing ester groups (formyl groups) onto the
cellulose, generating CF. It was reported that three kinds of nanosized CF with distinct
properties were prepared by the one-pot FA hydrolysis of wood pulp, and the formyl
groups exhibited exceptional compatibility in a polylactic acid matrix. In addition, it was
reported that CF was partly coated by Ag nanoparticles to obtain antibacterial CF, which
was caused by a silver-mirror reaction between the CF and silver ammonia (Figure 5h). As
expected, the fabricated CF/Ag composites presented strong antibacterial activities against
both Escherichia coli and Bacillus subtilis. Moreover, cellulose esters can be prepared by
transesterification in the presence of catalysts. Cao et al. [88] reported an efficient reaction
system containing dimethyl sulfoxide (DMSO)/aqueous NaOH or KOH for synthesizing
cellulose esters (Figure 5i). The cellulose reacted with vinyl acetate, vinyl propionate, or
vinyl butyrate, producing cellulose acetate, cellulose propionate, or cellulose butyrate with
a high DS (2.14–2.34) in 5 min. As shown in Figure 5j, the cellulose esters dissolved into the
solvent and formed a homogeneous phase within minutes, which was in sharp contrast to
previous methods.
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On the other hand, the esterification of NC has been widely investigated for further
selective applications. It was reported that a functionalized CNCs with a thiol group
(CNC-SH) was fabricated by simple and mild organocatalytic esterification, and they were
used as sensors by attaching organic catalysts and fluorescent molecules to the surface of
CNC-SH [89]. Moreover, chlorotoxin was attached to the surface of NC through Fisher ester-
ification, exhibiting excellent properties in terms of biocompatibility and internalization the
in cell line [90]. Furthermore, tetrakis (hydroxymethyl) phosphonium chloride (THPC) was
grafted onto the surface of TOCNF via an esterification reaction to prepare THPC@TOCNF
membranes, which presented high permeate flux and antibacterial properties [91].

3.4. Etherification of Cellulose and NC

Cellulose ether is an extensively used cellulose derivative, which has been applied
in the fields of textiles, membrane science, biological materials, and environmental pro-
tection [92,93]. The carboxymethylation of cellulose fibers is a widely used approach to
etherification for the preparation of cellulose ether, which can also be used as an efficient
method to prepare etherified NC [94]. Sodium carboxymethyl cellulose is produced by con-
verting partially or totally hydroxyl groups with monochloroacetic acid or its sodium salt to
carboxymethyl moieties (Figure 6a). Nevertheless, this process presents many drawbacks,
such as the toxic halocarbon reactant, high consumption of water, and harsh alkali hydrox-
ide. In order to reduce the chemical consumption, reaction time, and energy consumption,
the ultrasound-mediated production of carboxymethyl cellulose (CMC) under microwave
irradiation can be carried out. As shown in Figure 6b, cracks on the surfaces of the fibers
caused by ultrasonic pretreatment facilitated the penetration of sodium hydroxide and
the high reactivity of the cellulose [94]. However, the reaction of the cellulose without
sonication was superficial, and most of the reagents were unreacted and remained on the
surfaces of fibers (Figure 6c).

Etherification was also used to introduce cationic charges on the surfaces of CNCs
(Figure 6d) [6]. The cationization of NC is commonly performed using epoxypropy-
ltrimethylammonium chloride (EPTMAC) in a quaternization reaction [95]. As shown in
Figure 6f, due to the cationic nature of the functionalized NC, the EPTMAC-modified NC
presented a much more uniform dispersion than the unmodified NC (Figure 6e). Further-
more, surface cationization can generate the stable aqueous suspension of NC through
the conversion of hydroxyl groups into an epoxy moiety of EPTMAC. Unfortunately, the
hydrolysis of EPTMAC and the presence of by-products in the reaction mixture need to
be addressed.

Moreover, highly fluorescent NCs were prepared through the surface modification
of terpyridine-modified NCs with terpyridine-modified perylene (Figure 6g) [96]. The
terpyridine-modified NCs (Figure 6i) exhibited a slight increase in width in comparison
with the unmodified NCs (Figure 6h), while there was no significant change in their lengths.
Finally, amphiphilic cellulose ether has also been prepared using 5-bromo-pent-1-ene to
produce ethyl pent-4-enyl cellulose, followed by an olefin-cross-metathesis reaction using
acrylic acid or acrylate monomer [96]. The steps in the synthesis of the amphiphilic cellulose
ether are shown in Figure 6j. The as-fabricated amphiphilic cellulose ether can be used in
the fields of drug delivery and waterborne coatings.

3.5. Silanization of NC

The silanization of NC is very important to increase the hydrophobic property of NC,
which is applied to packaging, membranes, or specialty paper [97]. It was reported that
silanization-modified NC films with excellent tensile strength and hydrophobic properties
were prepared through the vacuum filtration of the CNF suspension followed by immersion
in perfluoroctyltriethoxysilane (PFOTES) solution (Figure 7a) [97]. The water-contact angle
of the untreated NC films was lower than 25◦, while the contact angle of the PFOTES-
treated NC films increased up to 130.2◦ (Figure 7b,c). In 2015, Ifuku and Yano treated the
surfaces of NC sheets with a silane coupling reagent (γ-aminopropyltriethoxysilane (APS))
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to improve the fiber–matrix adhesion [98]. Subsequently, the silane-treated sheets were
impregnated with neat acrylic resin followed by hot pressure. The untreated cellulose
fibers were observed on the fractured surface, and the surfaces of the fibers appeared clean
without sticking to the matrix, which was caused by the low compatibility between the
fibers and the resin (Figure 7d,e). However, the surface of the fracture seemed unremarkable
and smooth, which indicated that the fibers did not slip at the fractured surface (Figure 7f,g).
Due to the improved compatibility between the cellulose and the matrix, the tensile strength
increased from 33.7 to 41.8 MPa, and the Young’s modulus increased to more than 70%.
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Furthermore, NC hydrogels and aerogels can also be modified by solution-immersion
processing. For instance, it was reported that CNF aerogels were modified by triethoxyl(octyl)
silane via chemical vapor deposition (CVD) to increase hydrophobicity and oleophilic-
ity [99]. The ultra-light CNF aerogels were supported by a dandelion, and the silane-
modified CNF aerogels were completely non-wettable by water (Figure 7h,i). The as-
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fabricated aerogels with improved wet mechanical properties absorbed 210 times more
water and 375 times more chloroform, respectively. In addition, the aerogel apparently
absorbed chloroform from the bottom of the water (Figure 7j). Except for films and aerogels,
CVD was used to modify CNF filaments with organosilanes (Figure 7k) [100]. As shown
in Figure 7l, after TC-treated modification, the surfaces of the filaments presented hairy
features with lengths ranging from 30 to 40 µm, whereas the DC exhibited continuous
homogeneous coating layers (Figure 7m). After the modification, the wet strength and
Young’s modulus of the modified filament increased to 160 MPa and 10 GPa, respectively.
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3.6. Surface Coating and Adsorption of NC

Generally, the surface coating and adsorption of NCs are employed in packaging,
wearable sensors, flexible electrodes, and paper coating. In particular, conducting polymer
hydrogels, which offer biocompatibility, viscoelasticity, and good mechanical performance,
are considered smart and soft solutions for various advanced applications. For instance,
conductive polymers, such as polyaniline (PANI) and polypyrrole (PPy), can be coated on
the surfaces of CNFs to obtain conductive functional materials (Figure 8a,b). Because of the
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interaction between the hydroxyl groups on the CNFs and amine groups of aniline (ANI)
monomers or N-H in the pyrrole (Py) ring, PANI or PPy continued to deposit on the surface
of the CNF through hydrogen bonding to form conductive nanocomposites [101]. The re-
sultant CNF-PANI exhibited enhanced tensile strength (9.7 MPa), a high Young’s modulus
(10.9 MPa), and excellent conductivity (8.95 × 10−1 S/m). The material therefore has great
potential for use in flexible electrodes, sensors, and paper-based devices. Furthermore, CNF-
PPy was further dispersed into the polyvinyl alcohol and borax matrix (PB) to prepare CNF-
PPy/PB hybrid hydrogels [102]. The obtained CNF-PPy/PB exhibited enhanced compres-
sion stress (22 MPa), low density (1.2 g/cm3), and excellent conductivity (3.65 ± 0.08 S/m),
respectively. As shown in Figure 8c, the surfaces of the hydrogels adhered to each other,
and completely self-healed within 15–20 s. This phenomenon was caused by the dynami-
cally reversible crosslinks formed through hydroxyl groups and borax multi-complexation.
In addition to PNI and PPy coating, metal–organic frameworks (MOFs) were coated on
the surface of TOCNF to form TOCNF@MOF hybrid nanofibers (Figure 8d) [103]. An
aqueous solution containing Ni(OAc)2·4H2O and 2,3,6,7,10,11-hexahydroxytriphenylene
(HHTP) (or 2,3,6,7,10,11-hexaaminotriphenylene (HITP)) was added to exchange ions for
the preparation of Ni-HHTP or Ni-HITP. Next, TOCNF@MOFs nanopapers were pre-
pared through the vacuum filtration of the homogeneous suspension, which can be used
in flexible energy-storage devices. An excellent electromagnetic-interference-shielding
material was fabricated using CNF, MXene, and FeCo by using the layer-by-layer vacuum-
filtration method [104]. The produced CNF@MXene@FeCo film possessed remarkable
electromagnetic interference (EMI) shielding effectiveness (SE) (58.0 dB) and a low re-
flection coefficient (0.61). Recently, PANI was dropped on cellulose paper to fabricate a
highly flexible, stable, and sensitive sensor (response (≤220 s)/recovery (≤150 s)) with
disposable humidity (1.1701 Ω/%RH) [105]. In addition, due to the presence of van der
Waals interactions, hydrogen bonds, ionic interactions, and other affinities, physical ad-
sorption is another way to modify CNF. A diblock copolymer dispersant, poly(lauryl
methacrylate)-b-poly(2-hydroxyethyl methacrylate) (PLMA-b-PHEMA), was absorbed into
cellulose to improve the dispersion of hydrophilic CNF in the hydrophobic polyethylene
matrix (Figure 8e) [106]. The contact angle of the modified CNF increased from 48 to 101◦,
and the Young’s modulus and tensile strength increased by more than 140% and 84%,
respectively. In conclusion, the surface modification of CNF using adsorption or coating is
an easy way to fabricate conducting polymers, whereas, without grafting, there is a risk of
migration or leaching phenomena.

3.7. Grafting Modification of NC

As mentioned above, the chemical grafting modification of NC is usually performed by
using esterification, etherification, cationization or silanization, in which single molecules
react with the hydroxyl groups of NC. Furthermore, the grafting of polymers onto NC can
be performed by using the “grafting from” or “grafting onto” methods. The “grafting from”
strategy consists of mixing the NC with a monomer and an initiator. Next, polymerization
occurs at the surface of the NC, while some non-grafted polymers usually remain in the
solution. In the second strategy, NC is mixed with a polymer in a low grafting density and
a coupling agent drives the grafting.

It was reported that CNF was grafted from various acrylic monomers (butyl acrylate,
glycidyl methacrylate, methyl methacrylate, ethyl acrylate, and 2-hydroxyethyl methacry-
late) via a redox-initiated free-radical method, with cerium ammonium nitrate used as the
initiator [107]. The mechanism of cerium-initiated copolymerization is shown in Figure 9a.
All the modifications made the CNF more hydrophobic, and the structure of the CNF
was retained and surrounded by a thin coating. Moreover, the CNF was also coated with
polyaniline (PANI) through the in situ polymerization of aniline to produce CNF-PANI
(Figure 9b,c), leading to roughness on the CNF surface [108]. Next, nature rubber reinforced
with CNF-PANI was obtained. The resultant materials, which have electronically conduc-
tive properties, can be used in wearable electronics and pressure sensors. In addition, a
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temperature-sensitive monomer, N-isopropylacrylamide (NIPAm), can be grafted onto
CNF cryogel microspheres for controlled drug release [109]. After coating with NIPAm
polymer chains, the CNF-NIPAm hybrid microspheres with uneven pore sizes were signifi-
cantly different from the CNF cryogel microspheres with highly porous and homogeneous
network structures (Figure 9d–g).
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Figure 8. Schematic illustration of the formation of CNF-PANI complexes (a) [101]; demonstration
of the construction mechanism of PPy-CNF nanocomplexes (b) [102]; schematic illustration of in
situ self-healing and dynamic reversible cross-links of hydrogels (c) [102]; schematic of synthesis
procedure for TOCNF@MOFs hybrid nanofibers (d) [103]; schematic illustration of adsorption of
polymer dispersant onto CNF (e) [106].
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Figure 9. Mechanism of cerium-initiated copolymerization (a) [107]; SEM images of CNF (b) and
CNF/PANI (c) [108]; SEM images of CNF cryogel microspheres (d,e) and CNF-NIPAm hybrid
microspheres (f,g) [109]; mechanism of maleated-styrene-block-copolymer-grafted CNF (h) [110];
contact-angle images of CNF (i) and maleated-styrene-grafted CNF (j) [110]; contact-angle images of
polycaprolactone-diol-grafted TOCNF esterification (k) and click-chemistry (l) [111]; SEM images of
DANC/chitosan composite (m) and film (n) [112].

The “grafting onto” strategy has been used to limit fibril aggregation, reduce cellulose
hydrophilicity and modify CNF surfaces. It was reported that maleated-styrene-block
copolymers were grafted onto the surface of a CNF, increasing the CNF’s thermal stability
and decreasing its crystallinity (Figure 9h) [110]. Moreover, they have also been used to pro-
duce hydrophobic CNF with a contact angle of 130◦, which was mixed with a poly(styrene)
matrix to improve the mechanical properties of the final composites (Figure 9i,j). In order to
ensure its hydrophobicity and improve the dispersion, polycaprolactone–diol was grafted
onto TOCNF using two different strategies: click-chemistry and esterification [111]. The
click-chemistry method led to the strong hydrophobization of the obtained material (contact
angel 75◦), while the esterification failed to produce hydrophobic materials (the contact
angle was only 43◦) (Figure 9k,l). Furthermore, DANC obtained via NaIO4 oxidation
was further grafted with the amino groups of chitosan to form a Schiff base [112]. The
as-fabricated DANC/chitosan was casted into films with excellent antimicrobial properties
against Escherichia coli and Staphylococcus aureus, indicating that chitosan-grafted DANC
can be used for antimicrobial packaging (Figure 9m,n).

4. Summary and Outlook

In summary, various modification methods for obtaining NCs with different func-
tionalities are reported, and novel modification methods are further developed. These
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obtained NCs can be used as advanced materials to prepare films, wearable sensors, cel-
lulose nanospheres, aerogels, hydrogels, and nanocomposites. However, due to the high
energy consumption, the usage of toxic chemical reactants, the high consumption of water,
the difficulties involved in scale up, and the uniformity in NC manufacturing, it remains
challenging to achieve the sustainable and scalable production of NCs with high final
quality and high reactivity. Additionally, more research and investigations should be con-
ducted on the development of efficient pretreatment methods for NC production from an
environmental point of view to decrease energy consumption. So far, some pretreatments
have been applied to swell cellulose fibers and loosen interfibrillar hydrogen bonds, such
as TEMPO-mediated oxidation, ILs, enzymatic hydrolysis, DES, molten-salt hydrates, and
others, which support the subsequent NC production and NC functionalization. It should
be pointed that the high cost of NCs is the major barrier to its industrial-scale production.
Therefore, reductions in the cost of producing functionalized NCs are required. They might
be achieved by using low-cost starting cellulosic materials (e.g., agricultural waste, corncob
residue derived from xylan plants, sugarcane bagasse from sugar plants, or recycled fibers
of wastepaper), developing greener and more efficient approaches to NC production, and
better control over preparation process.

On the other hand, some drawbacks limit the use of NCs, such as their low concentra-
tion, aggregation, and compatibility with hydrophobic matrices, which can be addressed by
the chemical modification of NC. Periodate and NHPI oxidation can be used to control the
degree of oxidation and maintain the backbone of cellulose, and the formation of reactive
groups (such as carboxylic or dialdehyde groups) on the surfaces of NC can be further
modified or reacted with other functional groups. Generally, esterification and etherifica-
tion are widely used, and the degree of substitution of esterification (0.06–1.5) is relatively
higher than that of etherification (0.1–0.78). Further attention should be focused on the
development of simple, low-cost, and innovative routes to ensure the efficient scaling up
and uniformity of NC manufacturing. The silanization of NC is very important to increase
its hydrophobic properties. Furthermore, surface modifications of NCs, such as coating, ad-
sorption, and grafting, are used to provide various functional groups for different end-use
purposes, such as antimicrobial applications, electrically conductive devices, or pollutant
absorption. However, maintaining the natural morphology of NC, preserving its native
crystalline structure, and preventing polymorphic changes in NC are even more challenging
during chemical modification. Therefore, further attention should be focused on the devel-
opment of innovative and high-efficiency chemical routes to ensure the efficient scaling up
and uniformity of NC manufacturing, with high end-product quality. Furthermore, most of
these functionalization methods for NC production are not environmentally friendly; thus,
greater effort is needed to investigate the sustainable and green production of NC. So far,
various NC-based materials have been used in high-performance functional materials. The
impact of the functionality of the NC on the application performance of the corresponding
NC-based functional material should be comprehensively investigated to gain a deeper
and better understanding of the structure–activity–application relationships and encourage
the practical utilization of these materials. Undoubtedly, with further efforts and updates in
the future, it can be predicted that functionalized NC and NC-based products will become
much more widely available for practical applications.
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