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Abstract: Within the framework of effective mass theory, we investigate the effects of spin–orbit
interaction (SOI) and Zeeman splitting on the electronic properties of an electron confined in GaAs
single quantum rings. Energies and envelope wavefunctions in the system are determined by solving
the Schrödinger equation via the finite element method. First, we consider an inversely quadratic
model potential to describe electron confining profiles in a single quantum ring. The study also
analyzes the influence of applied electric and magnetic fields. Solutions for eigenstates are then used
to evaluate the linear inter-state light absorption coefficient through the corresponding resonant
transition energies and electric dipole matrix moment elements, assuming circular polarization for
the incident radiation. Results show that both SOI effects and Zeeman splitting reduce the absorption
intensity for the considered transitions compared to the case when these interactions are absent.
In addition, the magnitude and position of the resonant peaks have non-monotonic behavior with
external magnetic fields. Secondly, we investigate the electronic and optical properties of the electron
confined in the quantum ring with a topological defect in the structure; the results show that the
crossings in the energy curves as a function of the magnetic field are eliminated, and, therefore,
an improvement in transition energies occurs. In addition, the dipole matrix moments present a
non-oscillatory behavior compared to the case when a topological defect is not considered.

Keywords: spin–orbit interaction; Zeeman splitting; circularly polarized light; topological defect;
optical absorption coefficient

1. Introduction

The study of low-dimensional semiconductor heterostructures has attracted much atten-
tion from the scientific community due to their novel and prospective applications. Varying
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some of their compositional or configurational features—such as size and geometry—or apply-
ing external fields to them, their physical properties can be conveniently tuned. This allows for
their use in various research fields such as electronics, optoelectronics, photonics, and sensing
(see [1–5]). Within this realm, semiconductor quantum rings (QRs) are low-dimensional
structures in which, according to a suitable design, the charge carriers can be confined to move
in two dimensions. In these systems, the spectra are adjustable through various mechanisms,
which allows from a theoretical and experimental point of view to search for the separations
between energy levels that are suitable for the applications sought [6–8].

Among the possibilities that have been found to control the optoelectronic properties
are shape and size; in the work of Ref. [9], there is a comparison to determine which of
these two parameters generates the greatest changes, concluding that for the geometries
used there, the size of the structures has a greater influence. Other examples in which
the influence of geometry on electron confinement is demonstrated are in [10], where it is
concluded that volcano shape potential demonstrates a high optical gain in InAsN/GaAs
nanostructures. Ref. [11] studies the effects of the size of QRs on the lowest states. Several
works have been dedicated to modeling the environment in which electrons and holes
are confined; for this purpose, potentials defined by different functions have been used,
including the simple square potential, the Tietz potential, which is used, for example by
Khordad et al. [12], where it is considered a good manner to describe molecular dynamics
for medium and high rotational-vibrational quantum numbers. The Morse-like potential
was described for the first time in the article [13] to represent the movements of the nucleus
in a diatomic molecule. Additionally, Nautiyal et al. [14] used the Kratzer potential in
quantum dots with the inclusion of the spin–orbit effect, whose functional form tries to
describe intermolecular vibrations.

Including external effects such as magnetic and electric fields has evidenced the
loss of degeneracies, which improves the possibilities of finding behaviors different from
those exhibited only by confinement. Such is the case in [15,16], where the breaking
degeneration is observed because of magnetic field influence. In [17], the effects on direct
and indirect exciton are studied in vertically coupled QRs under the application of an
electric field, generating a triangular shape potential. Another work, Ref. [18], involves
crater-like shaped QRs with an electric field generating a strong change in the dipole
moment and polarizability.

The temperature and/or hydrostatic pressure are physical parameters that change the
effective confinement of electrons or holes. In Ref. [19], the authors analyzed the effects of
hydrostatic pressure and temperature, observing that with the increase in temperature, the
second harmonic generation coefficient increases and blueshifts. Bala et al. [20] describe
the effects on the absorption coefficient in Ga0.7In0.3N/GaN QRs due to pressure and
temperature. Irregularities in materials are found because of impurities’ presence; they
become zones of attraction or repulsion and create Coulomb-type interactions due to the
impurity and carrier charges. The influence of a shallow donor impurity on the excitonic
contribution in GaAs/AlGaAs and CdTe/CdSe truncated cone quantum dots can be found
in [21]. Ghanbari et al. [22] studied the effects of impurity presence on thermodynamic
parameters (heat capacity, free energy, entropy, mean energy, and Gibbs free energy).

When spin–orbit interaction (SOI) coupling is considered, several new states appear
in the electronic structure concerning the electron spin up and spin down. An externally
applied magnetic field implies the coupling with the electron spin; the associated interaction
is called the Zeeman effect. The SOI effect can be significant under certain circumstances
and is present without a magnetic field.

In low-dimensional semiconductor systems, the SOI may contribute through two
distinct mechanisms. The first one is the Rashba SOI coupling [23,24], which arises from
the asymmetry of the structure and describes the spin–orbit interaction in low-dimensional
systems. In the particular case of heterostructures (semiconductor materials and interfaces
between materials), it depends on the shape of the confinement potential. The second
one is the Dresselhaus coupling [25], which arises from the lattice inversion asymmetry.
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In particular, the Dresselhaus coupling describes the spin–orbit interaction caused by the
material’s crystal structure asymmetry. It is significant for semiconductor materials, where
the spin–orbit interaction is weaker than in metals. The Dresselhaus Hamiltonian can be
written as a function of the orbital angular momentum and spin operators and has the
form of a square matrix. It is a function of the direction of the external magnetic field
and the material’s properties, such as the effective mass of the electrons and the lattice
constant. The SOI may be important for understanding electrical conductivity in carbon
nanotubes and quantum dots, where the SOI may cause anisotropy in conductivity, which
may have implications for creating electronic devices. Similarly, the SOI also contributes
to understanding the physics of spin systems, such as topological spin systems and spin
qubits in quantum computing. The SOI can be used to control spin orientation, which is
essential for creating spin-robust qubits. All this finds its application in the design of new
types of spin-based devices for spintronics. For multiple applications of the SOI, see, for
example, Shakouri et al. [26] and references therein.

Several studies have concerned the SOI effects on quantum dots and QRs. For example,
Splettestoesser et al. studied the spin–orbit coupling in persistent currents and identified
that the spin current is not proportional to the charge current [27]. Castaño-Yepes and
collaborators investigated the impact of a topological defect and the SOI on the thermo-
magnetic and optical properties in a two-dimensional quantum dot [28]. Pietiläinen and
Chakraborty investigated the SOI effects on the electronic properties of a few interacting
electrons in parabolic quantum dots finding that such interaction profoundly influences
the electron energy spectrum [29]. A study on the SOI and Coulomb effects on the elec-
tronic charge and spin density distributions in InAs- and InSb-based QRs was performed
in Ref. [30]. The influence of temperature on the nonlinear optical responses of a GaAs
QR under simultaneous Dresselhaus and Rashba SOI contributions and Zeeman effect
was considered in [31,32]. In the work of Ref. [33], a two-dimensional (2D) finite element
method (FEM) is used to solve the electronic states of elliptical GaAs/AlGaAs QR. Effects
of external fields, SOI, and eccentricity are explicitly considered, and the linear optical
absorption coefficient is reported.

The topic of SOI effects has many open questions that merit further investigation. To a
large extent, the investigations reported in the available literature have focused on systems
with abrupt potential barriers and quasi-two-dimensional heterostructures with constant
heights. In this sense, the effects of the height of the heterostructures have been fixed as a
parameter that modifies the coupling constant of the Dresselhaus term [26]. In large part of
QR research, the authors have considered external magnetic fields applied perpendicular to
the structure, which preserves the axial symmetry in circular rings. In this way, the obtained
wave functions are used efficiently in diagonalization problems of the n× n Hamiltonians,
including SOI effects. The presence of in-plane electric fields breaks the axial symmetry
of ring systems. The same situation is obtained by introducing topological defects in
the geometry of the structures. The direct consequence of these last two effects translate
into the enrichment of the optical transitions allowed between, for example, the system’s
ground state and the first excited states. Possible applications of such effects include
resonant radiation polarization detectors that can be tuned or adjusted through external
electric fields. Finally, semiconductor heterostructures present interdiffusion problems at
the interfaces of the materials that compose them. So, abrupt potential barriers are still a
strong approximation in modeling physical systems.

Considering the open questions raised in the previous paragraph, we focus our re-
search on the study of the effects of an external electric field on the optical and electronic
properties of electrons confined in two-dimensional QRs. We analyze a 2D GaAs-based
single QR whose confining potential model is described via an inverse quadratic function
called the Hellmann potential and which allows efficient modeling of interdiffusion effects
in the ring material. We also include the effects of a topological defect and report the linear
optical absorption coefficient features related to intraband transitions in the presence of
a magnetic field applied perpendicular to the structure. The optical properties are ana-
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lyzed for interlevel transitions from the ground to the first two excited states. In the case
of incident resonant radiation, we will study the effects of left- and right-hand circular
polarization, which are combinations of mutually perpendicular linear polarizations. Calcu-
lations are made in the effective mass and parabolic conduction band approximations. SOI
effects are introduced through a 2× 2 Hamiltonian diagonalized by FEM using the licensed
Comsol-Multiphysics 5.4 software. To implement the FEM calculations, we have used
meshes with a spatial refinement that allows accounting for the divergences at the system’s
center, typical of the confinement potential we have chosen. In our opinion, the study
is novel, and we consider that it significantly contributes to the knowledge of magnetic
properties in two-dimensional order systems considering SOI effects. The technique for the
diagonalization of the n× n Hamiltonians and the type of problem without symmetries that
we present here can be extended to the study of QRs of variable height by implementing the
adiabatic approximation. In the same way, this research can be extended to the study of the
effects of non-resonant high-intensity incident radiation with linear or circular polarization.

The main question of this article and that we answer through this research is: how
an in-plane applied electric field and a topological defect can modify the magneto-optical
properties relative to states of an electron confined in a quantum ring with Hellmann-like
potential using circularly polarized resonant incident radiation.

This work is presented as follows: Section 2 shows the theoretical model, Section 3 is
dedicated to results and discussion, and Section 4 presents the most outstanding results
through conclusions.

2. Theoretical Model

It is considered an electron confined in a GaAs QR, under an inversely quadratic
potential (Hellmann potential) in the presence of an electric field applied (in the +x direction
with magnitude F), an applied magnetic field (in the +z direction with magnitude B), and
SOI and Zeeman effects. Under the effective mass approximation, the Hamiltonian can be
written as

Ĥ =

[(
P̂ + qÂ

)2

2 m∗
+ V(x, y) + q F x

]
I +

1
2

g B µB σz + ĤR + ĤD, (1)

where m∗ is the electron effective mass, q is the absolute value of the electron charge,
~A = B

2 (−y, x, 0) is the magnetic vector potential, and V(x, y) is the 2D-confining potential.
Moreover, g is the Landé factor, µB is the Bohr magneton, and I represents the 2× 2 identity
matrix. In Equation (1), ĤR and ĤD are the Rashba and Dresselhaus terms, respectively,
which are given by [33]

ĤR =
α

h̄
(

pyσx − pxσy
)

, (2)

and
ĤD =

β

h̄
(

pxσx − pyσy
)
, (3)

where α and β are the coupling constants and σi (i = x, y, z) are Pauli matrices.
The α constant measures the intensity of the spin–orbit interaction in a material which

depends on the material’s properties and can vary widely between different materials and
crystal structures. The β constant describes the spin–orbit interaction caused by the lack of
symmetry in the material’s crystalline structure. The α and β constants can be experimen-
tally determined by different techniques, such as photoemission spectroscopy, scanning
tunneling spectroscopy, and the measurement of magnetic anisotropy in low-dimensional
systems. Remarkably, the α constant is stronger in materials with an asymmetric crystal
structure and low symmetry, such as materials with surfaces and interfaces. The determina-
tion of the Rashba and Dresselhaus coupling constants using the conductance of a ballistic
nanowire has been reported by M. R. Sakr [34]. The determination of the Rashba spin–orbit
coupling strength in InSb nanowire quantum dots under the influence of temperature and
nuclear environment has been reported by M. Milivojevic [35]. The study was performed
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by measuring the magnetic susceptibility of the two-electron system in a double quantum
dot. Meier et al. reported the measurement of Rashba and Dresselhaus spin–orbit mag-
netic fields [36]. They apply their method to GaAs/InGaAs quantum-well electrons, but it
should be universally useful to characterize spin–orbit interactions in semiconductors and,
therefore, could facilitate the design of spintronic devices.

In this work, the position-dependent 2D-Hellmann-like confinement potential reads

V(x, y) = V0

1
2
− 2 R0√

x2 + y2
+

(
R0√

x2 + y2

)2
, (4)

where V0 is the potential barrier height and R0 is the QR radius. The potential in Equation (4)
is a combination of Coulomb and Yukawa potentials, where the minimum energy value
is at r =

√
x2 + y2 = R0 with a potential energy of −V0/2. Figure 1a shows a graph of

the Hellmann-like potential for R0 = 15 nm and V0 = 228 meV. Note that for r → ∞, the
confinement potential goes to the limit V → +V0/2.
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-100
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200
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-V0/2

V0 = 228 meV
  R0 = 15 nm
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(a) (b)

(c)

R0

R1

R0

R1

q0

Figure 1. (a) Inversely quadratic potential (Hellmann-like potential) as a function of the r-radial
coordinate for R0 = 15 nm and V0 = 228 meV. Figures (b,c) show the geometry and mesh for the
finite element method calculation used in this work, without and with a topological defect (circular
sector with 2π − θ0 angle), respectively. The circle with R1 radius is defined to establish the Dirichlet
boundary conditions. In (c), the Dirichlet boundary condition was also considered along the two
straight radial lines.

Taking into consideration all the interactions described above and after some algebraic
steps, the 2× 2 matrix Hamiltonian can be written as

Ĥ =

(
H11 H12
H21 H22,

)
, (5)

where

Ĥ0 = − h̄2

2 m∗

(
∂2

∂x2 +
∂2

∂y2

)
+ V(x, y) , (6)
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H11 = Ĥ0 +
q2 B2

8 m∗
(

x2 + y2
)
+

i q B h̄
2 m∗

(
y

∂

∂x
− x

∂

∂y

)
+

1
2

g B µB + q F x , (7)

H22 = Ĥ0 +
q2 B2

8 m∗
(

x2 + y2
)
+

i q B h̄
2 m∗

(
y

∂

∂x
− x

∂

∂y

)
− 1

2
g B µB + q F x , (8)

H12 = (α− i β)
∂

∂x
+ (β− i α)

∂

∂y
, (9)

and
H21 = −(α + i β)

∂

∂x
− (β + i α)

∂

∂y
. (10)

Note that in Equations (7) and (8) we have used the fact that for the expansion of the
kinetic energy term we are considering the Coulomb gauge (∇ · Â = 0) together with the

fact that
(

P̂ + q Â
)2

ψ =
(

ˆ−i h̄∇+ q Â
)2

ψ = −h̄2∇2 ψ + q2 A2 ψ− i h̄∇ · Â ψ− i h̄ Â · ∇ψ.

Additionally, ∇ · Â ψ = ∇ · (Â ψ) = Â · ∇(ψ) + (∇ · Â)ψ = Â · ∇(ψ). See, for instance,
Duque et al. [37] and Dahiya et al. [38].

The Schrödinger equation for the envelope wavefunction in the presence of SOI and
Zeeman effects can be written as(

H11 H12
H21 H22

)(
ψ↑
ψ↓

)
= E

(
ψ↑
ψ↓

)
, (11)

where ψ↑ and ψ↓ are the wavefunctions spatial part corresponding to the eigenvalues of
spin up and spin down, respectively.

The solution of the matrix differential equation in Equation (11) has been obtained
through the FEM implemented in the licensed software COMSOL-Multiphysics [39–41]. In
Figure 1b,c, we show the geometry and mesh for this work’s finite element method calculation,
without and with a topological defect, respectively. The circle with R1 radius is defined to
establish the Dirichlet boundary conditions. In Figure 1c, the Dirichlet boundary condition
was also considered along the two straight radial lines. In Figure 1c, we show the topological
defect introduced in the problem, which consists of eliminating from the circle of radius R1
a circular sector of angle 2π − θ0. Note that joining the two radial lines gives rise to a three-
dimensional flat conical structure whose physics can be analyzed using the two-dimensional
flat figure shown in Figure 1c, where the defect is included. The details of the mesh used
for the calculation with the FEM are the following. Both in the absence and the presence
of a defect, a double refinement is used in the region r < R0 concerning the fine mesh for
R0 < r < R1. This is to address the divergence of the potential at r → 0. In both cases,
with and without defects, a triangular element mesh is used. In the absence of a defect, the
mesh parameters are 1554 mesh vertices, 3046 triangles, 156 edge elements, 8 vertex elements,
0.3202 for the quality element minimum, 0.8152 for the medium element quality, 0.01373 for
the element area ratio, and 7840 nm2 for the mesh area. When the defect is considered, the
corresponding parameters are 1322 mesh vertices, 2544 triangles, 178 edge elements, 11 vertex
elements, 0.3259 for the quality element minimum, 0.8158 for the medium element quality,
0.01969 for the element area ratio, and 7623 nm2 for the mesh area.

To study the optical absorption coefficient associated with the lowest confined electron
states in the QR, the expression resulting from an approach based on the density matrix
formalism is used [42]. Optical transitions are considered between the ground state and the
first two excited states, with interlevel energy transitions denoted E12 and E13, respectively.
A circularly polarized resonant incident radiation is used to excite the optical transitions.
So, the linear optical absorption coefficient is given by

α(1)(ω) =

√
µ0

εr ε0

3

∑
j=2

ω e2 σ h̄ γ1j |M1j|2(
E1j − h̄ ω

)2
+
(
h̄ γ1j

)2 , (12)
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where ω is the incident photon frequency, σ is the carrier density, and |M1j| is the dipole
matrix moment (DMM), which is given by

|M1j| =
∫ ∫ (

ψ∗j↑ ζ ψ1↑ + ψ∗j↓ ζ ψ1↓
)

dx dy , (13)

where ζ is the incident light polarization. This work considers both right circular polariza-
tion ζ = x+i y√

2
, and left circular polarization, ζ = x−i y√

2
.

In Equation (12), Γ is the phenomenological operator responsible for the damping due
to the electron–phonon interaction, collisions among electrons, etc. In this work, we assume
that Γ is a diagonal matrix and its element γ1j (j = 2, 3) is the inverse of the relaxation time
for the state ψj [43]).

3. Results and Discussion

The parameters used for the calculations are: R0 = 15 nm, and m∗ = 0.067 m0 is the
GaAs effective mass, where m0 is the free electron mass, V0 = 228 meV, µB = 4 π× 10−7 H m,
h̄γ12 = h̄γ13 = 0.5 meV, and εr = 12.58 [33]. For the α-, β-, and g-parameters we choose
β = 10.8 meV nm, α = β/2, g = −2.15, σ = 3.0× 1022 m−3 [26]. The β = 10.8 meV nm value
is obtained from the bulk Dresselhaus constant (βb) as β = π2 βb/d, where d = 5 nm is the
typical height of the ring structure in the growth direction and βb = 27.5 meV nm3 for GaAs.

Figure 2 shows the first five energy levels of an electron confined in the QR as functions
of the applied magnetic field, for electric field values of F = 0 and F = 0.5 kV/cm, without
SOI and Zeeman effects. Calculations are without topological defects. At zero electric
field, Figure 2a, the energies exhibit oscillatory behavior, where crossings in the energy
levels are noted for some magnetic field values. For instance, at B = 2.5 T a crossing is
observed between the ground state and the first excited state. At this point, the ground
state wavefunction changed symmetry; this phenomenon is known as Aharonov–Bohm
oscillations. When the electric field is F = 0.5 kV/cm, the ground state behaves differently,
and crossings with the first excited state are eliminated. This happens because the electric
field application locates the charge carrier closer to the potential hard core, and spatial
symmetry breaks. In addition, applying the electric field generates anticrossings between
the first and second excited states for two applied magnetic field values (circles marked in
Figure 2b). Without the SOI and Zeeman effect, each energy level is doubly degenerate.

Figure 3 shows the QR’s first eight electron energy levels as a function of the applied
magnetic field for electric field values of F = 0 and F = 0.5 kV/cm, without the SOI effect
and with Zeeman splitting. In both cases, Figure 3a,b, it is noted that the ground state is
twice degenerate for zero magnetic fields, and the first excited state is four times degenerate.
However, the degeneration breaks when the magnetic field differs from zero, and each
level splits into two. The splitting increases as the magnetic field intensifies, ratifying the
Zeeman effect in the system. The inclusion of the Zeeman effect preserves the oscillations
in the energy levels. Consequently, crossings between states occur at the same magnetic
field values as those shown in Figure 2a; that is, the crossing between the ground state
and the first excited state (arising from the splitting of the ground state shown in Figure 2)
occurs at B = 2.5 T but for a higher energy value as compared with Figure 2a. This means
there is a slight increase in energy by including the Zeeman effect. When the applied
electric field strength is raised to F = 0.5 kV/cm, a similar behavior to that in Figure 2b
is observed, where the crossings between the ground state and the first excited state are
eliminated. In addition, the ground state is affected by the application of the electric field
due to a more significant localization of the electron towards the potential hard core in the
QR, and, therefore, the energy becomes lowered, compared to Figure 2a. In this case, it
is also observed that the application of an electric field produces anticrossings between
some states for some particular magnetic field values; a particular case is the anticrossing
indicated with the circle in Figure 3.
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Figure 2. First five energy levels for a confined electron in a GaAs quantum ring under the inversely
quadratic potential, as a function of the applied magnetic field, with F = 0 (a) and F = 0.5 kV/cm (b).
Results are for α = β = 0 and g = 0.
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Figure 3. First eight energy levels for a confined electron in a GaAs quantum ring under the inversely
quadratic potential, as a function of the applied magnetic field, with F = 0 (a) and F = 0.5 kV/cm (b).
Results are for α = β = 0 and g = −2.15.

Figure 4 shows the first six electron energy levels in the QR as functions of the applied
magnetic field for electric field values of F = 0 (a, c) and F = 0.5 kV/cm (b, d). In (a, b)/(c,
d), the calculations are without/with the topological defects. Results are considering the
inclusion of both SOI and Zeeman splitting effects. When F = 0, Figure 4a, the energy
levels also have an oscillatory character, so there are crossings between them. However,
unlike Figure 3, the first and second excited states do not cross for any value of the magnetic
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field. Furthermore, the energy difference between these states at zero magnetic fields and
15 T is smaller than in Figure 3a. This is explained by the fact that by including the SOI
effect, the terms H12 and H21 in Equation (5) contribute significantly to variations in energy
levels. When the electric field turns on to F = 0.5 kV/cm, crossings between the ground
state and the first excited state disappear. The same behavior can be noticed for the energy
differences of these states at zero magnetic field and at 15 T. A 10◦ topological defect is
included on the surface of the geometry as shown in Figure 1c, so the angle spanned by the
system geometry is θ0 = 350◦. The energy curves as a function of the applied magnetic field
are those shown in Figure 4c,d. It is noted that a topological defect substantially changes
the energy spectra; at B = 0, the states are doubly degenerate, and for magnetic fields other
than zero, the degeneracy breaks, so each level is divided in two, and this division increases
as the magnetic field increases. Furthermore, at B = 0, the energies of the ground state for
Figure 4c,d are higher than Figure 4a,b; this is because the topological defect increases the
confinement of the electron in the QR. The topological defect slightly improves the 1→ 2
and 1→ 3 energy transitions compared to Figure 4a,b.
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Figure 4. The lowest energy levels for a confined electron in a GaAs quantum ring under the inversely
quadratic potential as a function of the applied magnetic field. Without topological defect (a,b) and
with topological defect (c,d). Results are for β = 10.8 meV nm, α = β/2, and g = −2.15.
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Figure 5 shows the lowest four energy levels for a confined electron in a QR under the
inversely quadratic potential as a function of the θ0-parameter. It should be noted that θ0 is
the angular section that encompasses the system geometry; therefore, the topological defect
to obtain the energy curves shown in Figure 5 is in the interval from 1◦ to 60◦. It is noted that
there is a decrease in the energies with increasing θ0 since the states are less confined, and
therefore, the energy levels are reduced. When θ0 = 360◦, the geometry of the system does
not present a topological defect, therefore the energies obtained for the electric and magnetic
fields of F = 0.5 kV/cm and B = 0.5 T are equal to those shown in Figure 4b when B = 10 T
(see red stars at the right-hand vertical axis). It is also important to note that for θ0 = 360◦,
the energy values are below the trend that the energies have for the previous θ0-value. This
is because the boundary conditions defined from the exterior R1 of Figure 1c change as
the θ0-parameter increases, so the wavefunction is not spatially uniformly distributed in
the neighborhoods of R0. When reaching 360◦, the boundary conditions of the problem
are returned to the original, as shown in the blue line in Figure 1b; consequently, the
wavefunction recovers its uniform distribution.

300 310 320 330 340 350 360
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-90

-88

-86
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gy
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)

q0-parameter

F = 0.5 kV/cm
    B = 10 T

Figure 5. The lowest energy levels for a confined electron in a GaAs quantum ring under the
inversely quadratic potential as a function of the angular θ0-parameter with F = 0.5 kV/cm, B = 10 T,
β = 10.8 meV nm, α = β/2, and g = −2.15. Stars at the right vertical axis are obtained without any
topological defect limit.

In Figure 6, the squared off-diagonal DMMs corresponding to the investigated 1→ 2
and 1→ 3 transitions are shown as functions of the applied magnetic field, for fixed electric
field strengths, with α = β = 0 and g = −2.15. In Figure 6a,c, the DMMs exhibit a piecewise
quasi-rectangular shape (slight linear-like dips appear as the field intensifies), including
intervals of zero value, for example, 0–2.4 T, 3–7.5 T, and 9–12.7 T for the transition 1→ 2,
between 0.1–2.9 T, 5–8.9 T, and 10–15 T for the transition 1 → 3 with the right circular
polarization and F = 0, in the same way, other intervals can be found with DMM equal
to zero for the left circular polarization, as can be seen in table 1. A general magnitude
decrease is observed for these two quantities with the increasing magnetic fields outside the
zero value intervals. The latter can be explained by the change in wavefunction symmetry
associated with energy level crossings, as discussed above in the analysis of Figure 3a.
When an electric field of F = 0.5 kV/cm is applied, as in Figure 5b,d, the dependence of the
DMMs on the intensity of the magnetic field maintains a well-defined shape, presenting
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an oscillatory behavior for magnetic fields greater than 7.2 T for the transition 1→ 2 and
less than 11.1 T for the transition 1 → 3; note that when the right circular polarization
presents maximum values, the left circular polarization has minimum values. Therefore,
the oscillating pattern is observed due to applying an electric field. Additionally, the DMM
values are reduced compared to when no electric field is applied. For both polarizations,
there is no magnetic field value where |M12|2 and |M13|2 are simultaneously different
from zero. By having two types of circular polarization, Figure 6a,c (or Figure 6b,d)
are complementary, so when added together, you obtain a graph where the DMMs are
approximately constant.
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Figure 6. Squared dipole matrix moments as functions of the applied magnetic field for an electron
confined in a GaAs quantum ring under the inversely quadratic potential for the transitions 1→ 2
(a,b) and 1 → 3 (c,d), with α = β = 0 and g = −2.15. The empty circles (red color) correspond to
left circular polarization and the full ones (black color) to right circular polarization. Figures (a,c)
correspond to F = 0 and (b,d) to F = 0.5 kV/cm.



Nanomaterials 2023, 13, 1461 12 of 19

Table 1. The dipole matrix moments of the 1 → 2 and 1 → 3 transitions and their corresponding
transition energies, for different values of electric and magnetic fields, with α = β = 0 and g = −2.15.

α = 0
β = 0

g = −2.15

Right-Circular Polarization
F

kV/cm

Left-Circular Polarization

B (T) B (T)

0 4 8 12 0 4 8 12

|M12|2 (nm2) 0 0 149.2 2.1 × 10−5

0

0 0 3.2 × 10−6 148.4

|M13|2 (nm2) 27.3 151.2 0 0 27.3 3.2 × 10−6 0 0

E12 (meV) 0 0.5 0.4 0.5 0 0.5 0.4 0.5

E13 (meV) 2.1 1.1 1.0 1.5 2.1 1.1 1.0 1.5

|M12|2 (nm2) 0 0 68.8 10.9

0.5

0 0 16.8 82.3

|M13|2 (nm2) 36.1 118.9 0 0 36.1 3.9 0 0

E12 (meV) 0 0.5 0.9 1.0 0 0.5 0.9 1.0

E13 (meV) 2.3 1.6 1.0 1.5 2.3 1.6 1.0 1.5

The situation in which the Hamiltonian in Equation (5) has non-zero off-diagonal
terms associated with SOI brings about a different picture of the non-permanent electric
polarization in the system. In Figure 7, the squares of 1→ 2 and 1→ 3 DMMs are shown
as functions of the applied magnetic field for the same two values of electric field intensity
previously considered. Calculation was performed using β = 10.8 eV nm, α = β/2, and
g = −2.15. For all cases in Figure 7, M12 is zero for B = 0, since the ground state and the
first excited state are degenerate, and by the selection rules, this transition is forbidden.
Additionally, for that same value of the magnetic field, |M13| 6= 0 because the wavefunctions
corresponding to these states have different parity, so

∫ ∫
Ψ∗j (x, y)ζΨi(x, y) dx dy does not

vanish. When the polarization is right- and left-circular, respectively, and F = 0, the DMM
of 1 → 2 transition oscillates as the applied magnetic field increases. In contrast, 1 → 3
transition does not have a monotonic behavior. When F = 0.5 kV/cm, Figure 7b,d, an
overall decrease in the magnitude of the DMM is noted, compared to the zero electric field
case; this is explained by the fact that the electric field spatially localizes the wavefunction
and, consequently, the DMM diminishes. It is observed that when taking SOI and Zeeman
effects into account, the DMMs |M12|2 and |M13|2 are non-zero for a single applied magnetic
field value, which implies that the linear absorption coefficient has the contribution of the
1→ 2 and 1→ 3 transitions. As it happened in Figure 6, it can be noticed that the pairs of
Figure 7a,c with Figure 7b,d are complementary.

Figure 8 shows the squares of the DMMs as a function of the θ0-parameter for the
1→ 2 and 1→ 3 transitions of an electron confined in a QR under the inversely quadratic
potential, with β = 10.8 meV nm, α = β/2, and g = −2.15. It is noted that the contribution
of the 1→ 2 transition is greater than that of the 1→ 3 transition for any value of θ0 in the
right-circular polarization; a different behavior is observed for the left-circular polarization:
for an interval of θ0 the contribution of the 1→ 2 transition is greater than 1→ 3. However,
this situation changes for other intervals of θ0. This can be attributed to the change in the
spatial distributions of the wavefunctions of each state as the angle varies; therefore, the
overlap between them will change depending on the case being studied.

Tables 1 and 2 show the DMMs |M12|2 and |M13|2 with the different polarizations and
their corresponding transition energies E12 and E13 to study the linear optical absorption
coefficients. To obtain the absorption coefficient curves, Equation (12) is used, where the
two transitions 1 → 2 and 1 → 3 are considered. However, from table 1, there is only a
contribution from one of the two transitions; consequently, a peak appears in the absorption
curve. In table 2 it can be seen that most of the DMMs are different from zero; therefore,
two peaks appear in the absorption curves, with different intensities.
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Figure 7. Squared dipole matrix moments as functions of the applied magnetic field for an electron
confined in a GaAs quantum ring under the inversely quadratic potential for the transitions 1→ 2
(a,b) and 1→ 3 (c,d), with β = 10.8 meV nm, α = β/2, and g = −2.15. The empty circles (red color)
correspond to left-circular polarization, and the full ones (black color) to right-circular polarization.
Figures (a,c) correspond to F = 0 and (b,d) to F = 0.5 kV/cm.
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Figure 8. Squared dipole matrix moments as functions of the θ0-parameter for an electron confined
in a GaAs quantum ring under the inversely quadratic potential, with F = 0.5 kV/cm and B = 10 T,
for the transitions 1 → 2 (a) and 1 → 3 (b), with β = 10.8 meV nm, α = β/2, and g = −2.15. The
empty circles (red color) correspond to left-circular polarization, and the full ones (black color) to
right-circular polarization.

Table 2. The dipole matrix moments of the 1 → 2 and 1 → 3 transitions and their corresponding
transition energies, for different values of electric and magnetic fields, with β = 10.8 meV nm,
α = β/2, and g = −2.15.

β = 10.8 meV nm
α = β/2

g = −2.15

Right-Circular Polarization
F

kV/cm

Left-Circular Polarization

B (T) B (T)

0 4 8 12 0 4 8 12

|M12|2 (nm2) 0 49.2 124.3 24.2

0

0 12.0 14.7 128.4

|M13|2 (nm2) 33.1 100.2 0 77.1 26.8 5.7 0 16.0

E12 (meV) 0 0.6 0.2 0.3 0 0.6 0.2 0.3

E13 (meV) 2.1 1.7 2.1 2.4 2.1 1.7 2.1 2.4

|M12|2 (nm2) 0 21.8 35.6 8.2

0.5

16.4 5.3 12.7 45.7

|M13|2 (nm2) 35.8 71 2.9 41 98.4 4.0 3.8 14.1

E12 (meV) 0 0.7 0.8 0.9 0 0.7 0.8 0.9

E13 (meV) 2.3 1.9 2.3 2.8 2.3 1.9 2.3 2.8

In Figure 9, the contributions to the linear absorption coefficient coming from 1→ 2 and
1→ 3 electron transitions are shown as functions of the incident photon energy without the
SOI effect, considering Zeeman splitting. All the figures were obtained at fields of B = 0, 4, 8,
and 12 T. By comparing the panels at the left-hand column with the corresponding at the
right-hand column, it can be noted that the application of the electric field changes the position
of the resonant peak to higher energies for all the magnetic fields considered; this is because
the transition energies 1→ 2 and 1→ 3 increase when the electric field is applied. When the
polarization is right-hand circular, as in Figure 9a,b, the absorption at B = 0 and B = 4 T occurs
for the transition from 1→ 3 since the DMMs for this value of B are non-zero. For the other
cases, B = 8 T and B = 12 T, the absorption peak corresponds to the 1→ 2 transition. It can be
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noted that the intensity in the absorption peaks can vary according to the type of polarization;
in relation, it is worth taking into account that the linear absorption coefficient is proportional
to the product ω |Mij|2, which, according to our findings, presents an oscillating character
due to the particular dependence of DMMs involved in the magnetic field for each case of
polarization. In the left-hand circular polarization, Figure 9c,d, the predominant transition
for B = 0 and B = 4 T, is 1 → 3, while for B = 8 T and B = 12 T is the 1 → 2 transition. In
addition, the resonant energy displacement presents a non-monotonous behavior, since the
transition energies, as a function of the magnetic field, vary in an oscillating manner.
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Figure 9. The linear optical absorption coefficient as a function of the incident photon energy for an
electron confined in a GaAs quantum ring under the inversely quadratic potential, with α = β = 0
and g = −2.15. Results are for F = 0 (a,c) and F = 0.5 kV/cm (b,d). The transitions considered
correspond to right-hand circular (a,b) and left-hand circular (c,d) polarization for different values of
applied magnetic fields.

In Figure 10, contributions to the linear absorption coefficient are plotted as functions
of the incident photon energy, taking into account the SOI and Zeeman splitting effects. It
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was evident that with the two effects, there is a reduction or increase in the intensity of
the absorption coefficient, compared with results without SOI presented in Figure 9. The
reason behind this phenomenon is the associated decrease or increase with the electric
field of the DMMs —already discussed— when the two effects are included. The resonant
peaks move to higher energies when F = 0.5 kV/cm, because, in this case, the presence of
the field eliminates the crossings for the lower energy states, see Figure 4b. Consequently,
oscillations at the transition energies are considerably reduced compared to the cases where
there was no applied electric field on the system. At B = 0, the absorption curves present
a single peak corresponding to the 1 → 3 transition, since for this value of the magnetic
field, the ground state and the first excited state have the same energy, therefore E12 = 0,
consequently the product ω |Mij|2 at the resonant energy is zero.
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Figure 10. The linear optical absorption coefficient as a function of the incident photon energy
for an electron confined in a GaAs quantum ring under the inversely quadratic potential, with
β = 10.8 meV nm, α = β/2, and g = −2.15. Results are for F = 0 (a,c) and F = 0.5 kV/cm (b,d). The
transitions considered correspond to right-hand circular (a,b) and left-hand circular (c,d) polarization
for different values of applied magnetic fields.
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Figure 11 shows the linear absorption coefficient as a function of the incident photon
energy for the 1→ 2 and 1→ 3 transitions, considering the effects of SOI, Zeeman splitting,
and two cases where there is a topological defect of 30◦ and 60◦ in the geometry of the
structure. It is observed that when the θ0-parameter increases, the resonant peaks shift
slightly to lower energies since there is a decrease in the E12 and E13 energy transition as θ0-
increases, as it is evidenced in Figure 5. The resonant peaks with lower energy correspond
to the 1→ 2 transition and those with higher energy to the 1→ 3 transition. The intensity
of the resonant peaks is more significant in the left-hand circular polarization than in the
right-hand since the DMMs for this type of polarization present a greater value.
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Figure 11. The linear optical absorption coefficient as a function of the incident photon energy for
an electron confined in a GaAs quantum ring under the inversely quadratic potential, considering a
topological defect in the structure’s geometry. Calculations are with right-hand (a) and left-hand (b)
circular polarization, with β = 10.8 meV nm, α = β/2, and g = −2.15.

4. Conclusions

By using the effective mass and parabolic conduction band approximations, we have
theoretically investigated the electron energy states and the related linear optical absorption
coefficient in a two-dimensional GaAs-based quantum ring with inverse parabolic confin-
ing potential under the effects of perpendicular/in-plane applied magnetic/electric field.
Calculations include the perturbations on the electron spectra concerning a topological
defect. The Rashba and Dresselhaus spin–orbit interactions and the Zeeman splitting are
discussed. Our main findings can be summarized as follows: (i) the spin–orbit and Zeeman
effects are small perturbations on the electronic energy spectrum when the magnetic field
is turned on; (ii) with and without spin–orbit effects, the ground electron state shows
the well-known Aharonov–Bohm oscillations when the axial symmetry of the system is
preserved (these oscillations became quenched for non-zero values of the applied electric
field and also when the topological defects are considered); (iii) the optical absorption
coefficient is strongly dependent on the incident light polarization and the applied electric
and magnetic field strengths; (iv) the resonant peak of the optical absorption coefficient
decreases when the spin–orbit interaction and Zeeman effects are turned on; and finally,
(v) the applied electric field and the consideration of topological defects are two factors that
enrich the allowed optical transitions in quantum rings and make these systems usable
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as polarization detectors. We hope this study stimulates further investigations in which
3D quantum rings that present non-regular variations in their height along the growth
direction of the heterostructure are considered.
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