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Abstract: The free vibration of functionally graded porous cylindrical shell panels reinforced with
graphene platelets (GPLs) was numerically investigated. The free vibration problem was formulated
using the first-order shear deformation shell theory in the framework of the 2-D natural element
method (NEM). The effective material properties of the GPL-reinforced shell panel were evaluated
by employing the Halpin–Tsai model and the rule of mixtures and were modified by considering
the porosity distribution. The cylindrical shell surface was transformed into the 2-D planar NEM
grid to avoid complex computation, and the concept of the MITC3+shell element was employed to
suppress shear locking. The numerical method was validated through benchmark experiments, and
the free vibration characteristics of FG-GPLRC porous cylindrical shell panels were investigated. The
numerical results are presented for four GPL distribution patterns (FG-U, FG-X, FG-O, and FG-Λ)
and three porosity distributions (center- and outer-biased and uniform). The effects of GPL weight,
porosity amount, length–thickness and length–radius ratios, and the aspect ratio of the shell panel
and boundary condition on the free vibration characteristics are discussed in detail. It is found from
the numerical results that the proposed numerical method accurately predicts the natural frequencies
of FG-GPLRC porous cylindrical shell panels. Moreover, the free vibration of FG-GPLRC porous
cylindrical shell panels is significantly influenced by the distribution pattern as well as the amount of
GPLs and the porosity.

Keywords: GPL-reinforced composite; functionally graded; porous cylindrical panel; free vibration
characteristics; 2-D natural element method; MITC3+shell element

1. Introduction

Graphene platelets (GPLs) have been widely used as advanced nanofiller materials to
improve the physical properties of composites due to their extraordinary physical proper-
ties [1,2]. The elastic modulus of GPLs is much higher than that of polymers, so that the
structural stiffness of polymer composites can be dramatically increased when only a small
amount of graphene sheets are added [3]. Furthermore, it has been reported that graphene
provides a higher aspect ratio, larger specific surface area, and lower production costs than
carbon nanotubes (CNTs). Moreover, it has been found that the elastic modulus, tensile
strength, and fracture toughness of graphene-platelet-reinforced composites (GPLRCs) are
higher than those of CNT-reinforced nanocomposites [4]. However, the reinforcement with
GPLs is subjected to the limitation of weight fraction owing to the high cost of FGPLs.
Owing to this limitation, GPLs are generally blended into the polymer matrix according to
the concept of functionally graded materials (FGMs) [5]. FGMs are characterized by the
continuous and functional distributions of reinforcement materials through the thickness of
composite structures [6]. The physical behavior of GPL-reinforced composites is influenced
by this functional distribution pattern, and several purposeful distribution patterns of GPLs
have been introduced and investigated: FG-U, FG-V, FG-X, FG-O, and FG-Λ [7,8].

More recently, the GPL-reinforced composite has been developed into a closed-cell
porous reinforced foam due to rapidly developed nanotechnology [9–11]. As a typical
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example of porous materials, foams are characterized by high porosity, low density, and
large specific surface. Thus, the porous GPL-reinforced composites can synergistically
combine the excellent properties of porous foams and GPL nanocomposites [12]. The
variation in microstructure and porosity within a porous material can also be purposefully
tailored according to the concept of FGMs to enhance the designed material’s performance.
These so-called functionally graded porous materials have attracted great attention for
the development of next-generation lightweight structures [13]. The porous composite
materials reinforced with GPLs in which both internal pores and GPLs are functionally
distributed through the structure’s thickness are called functionally graded GPL-reinforced
composite (FG-GPLRC) porous structures. In general, the functional distribution patterns
are different to each other.

According to the literature survey on FG-GPLRC porous structures, Kitipornchai et al. [14]
presented a micromechanics model of FG-GPLRC beams using Timoshenko beam theory
and the Ritz method and parametrically investigated the free vibration and buckling behav-
iors. Gao et al. [15] performed a nonlinear primary resonance analysis of FG-GPLRC porous
cylindrical shells under a uniformly distributed harmonic load. Akbas [16] investigated the
free vibration and bending deformation of a simply supported functionally graded plate
with the porosity effect using the first-order shear deformation plate theory. Barati and
Zenkour [17] investigated the postbuckling behavior of geometrically imperfect porous
beams reinforced with graphene platelets and resting on a nonlinear hardening foundation.
Sahmani et al. [18] presented the size-dependent nonlinear bending of FG-GPLRC porous
beams subjected to a uniform distributed load and an axial compressive load using the
nonlocal strain gradient theory. Zhou et al. [19] performed a nonlinear buckling analysis
of FG-GPLRC porous cylindrical shells under axial compressive load by considering the
pre-buckling effect and in-plane constraint. Liu et al. [20] presented an analytical approach
for nonlinear static responses and the stability of FG-GPLRC porous arches based on the
Euler–Bernoulli hypothesis. Nguyen et al. [21] presented an efficient polygonal finite
element method (PFEM) to numerically investigate the static and free vibrations of FG-
GPLRC porous plates using Timoshenko’s beam theory. Tao and Dai [22] investigated the
postbuckling behavior of sandwich cylindrical shell panels with an FG-GPLRC porous core
and two metallic face layers using a general higher-order shear deformation shell theory.
Wang and Zhang [23] investigated the thermal buckling and postbuckling behaviors of
FG-GPLRC porous beams by considering the temperature-dependent material proper-
ties. Wang et al. [24] investigated the forced vibration of FG-GPLRC porous cylindrical
microshells subjected to time-dependent distributed impulsive loads. Zhang et al. [25]
investigated the thermal buckling of FG-GPLRC porous cylindrical panels by considering
the temperature-dependent material properties.

As revealed in the relevant literature survey, most of the studies on FG-GPLRC porous
structures have been confined to beam and plate structures by analytical approaches based
on the shear deformation theory or by numerical approaches using FEM. The studies on
cylindrical structures have been poorly presented and mostly restricted to the buckling
behavior. In this context, the purpose of this study was to thoroughly examine the free
vibration of FG-CNTRC porous cylindrical shell panels by developing a 2-D effective and
locking-free meshfree-based numerical method. The numerical method was developed in
the framework of the 2-D planar natural element method (NEM), a previously introduced
meshfree method characterized by high smooth Laplace interpolation functions [26,27], in
which a geometry transformation and the MITC (mixed-interpolated tensorial components)
approach [28] are integrated in order to relax the painstaking manipulation on the shell
surface and the troublesome shear locking which occurs in the bending-dominated thin
structures [29]. The displacement field of the cylindrical shell is expressed by the first-order
shear deformation shell theory, and the physical shell surface and the 2-D rectangular
planar NEM grid are correlated through the geometric transformation.

The numerical method was verified through experiments of benchmark examples, and
the free vibration responses of FG-GPLRC porous cylindrical shell panels were investigated
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with respect to the GPL- and porosity-associated parameters, shell geometry dimensions,
and boundary conditions. Following the introduction, the FG-GPLRC porous cylindrical
shell panel and its displacement, strain and stress fields, and effective material properties
are described in Section 2. The natural element approximation of the FG-GPLRC porous
cylindrical panel is fully explained in Section 3. The benchmark and parametric numerical
experiments are presented in Section 4 with a discussion on the numerical results. The final
conclusion is made in Section 5.

2. Modeling of FG-GPLRC Porous Cylindrical Shell Panel

Figure 1a shows a cylindrical shell panel reinforced with graphene platelets (GPLs),
where a coordinate system (x, y, z) is introduced on the mid-surface v of the panel using
the relation of x = Rθ. The geometric dimensions of the cylindrical panel are represented
by radius R, length `, sub-tended angle θ0, and uniform thickness h. Graphene platelets in
this study were distributed according to a specific functionally graded pattern through the
thickness. Figure 1b depicts the four patterns adopted for this study, where the GPLs are
uniformly dispersed in FG-U, whereas they are rich at the mid-surface in FG-O, at the top
surface in FG-X, and at the bottom surface in FG-Λ.
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distributions of GPLs.

Letting VGPL(z) and Vm(z) be the volume fractions of GPLs and the underlying matrix
material, then both satisfy the physical relation given by

VGPL(z) + Vm(z) = 1 (1)

In which the GPL volume fraction VGPL(z) is expressed by different functions in terms
of the thickness coordinate z and the total GPL volume V∗GPL such that

VGPL(z) =


V∗GPL, FG − U
2(1− 2|z|/h)V∗GPL, FG−O
2(2|z|/h)V∗GPL, FG− X
(1− 2z/h)V∗GPL, FG−Λ

(2)

for different GPL distribution patterns, where

V∗GPL =
gGPL

gGPL + ρGPL(1− gGPL)/ρm
(3)

with gGPL being the GPL mass fraction, and ρGPL and ρm being the densities of the GPLs
and matrix material.
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The GPLs are assumed to be uniformly dispersed within the matrix and act as an
effective rectangular solid fiber with length lGPL, width wGPL, and thickness tGPL, and the
graphene-reinforced composites are modeled as an isotropic material with the effective
material properties. The effective elastic modulus EC of GPLRC is estimated by the Halpin–
Tsai micromechanical model [30], which gives

EC =
3
8
· 1 + ξLηLVGPL

1− ηLVGPL
Em +

5
8
· 1 + ξTηTVGPL

1− ηTVGPL
Em (4)

with
ηL =

EGPL − Em

EGPL + ξLEm
, ηT =

EGPL − Em

EGPL + ξTEm
(5)

Here, EGPL and Em denote the elastic moduli of the GPLs and matrix material, and ξL
and ξT are the geometric parameters given by

ξL =
2lGPL
tGPL

, ξT =
2wGPL
tGPL

(6)

Meanwhile, the effective mass density ρC and Poisson’s ratio νC of the GPLRC are
estimated as

ρC = VGPLρGPL + Vmρm (7)

νC = VGPLνGPL + Vmνm (8)

according to the linear rule of mixture.
Figure 2 represents three different porosity distributions: center-biased, outer-biased,

and uniform, which are expressed as

Porosity_1 : ψ(z) = e0 · cos
(πz

h

)
(9)

Porosity_2 : ψ(z) = e0 ·
[
1− cos

(πz
h

)]
(10)

Porosity_3 : ψ(z) = e0 (11)

with e0(0 ≤ e0 ≤ 1) being the porosity coefficient. The porosity influences the elastic
modulus EC, shear modulus GC = EC/2(1 + νC), and mass density ρC of the GPLRC.
Letting ℘(z) be the effective material properties (i.e., E, G, and ρ) when the porosity is
considered, then it is calculated by

℘(z) = ℘C(z) · [1− ψ(z)] (12)

from the material properties ℘C(z) of the GPLRC. Here, for the effective mass density, the
porosity coefficient e0 should be modified using the relationship given by

℘(z)
℘C(z)

=

[
ρ(z)

ρC(z)

]2
(13)

between the relative mass density and relative elastic property [31]. By letting em be the
porosity parameter for the mass density, it is modified as follows

1− em · cos
(πz

h

)
=
√

1− e0 · cos(πz/h) (14)

for Porosity 1, for example.
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Figure 2. Three different porosity distributions (1: center-biased, 2: outer-biased, 3: uniform).

By using the first-order shear deformation shell theory, the displacement field
u =

{
ux, uy, uz

}T is expressed as
u
v
w


(x,y,z)

=


u0
v0
w0


(x,y)

+ z ·


ϑx
ϑy
0


(x,y)

(15)

with d =
(
u0, v0, w0, ϑx, ϑy

)T being the displacement components at the mid-surface of the
shell panel. The strain–displacement relations are expressed as


εxx
εyy

2εxy

 = ε =


∂u0
∂x + w0

r
∂v0
∂y

∂v0
∂x + ∂u0

∂y

+ z ·


∂ϑx
∂x
∂ϑy
∂y

∂ϑy
∂x + ∂ϑx

∂y

 = Hd (16)

{
γyz
γzx

}
= γ =

{
ϑy +

∂w0
∂y

ϑx +
∂w0
∂x −

u0
r

}
= Hsd (17)

with r = R + z ≈ R. Here,
(
εxx, εyy, εxy

)
and

(
γyz, γzx

)
are in-plane strains and transverse

shear strains, and H and Hs are the (3× 5) and (2× 5) partial derivative matrices defined by

H =

Hx 0 1/r z · Hx 0
0 Hy 0 0 z · Hy

Hy Hx 0 z · Hy z · Hx

 (18)

Hs =

[
0 0 Hy 0 1
−1/r 0 Hx 1 0

]
(19)

with Hx = ∂/∂x and Hy = ∂/∂y. Then, the constitutive relations are expressed as
σxx
σyy
σxy

 = σ =
EC

1− ν2
C

 1 νC 0
νC 1 0
0 0 (1− νC)/2


εxx
εyy

2εxy

 = DHd (20)

{
τyz
τzx

}
= τ =

[
GC 0
0 GC

]{
γyz
γzx

}
= DsHsd (21)

using the in-plane stresses
(
σxx, σyy, σxy

)
and the transverse shear stresses

(
τyz, τzx

)
.

3. Analysis of Free Vibration Using 2-D NEM

For the free vibration analysis of the FG-GPLRC cylindrical shell panel by 2-D NEM,
the mid-surface v of the shell panel is discretized into a finite number of nodes and
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Delaunay triangles, as depicted in Figure 3. Then, the approximate displacement uh(x, y, z)
is expressed as 

uh

vh

wh


(x,y,z)

=
N

∑
J=1


u0
v0
w0


J

ψJ(x, y) +
N

∑
J=1

z ·


ϑx
ϑy
0


J

ψJ(x, y) (22)

using Laplace interpolation functions ψJ(x, y) [26,32] and the nodal vector
dJ =

(
u0, v0, w0, ϑx, ϑy

)T
J of displacement components, where the subscript J indicates

the J-th node within the NEM grid =C composed of N nodes.
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Figure 3. Laplace interpolation functions φJ(ζ1, ζ2) defined on the rectangular plane and their
transformation to ψJ(x, y) on the cylindrical surface.

The definition of the Laplace interpolation function and its manipulation on the
cylindrical surface are complex and painstaking. To relax this difficulty, a geometry trans-
formation TC is introduced to correlate the physical NEM grid =C = [0, Rθ0]× [0, `] on the
cylindrical surface and the computational NEM grid =R = [0, θ0]× [0, `] on the rectangular
plane with coordinates ζ1 and ζ2:

TC : (ζ1, ζ2) ∈ =R → (x, y) ∈ =C (23)

Then, Laplace interpolation functions ψJ(x, s) are mapped to ϕJ(ζ1, ζ2), and the rela-
tions of x = R · ζ1 and y = ζ2 lead to the inverse Jacobi matrix J−1 given by

J−1 =

[
∂ζ1/∂x ∂ζ1/∂y
∂ζ2/∂x ∂ζ2/∂y

]
=

[
1/R 0

0 1

]
(24)

The partial derivatives Hx and Hy in Equations (18) and (19) on the cylindrical surface
are switched to

∂

∂x
= Hx =

1
R

∂

∂ζ1
=

1
R

H1,
∂

∂y
= Hy =

∂

∂ζ2
= H2 (25)

on the rectangular plane according to the chain rule.
Introducing Equation (25) into Equations (18) and (19) results in Ĥ and Ĥs in which

Hx and Hy are replaced with H1 and H2:

T−1
C : H, Hs → Ĥ, Ĥs (26)
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Then, the NEM approximations of the in-plane strains ε in Equation (16) and the
transverse shear strains γ in Equation (17) lead to

εh =
N

∑
J=1

ĤφJdJ =
N

∑
J=1

BJdJ, γh =
N

∑
J=1

ĤsφJdJ =
N

∑
J=1

BJ
sdJ (27)

The direct approximation (20) of transverse shear strain γ using the standard C0−
interpolation functions can frequently suffer from a big approximation error caused by
the shear locking [29,33,34]. To ensure numerical accuracy, the transverse shear strains are
indirectly interpolated by adopting the three-node triangular MITC3+shell finite element
represented in Figure 4 [28] with coordinates ξ and η. Each triangular element ve in the
physical NEM grid =C shown in Figure 3 is mapped to its master triangular element
v̂. Letting NK(ξ, η) be the linear triangular FE shape functions [35], the approximate
displacement field uh(x, y, z) in Equation (22) is re-interpolated using the element-wise

nodal vectors de
K =

(
ue

0, ve
0, we

0, ϑe
y, ϑe

y

)T

K
approximated by 2-D NEM.
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Figure 4. The tying points in the three-node triangular master element v̂ for interpolating the
transverse shear strains γ̂.

Then, referring to Figure 4, the element-wise transverse shear strains γ̂ are interpo-
lated as:

γ̂e
xz =

2
3

[
γ
(B)
xz −

1
2

γ
(B)
yz

]
+

1
2

[
γ
(C)
xz + γ

(C)
yz

]
+

ĉ
3
(3η − 1) (28)

γ̂e
yz =

2
3

[
γ
(A)
yz −

1
2

γ
(A)
xz

]
+

1
2

[
γ
(C)
yz + γ

(C)
xz

]
+

ĉ
3
(1− 3ξ) (29)

using the transverse shear strains at the tying points A, B, C, and D within the three-node
triangular master element and ĉ = γ

(F)
xz − γ

(D)
xz + γ

(E)
yz − γ

(F)
yz . The analytic derivation of

Equations (28) and (29) using Equation (17), the FE re-interpolation, and the chain rule
between two coordinates (x, y) and (ξ, η) leads to γ̂e = B̂ede with the (2× 15) matrices B̂e
in function of ξ, η, z and R and the (15× 1) element-wise nodal vectors de = {de

1, de
2, de

3}.
Meanwhile, the standard Galerkin weak form for the free vibration analysis of FG-

GPLRC cylindrical shell panels can be derived from the dynamic form of the energy
principle [36]

∫ h/2

−h/2

∫
v

[
(δε)TDε + (δγ)TDsγ

]
dvdz +

∫ h/2

−h/2

∫
v
(δd)Tm

..
d dv dz = 0 (30)

Here, m is a (5× 5) symmetric matrix defined by:

m = ρ

[
I mT

1
m1 m2

]
, m1 =

[
z 0 0
0 z 0

]
(31)
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with the (3× 3) identity matrix I and m2 = diag
(
z2, z2). Assuming the harmonic mo-

tion d = d · ejωt and plugging Equations (27)–(29) into Equation (30), together with the
constitutive relations (20) and (21), one can derive the modal equation given by:[(

Kσ +
M

∑
e=1

Ke
s

)
−ω2M

]
d = 0 (32)

to solve the natural frequencies {ωI}N
I=1 and the natural modes

{
dI
}N

I=1 of the cylindrical
panel which is discretized into M Delaunay triangles. Here, two stiffness matrices and the
mass matrix are defined by:

Kσ =
∫ h/2

−h/2

∫
v

BTDB dvdz (33)

Ke
s =

∫ h/2

−h/2

∫
ve

B̂T
e D̂sB̂e dvdz (34)

M =
∫ h/2

−h/2

∫
v

ΦTmΦ dvdz (35)

where d = [d1, d2, · · ·, dN ], B = [B1, B2, · · ·, BN ], Φ = [Φ1, Φ2, · · ·, ΦN ] with
ΦJ = diag

[
φJ , φJ , φJ , φJ , φJ

]
, the material constant matrix D defined in Equation (20), and

D̂s given by

D̂s =
β · κ

1 + α · (Le/h)2

[
GC 0
0 GC

]
(36)

with the shear correction factor κ = 5/6, the longest side length Le of the Delaunay triangles,
and a positive constant α(α > 0) called the shear stabilization parameter [34,37]. The value
of α is chosen through the preliminary experiment, and this modification of the shear
modulus matrix was proposed to stabilize the MITC3 element. Meanwhile, β is the porosity
stabilization parameter which is dependent on the porosity distribution pattern.

4. Results and Discussion

A Fortran program was coded according to the numerical formulae presented in
Section 3 and integrated into the previously developed NEM program [38] which was de-
veloped for plate-like structures. The numerical integration of stiffness and mass matrices
in Equations (33)–(35) was carried out triangle by triangle using seven Gauss integra-
tion points for Kσ and M and one Gauss point for Ke

s. Referring to Figure 3, uniform
11× 11 NEM grids were used for the numerical experiments, and a total of 15 modes were
extracted using the Lanczos transformation and Jacobi iteration methods, unless otherwise
stated. Meanwhile, three types of boundary conditions, simply supported (S), clamped (c),
and free, were considered, where S and C were implemented as

S : v0 = w0 = ϑy = 0 (37)

C : u0 = v0 = w0 = ϑx = ϑy = 0 (38)

The present method was compared with the other methods with two isotropic, one
FG-GPLRC, and one FG-GPLRC porous cylindrical panels.

The first example is a clamped isotropic cylindrical panel with the geometry dimen-
sions given by R = ` = 0.762 m, s = 0.1016 m, h = 0.00033 m. The elastic modulus E,
Poisson’s ratio ν, and density ρ are 68.948 GPa, 0.33, and 2711.5 kg/m3, respectively. The
maximum relative differences of the numerical results given in Table 1 are 5.819% compared
with the experimental data [39] and 1.394% and 1.097% compared with references [40,41],
respectively. Thus, it has been verified that the present method is in good agreement with
the three reference results.
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Table 1. Comparison of four lowest natural frequencies (Hz) of the clamped isotropic cylindri-
cal panel.

Mode Experimental
Deb Nath [39]

Numerical
Au and Cheung

[40]
Yang and Sheng

[41]
Present

1 814 869 871 873
2 940 957 961 948
3 1260 1287 1280 1292
4 1306 1363 1367 1382

The second example is the simply supported isotropic cylindrical panels with four
different aspect ratios s/`. The relative geometry dimensions are `/R = 0.1, `/h = 10, the
Poisson’s ratio is ν = 0.3, and the fundamental frequencies are calibrated as
ω̂1 = ω1`

√
ρ(1− ν2)/E. Yang and Shen [41] and Kobayashi and Leissa [42] in Table 2

employed the higher-order and the first-order shear deformation shell theories, while Chen
and Chao [42] adopted the 3-D elasticity theory. The maximum relative differences are
0.882% compared with reference [40] and 1.706% and 2.069% compared with references [42]
and [43], respectively. It has been confirmed again that the present method is in excel-
lent agreement with the existing reference solutions for different aspect ratios with the
maximum relative difference equal to 2.069%.

Table 2. Comparison of the normalized fundamental frequencies ω̂1 of the simply supported isotropic
cylindrical panels.

s/` Yang and Shen
[41]

Kobayashi and
Leissa [42]

Chen and Chao
[43] Present

0.5 1.31597 1.3360 1.31742 1.31321
1.0 0.55136 0.5563 0.55049 0.55184
1.5 0.40266 0.4044 0.39987 0.40361
2.0 0.35019 0.3505 0.34612 0.35328

The third example is the functionally non-porous cylindrical panels reinforced with
graphene platelets with different ratios of a/h and R/a for two different boundary condi-
tions, SSSS and CCCC, where the combined four capital letters indicate a set of boundary
conditions specified for the four sides 1©, 2©, 3©, and 4© of the cylindrical panel, as show
in Figure 3. The shell radius R and a/b are 10 m and 1.0, and the GPL weight fraction
gGPL is set to 1.0%. Epoxy is taken as the polymer matrix and its material properties are
Em = 3.0 GPa, vm = 0.34, and ρm = 1200 kg/m3. Referring to Yasmin and Daniel [44]
and Rafiee et al. [4], the geometry dimensions of GPLs are lGPL = 2.5 µm, tGPL = 1.5 nm,
and wGPL = 1.5 µm while the material properties are EGPL = 1.01 TPa, vGPL = 0.186, and
ρGPL = 1060 kg/m3. The fundamental frequencies are calibrated as ω̂1 = ω1`

2/h
√

ρm/Em,
and the computed normalized fundamental frequencies are compared in Table 3 with
the numerical results obtained by Van Do and Lee [5] using the isogeometric analysis
(IGA) method.

It can be seen in Table 3 that the fundamental frequencies obtained by the present
method are as a whole smaller than those obtained by the IGA method, except for sev-
eral exceptional cases. Regarding the GPL distribution pattern, the relative differences
between the present method and the IGA method are shown to be relatively higher at
FG-O. Meanwhile, the dependence of the relative difference in ω̂1 on the `/h, R/` and
the boundary condition is not apparent. The maximum relative difference in ω̂1 between
the two methods is found to be 4.213% at the simply supported FG-O with `/h = 50
and R/` = 50. Thus, it has been verified that the present method accurately predicts the
fundamental frequencies of FG-GPLRC cylindrical panels for various GPL distribution
patterns, geometry dimensions, and boundary conditions.
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Table 3. Comparison of the normalized fundamental frequencies ω̂1 of functionally graded porous
cylindrical panels reinforced with graphene platelets (R = 10 m, `/b = 1.0, gGPL = 1.0%).

Method `/h R/`
GPL Distribution Pattern

Epoxy FG-U FG-O FG-X FG-Λ

IGA [5]

20
(SSSS)

10 6.0826 12.6556 10.1648 14.6685 11.4098
50 6.0057 12.4953 9.9625 14.5317 11.2364

20
(CCCC)

10 10.8810 22.6400 18.3299 25.8854 20.4855
50 10.7393 22.3451 17.9653 25.6269 20.1641

50
(SSSS)

10 6.5434 13.6153 11.2729 15.6009 12.4379
50 6.0705 12.6301 10.0583 14.7500 11.3555

50
(CCCC)

10 11.8649 24.6863 20.4352 28.2406 22.5568
50 11.0295 22.9478 18.3005 26.7320 20.6453

Present

20
(SSSS)

10 6.0776 12.6431 10.4697 14.4563 11.4551
50 5.9217 12.3178 10.1885 14.0861 11.4991

20
(CCCC)

10 10.6859 22.2309 18.0054 25.6567 20.3608
50 10.5473 21.9423 17.6483 25.4070 20.1356

50
(SSSS)

10 6.5038 13.5306 11.5976 15.1787 11.9887
50 6.0528 12.5910 10.4821 14.3451 11.6452

50
(CCCC)

10 11.9282 24.8170 20.9011 28.1536 22.8862
50 11.1209 23.1368 18.8826 26.6819 21.3045

Next, the normalized fundamental frequency ω̂1 of non-porous FG-GPLRC cylindrical
panels was parametrically investigated. Figure 5a,b represent the variations in ω̂1 with
respect to the GPL mass fraction gGPL for different GPL distribution patterns and boundary
conditions. It is observed that ω̂1 uniformly increases with the increasing value of gGPL,
regardless of the GPL distribution pattern and the boundary condition. This is because the
panel stiffness increase due to the increase in the GPL amount is greater than the panel
mass increase. Moreover, the normalized fundamental frequency is remarkably influenced
by the GPL distribution pattern and the boundary condition. The order of the magnitude
of ω̂1 among the four GPL distribution patterns is FG-X > FG-U > FG-Λ> FG-O. This is
because the thickness-wise GPL distribution pattern strongly affects the structural stiffness
such that the structural stiffness increases as the GPL distribution becomes biased to the
top and bottom surfaces of the panel. Regarding the effect of the boundary condition, the
order of the magnitude of ω̂1 is CCCC > CSCS > CFCF > SSSS, which is consistent with the
order of the strength of the boundary constraint.

Figure 6a represents the effect of the length–thickness ratio `/h on the normalized
fundamental frequency, where the panel length ` is kept unchanged at 1.0 m. It is seen that
ω̂1 increases in proportion to `/h, but this owes entirely to the calibration with `2/h. It was
found from the numerical data that the non-calibrated absolute fundamental frequency ω1
decreases with the increasing value of `/h because the panel stiffness remarkably decreases
as the panel becomes thinner. Figure 6b shows the effect of the radius–length R/` on the
normalized fundamental frequency, where the panel length ` is also kept unchanged at
1.0 m. It is seen that the normalized fundamental frequency increases in reverse proportion
to the shell radius R, because the structural stiffness increases while the total mass decreases
as the shell radius becomes smaller.

Figure 7a shows the variation in ω̂1 with respect to the length–thickness ratio `/h for
different values of gGPL. It is seen that ω̂1 uniformly increases in proportion to `/h, and
the increase in the slopes is almost the same regardless of gGPL. The explanation for why
ω̂1 increases with the increasing value of `/h is the same as for Figure 6a. Figure 7b shows
the variation in ω̂1 with the aspect ratio of the shell panel, where the shell length is kept
unchanged at 1.0 m. It is observed that ω̂1 dramatically increases in proportion to the value
of `/h, because the decrease in shell width b dramatically increases the panel stiffness but
reduces the panel weight. Similar to the length–thickness ratio, the increase in the slope is
almost insensitive to the GPL mass fraction gGPL.
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Next, the free vibration of the FG-GPLRC porous cylindrical panel was investigated
by considering three porosity distributions shown in Figure 2. Table 4 compares the nor-
malized fundamental frequencies of the simply supported FG-GPLRC porous cylindrical
panel with the reference solutions of Zhou et al. [45]. The GPL distribution pattern is
FG-U, and the geometry dimensions are given in the table caption. The reference solutions
were obtained by employing Reddy’s third-order shear deformation theory. The funda-
mental frequencies were normalized as ω̂1 = ω1R

√
ρm/Em, and the porosity stabilization

parameter β included in Equation (36) was determined through the preliminary experi-
ment: β = 1 for Porosity_1, β = 1/

(
1 + 10e2

0
)2 for Porosity_2, and β = 1/

(
1− e2

0
)2 for

Porosity_3. When compared with the reference solutions, the present results are higher at
Porosity_1 but lower at Porosity_2 and 3. The maximum relative difference equal to 1.08%
occurred at gGPL = 1.0 and e0 = 0.3 for Porosity_3. Thus, the comparison verifies that
the present method accurately predicts the fundamental frequency of FG-GPLRC porous
cylindrical panels.
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Table 4. Comparison of normalized fundamental frequencies of functionally graded porous cylindri-
cal panels reinforced with graphene platelets (SSSS, FG-U, `/h = R/h = 10, h = 0.01 m, α = π/3.

Method gGPL(%) e0
Porosity Distribution Pattern

Porosity_1 Porosity_2 Porosity_3

Zhou et al.
[19]

0
0.3 0.6904 0.6494 0.6740
0.6 0.6701 0.5839 0.6272

0.5
0.3 0.7505 0.7060 0.7327
0.6 0.7284 0.6347 0.6818

1.0
0.3 0.8062 0.7583 0.7870
0.6 0.7824 0.6818 0.7323

Present

0
0.3 0.6959 0.6497 0.6676
0.6 0.6718 0.5834 0.6229

0.5
0.3 0.7558 0.7057 0.7252
0.6 0.7296 0.6339 0.6768

1.0
0.3 0.8113 0.7574 0.7785
0.6 0.7831 0.6806 0.7267

Figure 8a represents the variation in ω̂1 with respect to the porosity parameter e0,
where the ω̂1 uniformly decreases in proportion to e0. This is because the decrease in panel
stiffness owing to the increase in the porosity amount is greater than the decrease in the
panel mass. Meanwhile, the decreasing trend is affected by the porosity distribution such
that the decrease in the slope is highest at Porosity_2 and lowest at Porosity_1. This is
because the decrease in the structural stiffness becomes larger as the porosity distribution
becomes biased to the top and bottom surfaces of the panel. Figure 8b represents the effect
of the GPL distribution pattern on the variation in ω̂1 with respect to the porosity parameter
e0. It is found that the GPL distribution pattern affects the order of the magnitude of ω̂1,
but its effect on the decrease in the slope of ω̂1 with respect to the porosity parameter e0
is not remarkable. This trend is different from the effect of the GPL distribution pattern
on the variation in ω̂1 with respect to the GPL mass fraction shown in Figure 5a. This is
because the decrease in the slope itself of the panel stiffness and the panel mass along the
porosity parameter e0 is almost insensitive to the GPL distribution pattern.
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Figure 8. Normalized fundamental frequency with respect to the porosity parameter (SSSS,
gGPL = 0.5%): (a) for different porosity distributions (FG-U) and (b) for different GPL distribu-
tions (Porosity_1).

Figure 9a represents the effect of GPL mass fraction gGPL on the decrease in ω̂1 with
respect to the porosity parameter e0. It is seen that the gGPL affects the magnitude of ω̂1, but
its effect on the decrease in the slope of ω̂1 along the porosity parameter is not significant.
This trend is also seen in Figure 9b which represents the effect of the boundary condition
on the decrease in ω̂1 with the porosity parameter e0. It is found that the magnitude of ω̂1
is apparently influenced by the boundary condition, but the dependence of its decreasing
slope with respect to the porosity parameter on the boundary condition is not shown to be
remarkable. This is because the decrease in the slope itself of the panel stiffness and the
panel mass with respect to e0 is not remarkably influenced by the GPL mass fraction gGPL
and the boundary condition.
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Figure 9. Normalized fundamental frequency with respect to the porosity parameter (Poros-
ity_2, FG-U): (a) for different GPL mass fractions (SSSS) and (b) for different boundary conditions
(gGPL = 0.5%).

Figure 10a represents the effect of porosity distribution on the increase in ω̂1 with
respect to the GPL mass fraction gGPL. It is found that the order of the magnitude of ω̂1 is
apparently affected by the porosity distribution, but the increase in the slope of ω̂1 with
the GPL mass fraction is not influenced by the porosity distribution. This trend is different
from the effect of porosity distribution on the decrease in ω̂1 with respect to the porosity
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parameter shown in Figure 8a. Meanwhile, Figure 10b represents the variation in ω̂1 with
respect to the GPL mass fraction gGPL for different porosity parameters. It is observed
that the porosity parameter significantly affects the magnitude of ω̂1, but its effect on the
increase in the slope of ω̂1 with respect to gGPL is not shown to be remarkable. This is
because the increase in the slope itself of the panel stiffness and the panel mass with respect
to gGPL is not remarkably influenced by the GPL distribution and the porosity distribution.
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5. Conclusions

This paper presents a free vibration analysis of FG-GPLRC porous cylindrical shell
panels using a NEM-based 2-D numerical method. In the framework of 2-D planar NEM,
the numerical method was developed by integrating a geometry transformation between
the shell surface and the 2-D planar NEM grid and the MITC3+shell element. Benchmark
and parametric experiments were carried out to validate the proposed numerical method
and to thoroughly investigate the free vibration characteristics of FG-GPLRC porous cylin-
drical panels with respect to the associated parameters. The numerical results reveal the
following main observations:

• The numerical method accurately analyzes the free vibration of FG-GPLRC porous
cylindrical shell panels, without causing shear locking, with the maximum relative
difference of 4.213% even for coarse and 2-D planar NEM grids.

• The normalized natural frequency ω̂1 uniformly increases in proportion to the GPL
mass fraction gGPL while it uniformly decreases with the increasing value of porosity
parameter e0, and it uniformly increases in proportion to the length–thickness ratio
`/h, the length–radius ratio `/R, and the aspect ratio `/b of the shell panel.

• The distribution patterns of both the GPL and porosity significantly affect the vari-
ations in ω̂1 with respect to the values of gGPL and e0 such that the order of the
magnitude of ω̂1 among the four GPL distribution patterns is FG-X > FG-U > FG-Λ>
FG-O while that among the three porosity distributions is Porosity_1 > Porosity_3 >
Porosity_2.

• The increase in the slope of ω̂1 with respect to the GPL mass fraction is influenced
by the GPL distribution pattern, `/h, `/R, and `/b, but it is independent of the
magnitude and distribution of the porosity. Meanwhile, the decrease in the slope
of ω̂1 with respect to the porosity parameter is influenced by the porosity distribu-
tion, but it is independent of the mass fraction and distribution of the GPL and the
boundary condition.
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