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Abstract: The sensitivity and photoelectric noise of UV photodetectors are challenges that need to be
overcome in pharmaceutical solute detection applications. This paper presents a new device concept
for a CsPbBr3 QDs/ZnO nanowire heterojunction structure for phototransistors. The lattice match
of the CsPbBr3 QDs and ZnO nanowire reduces the generation of trap centers and avoids carrier
absorption by the composite center, which greatly improves the carrier mobility and high detectivity
(8.13 × 1014 Jones). It is worth noting that by using high-efficiency PVK quantum dots as the intrinsic
sensing core, the device has a high responsivity (6381 A/W) and responsivity frequency (300 Hz).
Thus, a UV detection system for pharmaceutical solute detection is demonstrated, and the type of
solute in the chemical solution is estimated by the waveform and the size of the output 2f signals.

Keywords: phototransistor; PVK quantum dots; ZnO nanowire; pharmaceutical solute detection

1. Introduction

UV detection has engaged many researchers’ interest because of its wide range of ap-
plications in solar radiation monitoring and ozone layer hole and biochemical detection [1].
Similarly, in the field of medical detection, ultraviolet detection also plays an indispensable
role, where ultraviolet-visible spectroscopy is generally used to detect the composition of
solutions [2]. This detection method is closely related to light intensity [3]. Nevertheless,
in the case of medication in children, the solute concentration of the solution used is very
low. Two severe problems arise at this point: insufficient sensitivity of light intensity and
interference of low-frequency noise. In order to achieve high-precision detection, pioneers
invented TDLAS (tunable diode laser absorption spectroscopy), which largely overcame
the low-frequency noise [4]. Current UV detectors share a common disadvantage, that is, a
weak response to high-frequency signals [5]. Meanwhile, the current harmonic detection
technology still has the defects of low accuracy and low signal-to-noise ratio [6–8].

Zinc oxide, a wide bandgap metal oxide semiconductor, has received great attention
in recent years as a suitable material for photodetectors in the UV wavelength region
due to the fact of its strong radiation hardness, high thermochemical stability, and wide
bandgap [9–11]. It possesses a higher exciton binding energy (60 meV) compared to other
wide bandgap materials, ensuring effective exciton emissions at ambient temperature.
Furthermore, ZnO nanowires have demonstrated higher sensitivity to chemical adsorbents
due to the fact of their short size comparable to its Debye length. ZnO nanostructures
are now at the forefront of nanotechnology research in numerous areas [12]. The strong
absorption efficiency of perovskite quantum dots over a broad spectrum range makes them
ideal candidates for sensitive light detecting technology for photoelectric detection [13].
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Thereby, phototransistors built on oxide semiconductors with broad bandgaps and quan-
tum dots (QDs) with narrow bandgaps are the most efficient devices for detecting UV
light photosensors [14].

This paper shares approaches to manufacturing high-performance CsPbBr3 QDs/ZnO
nanowire PT (hereinafter referred to nanowire-PT) and its application in medicine solute
detection systems. Compared to other ZnO-based detectors [15] (with a responsiveness of
365 A/W), a device based on PVK QDs/ZnO nanowire appears to be more efficient (6381
A/W). In addition, the perovskite QDs-based device is also inferior in front of it [16]. It turns
out that the combination of ZnO nanowires and quantum dots produces surprising results
due to the fact of the lattice match. This is consistent with previous results using a lattice
structure and lattice match to improve a device’s performance [17,18]. Moreover, through
experimental comparison, the superiority of nanowire-PT to QDs/α-ZnO PT (hereinafter
referred to α-PT) is proved. Moreover, it is precisely because of the lattice adaptation that
this device achieves high EQE, excellent responsivity, and outstanding detectivity. Based
on this high-performance device, an integrated on-chip inspection acquisition system [19]
using the detection array was created, with STM32-based ADC (analog-to-digital converter)
data collection and FPGA-based multiband light source scanning. This allows for the
detection of several solutes (such as penicillin, cephalosporin, and tobramycin). Therefore,
this demonstration offers a straightforward, low-cost, and high-resolution approach to
distinguish the UV spectra of liquid solutes.

2. Materials and Methods
2.1. Fabrication of ZnO Nanowires and CsPbBr3 QDs

The following is an illustration of the ZnO nanowire creation process: A slice of silicon
(001) wafer (Zhejiang Xuchen Co. Ltd., Qu Zhou, China) was first cleaned for ten minutes
in acetone, ethanol, and deionized water each. Before being moved into the chamber,
the silicon wafer was placed on top of the quartz boat containing 0.2 g of zinc powder
(XFnano Co. Ltd., Nanjing, China). High-quality ZnO nanowires were produced using
plasmon-enhanced chemical vapor deposition (PECVD) (Jinshenweina, Beijing, China) at a
regulated temperature of 800 ◦C, a pressure of chamber under 7.5 × 10−3 torr, and a flow
rate of 20 sccm (Ar2:O2 = 3:1).

2.2. The Characterization of ZnO Nanowires and CsPbBr3 QDs

As seen in Figure 1b, the ZnO nanowires can be seen using SEM (Zeiss, Mainz,
Germany). Then, the ZnO nanowires were mixed with octadecene, and the CsPbBr3 was
fabricated by Dr. Pan [20]. The quantum dots were attached to the nanowires to obtain
lattice-matched hybrid materials. The diameters of the CsPbBr3 QDs, which have clear
crystal lattices and measure approximately 5 nm, are displayed in the inset of Figure 1c.

2.3. Manufacture of the Device

A three-terminal gated phototransistor was fabricated on the Si wafer substrate coated
with 200 nm thick SiO2 (Zhejiang Xuchen Co. Ltd., Qu Zhou, China). Subsequently,
before electroplating with the mask (W:L = 20 µm:200 µm) for the electrodes (Figure 1d),
thermal annealing was performed at a temperature of 180 ◦C to increase the uniformity
of the hybrid material layer and remove the solvent. Then, the hybrid materials were
spin-coated on the substrates. For the nanowires, the uniformity was not better, and the
wider diameter of the nanowires was obvious, as shown in Figure 1d. Meanwhile, as
illustrated in Figure 1e, the XRD pattern (Rigaku, Japan) for the channel material, such as
the PVK QDs and PVK QDs/ZnO nanowires, shows significant enhancement diffraction
peaks at 31◦. The broadening of the diffraction peaks is associated with grains. It can be
seen from the diagram that the lattice matching of the nanowires and quantum dots had a
relatively clear connection.
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of the PVK QDs and QDs/ZnO nanowire; (f) absorption spectroscopy of the QDs/ZnO nanowire, 
ZnO nanowire, and PVK QDs. 
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Figure 1. (a) Structure of the nanowire-PT; (b) SEM image of a single QDs/ZnO nanowire with PVK
QDs; (c) TEM image of the QDs/ZnO nanowire; (d) SEM image of the PT’s channel; (e) XRD image
of the PVK QDs and QDs/ZnO nanowire; (f) absorption spectroscopy of the QDs/ZnO nanowire,
ZnO nanowire, and PVK QDs.

3. Results and Discussion

According to Figure 1f, the absorption intensities of the QDs/ZnO nanowire device
were much higher than the ZnO nanowire device and QDs device, indicating that the
combination of QDs and ZnO nanowires produces surprising effects.

In addition, the transfer characteristics can be observed in Figure 2a, where photogen-
erated current (between the drain and source) is shown as a function of the gate voltage
under various wavelengths of incoming light. The on/off ratio can be calculated as 105.
The change in the current diminishes as the incoming light moves from the low band to
the high band, which is consistent with the prior absorbance characteristics of the CsPbBr3
QDs and the other functional films.

Corresponding to the above, the dimension of the channel area can be considered as
20 × 200 µm2. When an incident power intensity of 10 µW/cm2 is applied, the photore-
sponsivity was measured, and the transfer characteristic curve is provided in Figure 2a.
This photoresponsivity may be computed using Equation (1) [21].

R =
Itotal − Idark

P
=

Iph

ρ · S (1)

where P represents the optical power, Idark is the dark current, Itotal denotes the total current,
ρ indicates the optical incident power density, Iph implies the photocurrent, and S is the
effective area for the photo-electric reaction. By calculating the responsivity of the different
wavelengths, as shown in Figure 2c, with the deviation of the incidence wavelength in the
UV band, the responsiveness fell from 6381 A/W to 534 A/W. The EQE (external quantum
efficiency) decreased from 11,734% to 256% at the same moment.

EQE =
Iph/q
ρ/hν

× 100% (2)
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Figure 2. (a) ID-VG graphics for the nanowire-PT at various UV wavelengths in the ultraviolet
band (VDS = 5 V); (b) at varied UV wavelengths, the density of the effective photo-induced carriers
stored inside nanowire-PT; (c) EQE and responsivity in the UV band; (d) photocurrent in relation to
incoming light power at wavelengths under 270 nm.

Upon attempting to explain the current phenomenon of photosensitivity of the TFT at
UV wavelengths, it is necessary to examine the behavior of the response as a function of
the optical power, which may indicate the prospective applications of excellent sensors, as
well as the characterization of the PT sensitivity. In a logarithm/logarithm plot, Figure 2b,d
show the fluctuation of the photocurrent for a 270 nm wavelength as a function of the light
power. Furthermore, based on the light intensity-dependent photoresponse properties
(Equation (3)) [22], the device’s liner dynamic range (LDR) is estimated to be 140 dB.

LDR = 20 log(Iph/Idark) (3)

LDR denotes the device’s operational range for light intensity. Hence, a comparatively
large LDR denotes a device with minimal recombination losses [23].

The photodetector’s response frequency is related to the photogenerated carrier trans-
fer efficiency, which could be influenced by the noise. The charge carrier mobility fluctu-
ations, generally known as flicker noise, as they are induced by the capture and release
of carriers, are the main cause of noise in semiconductors [24]. In heterostructure pho-
todetectors, the traps are located at the interface between materials. Concurrently, lattice
mismatch will lead to the degradation of long-term reliability and the degradation of trap
density, so the performance of lattice matches must be the best as possible for hybrid
materials. The evaluation the lattice matches can be calculated by the electric performance
of the photodetectors.
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For Figure 3a, due to the lattice matching of the CsPbBr3 QDs and ZnO nanowire, the
hanging key on the interface is avoided as a trap center, and the composite center hardly
absorbs carriers, which greatly improves the injection efficiency and quantum efficiency.
In addition, this increases the carrier mobility and improves the device’s performance.
Compared with the QDs/α-ZnO device (Figure 3c), the lattice structure of the nanowire-
PT is more compact. As a result, the photo current of the nanowire-PT is more obvious
(Figure 3d,e).
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Figure 3. (a,c) Comparison chart of the QDs/ZnO nanowire PT and QDs/α-ZnO PT (hereinafter
referred to as nanowire-PT and α-PT); (b) band diagram and charge transfer diagram of the hybrid
material; (d) semilogarithmic plot of ID/(VG − Vmin) versus 1/(VG − Vmin) for the phototransistor
with or without incident light (270 nm, peak power = 5 µW/cm2); (e) efficient light-induced carrier
density stored in optical transistors at various UV wavelengths; (f) comparison of the nanowire-PT
and α-PT’s light signal responses at 270 nm and 5 µW/cm2 under a 5 V gate voltage.

The energy band schematics of the device are presented in Figure 3b. The charge
transfer takes place across the interfaces of the CsPbBr3 QDs/ZnO nanowires. CsPbBr3 QDs
are thought to have an optical property that allows carriers to be created and transported
from the CsPbBr3 QDs to the ZnO nanowires in the CsPbBr3 QDs/ZnO nanowire hybrid
materials. The charge transferred into the ZnO nanowire (ECB = −4.2 eV, EVB = −7.5 eV)
and then drifted to the source electrode under the bias before the electron–hole pairs in
the CsPbBr3 QDs recombine. The drain electrode can supply an equivalent number of
carriers in the interim to support the channel’s conversation of charge. As the vacuum
energy level is regarded as the standard for potential energy, the valence band (EVB) and
conduction band (ECB) of the CsPbBr3 QDs, which were −4.1 and −6.2 eV, could also be
measured [25]. Heterojunction barriers in nanowire-PT can lessen the photoelectric noise
while simultaneously increasing the efficiency of opto-electric conversion.

As illustrated in Figure 3d, the semilogarithmic plot for the CsPbBr3 QDs/ZnO
nanowire with illumination transformation could be applied to compute defect the density
for the following step. There is a linear range in both curves. The linear functions’ slope is
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smaller for illumination than for dark current, noting a lower slope for less defect density,
and the deviation from linearity occurs at greater 1/(VG − Vmin) [26].

ID =
W
L
µ0Cins

(
VG −VDexp

(
q3NT

2t
8ε0εscKTCins(VG −Vminmin)

))
(4)

The channel’s width and length are W and L, respectively. The gate insulator’s
capacitance per unit of area is known as Cins. Vmin is the gate voltage at the lowest possible
ID, where the channel first forms before ID gradually increases. The drain voltage is VD. The
electronic charge is q. The channel’s thickness is t. The surface accumulation of flaws in the
grain boundaries is known as NT. S is the semiconducting active layer’s permittivity. The
thermal energy unit Is KT. A linear function might be employed to fit the semilogarithmic
curve of ID/(VG − Vmin) versus 1/(VG − Vmin), derived using Equation (4). The function’s
slope varies proportionally to NT

2.
In addition, photoexcited effective charge densities are revealed by investigating the

stored efficient charges [27].

∆Qeff(ε) = Cox · ∆Vth(ε) (5)

Compared to α-PT, the nanowire-PT devices exhibited stronger optical carrier memory
capacity at various wavelengths. The plots in Figure 3e show that while a small ∆Vth was
seen below 275 nm, the nanowire-trap PT’s density was minimal.

To summarize, due to the lattice match of the CsPbBr3 QDs and ZnO nanowire, the
structure of the interface transition zone improved excellently, which also increased the
carrier mobility. In addition, the great repeatability and rapid photoresponse in dynamic
incident light detection are significant benefits for the integrated PT’s practical application.
Figure 3f depicts the dynamic photocurrent characteristics of the studied devices with
varied gate voltages. In a previous report [28], for QDs/α-ZnO, there was an absorption
peak at 100 Hz. However, nanowire- PT still has a peak in absorption at 300 Hz. So, it
was tested at a frequency environment of 300 Hz. The response and decline times of the
nanowire-PT were estimated to be 1 and 3 ms, respectively. The photocurrent response time
was affected by the optical carrier injection mechanism. In comparison to α-PT’s decline
time (7 ms), the nanowire-PT’s decline time (3 ms) was shorter due to the lattice match.

To determine the detectivity of the current devices for comparison, the detectivity
D* is the sensor’s capacity to detect a weak signal, especially under dynamic detecting
conditions. It describes the sensor in relation to its noise, as defined by the noise current
spectrum shown above. The following determines the detectivity [29]:

NEP =
IN

R

(
wHz−

1
2

)
(6)

D* =

√
A

NEP

(
cmHz

1
2 /w, Jones

)
(7)

where NEP means the noise equivalent power, IN implies the noise current density, A
represents the active area, and R denotes the responsiveness. As shown in Figure 4a, due to
the tight lattice structure in the heterostructure and the adaptation of nanowires to quantum
dots, the detection rate of the nanowire-PT was at the lowest noise density level. The final
dynamic performances of the nanowire-PT can be calculated and are displayed in Figure 4b.∫ ∞

0
NEP(f)d(f) = NEP(f)∆(f) (8)
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Figure 4. (a,b) The improved nanowire-PT’s noise equivalent power (NEP) and detectivity spectrum
measured in relation to the gate frequency at 300 Hz under a dynamic detecting environment.

The modulation bandwidth was 300 Hz, as determined by the experiment phenom-
ena, demonstrating the impact of the touched interface inside the channel. Under a dy-
namic detecting environment, the detectivity of the nanowire-PT concurrently reached
8.13 × 1014 Jones.

Our nanowire-PT obtained exceptional responsiveness and photodetectivity in com-
parison to the published UV phototransistor listed in Table 1. This nanowire-PT is addition-
ally suitable for solute detection.

Table 1. Contrasting this research with other phototransistors described in the literature.

Materials Response Time
(ms)

Responsivity
(A/W)

Detectivity
(Jones) Reference

CsPbBr3 QDs/ZnO
nanowire 1 6381 8.13 × 1014 This work

PEDOT:PSS/SnOx/IGZO <500 984 3.3 × 1014 [30]
a-Ga2O3 - 4100 2.5 × 1013 [31]

ZnO/SnO2 2070 82.28 7.79 × 1013 [32]

For potential applications in UV band light detection, Figure 5a shows the device
for solute detection. Owing to the DFB laser’s highly narrow monochromaticity [33], the
system is enabled to realize the recognition of certain solutes and can also be applied to
ultraviolet spectroscopy detection. Varying with the operating current, FPGA allows for the
synchronization of the UV laser’s wavelength to the optical inverter’s sampling frequency.
In the ultraviolet range of the absorption spectra of distinct solutes, the response band of
the collected optical inverter demonstrated a substantial overlap.

Such solutes include penicillin, cephalosporin, and tobramycin. Therefore, multi-
wavelength UV lasers and ultraviolet light inverters were assembled into a TDLAS (tunable
diode laser absorption spectroscopy) approach for solute detection [34]. This phototran-
sistor can serve as a component of high-frequency WMS (wavelength modulation spec-
troscopy) solute sensing technology owing to the phototransistor’s rapid reaction time
(Figure 3f) [35]. The modified Beer–Lamber law equation can be utilized to determine the
function between the detecting signal and the solute concentration [36,37]. FA = VGO/Vsat.
Therefore, FA is the absorbance fraction of the detected solute; VGO is the response voltage
offset of the phototransistor. When the concentrations are extremely high, Vsat is the satu-
rated D voltage. By distinguishing the solute composition of the mixed liquid (500 µg/mL
penicillin, 500 µg/mL cephalosporin, and 500 µg/mL tobramycin), the phototransistor is
measured under the adjacent wavelength modulation of the UV laser (Figure 5b).
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sensing of a solute mixture consisting of 500 µg/mL penicillin, 500 µg/mL cephalosporin, and
500 µg/mL tobramycin.

The tremendous 2f signals can be observed In Figure 6a, with various cephalosporin
concentrations, which is consistent with the image data in Figure 5b. The amplitude of the 2f
signal and cephalosporin concentration can be matched roughly linearly,
(A = 3.91227C + 0.00348 (unit: V)), as observed in Figure 6b. At very low concentrations,
the amplitude of the 2f signal and cephalosporin concertation can be modified with
(A = 3.95276C + 0.04244 (unit: V)) for the modified signal and solvent influence [38].
Measured experimentally, the lowest detection limit (LOD) of cephalosporin can ascend to
140 µg/mL, which suggests that our device can implement the precise differentiation of
the solute species in mixed liquids.
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4. Conclusions

In summary, a CsPbBr3 QDs/ZnO nanowire-based, high-precision, and low-
optoelectronic noise phototransistor with 6381 A/W responsivity was successfully de-
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veloped. The device’s reaction time may be lowered to 1 ms at 5 V, while the decline time
was 3 ms. Its maximal specific detectivity was predicted to be 8.13 × 1014 Jones under
5 V at 270 nm, and the EQE could reach up to 11,734%. Thanks to the lattice matching, the
device attained a significant LDR (140 dB). In addition, this finding opens the door for the
utilization of nanowire-PTs with simple structures, high accuracy, and excellent detectivity.
It can work at relatively low concentrations (140 µg/mL). Finally, the device was applied
to detect solutes in solution and select several solutes to measure the specific output of
2f waveforms.
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