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Abstract: In the field of machine learning (ML) and data science, it is meaningful to use the advantages
of ML to create reliable interatomic potentials. Deep potential molecular dynamics (DEEPMD) are one
of the most useful methods to create interatomic potentials. Among ceramic materials, amorphous
silicon nitride (SiNx) features good electrical insulation, abrasion resistance, and mechanical strength,
which is widely applied in industries. In our work, a neural network potential (NNP) for SiNx was
created based on DEEPMD, and the NNP is confirmed to be applicable to the SiNx model. The tensile
tests were simulated to compare the mechanical properties of SiNx with different compositions based
on the molecular dynamic method coupled with NNP. Among these SiNx, Si3N4 has the largest elastic
modulus (E) and yield stress (σs), showing the desired mechanical strength owing to the largest
coordination numbers (CN) and radial distribution function (RDF). The RDFs and CNs decrease with
the increase of x; meanwhile, E and σs of SiNx decrease when the proportion of Si increases. It can be
concluded that the ratio of nitrogen to silicon can reflect the RDFs and CNs in micro level and macro
mechanical properties of SiNx to a large extent.

Keywords: molecular dynamics; machine learning; amorphous silicon nitride; density functional
theory; deep potential

1. Introduction

Molecular dynamics (MD) mainly rely on Newtonian mechanics to simulate the mo-
tion of molecular systems. Compared with the expensive cost of the experiment, the
MD method is a cost-effective and efficient tool for exploring the properties of various
complicated new materials. To make sure the simulation results match well with the exper-
iments, it is important to use an accurate description of interatomic interactions. Quantum
mechanics (QM) simulations, such as the ab initio molecular dynamics (AIMD) method
based on the density functional theory (DFT), are the most reliable way to describe the
atomic interactions for different systems [1–5]. Although AIMD exhibits desirable compu-
tational accuracy, the time cost of AIMD is very high, which limits the application of AIMD.
To balance the calculation performance and speed of MD simulations, empirical interatomic
potentials have been applied to MD simulations. Empirical interatomic potentials, includ-
ing Lennard–Jones (LJ) [6], embedded atom method (EAM) [7,8], the Stillinger–Weber
(SW) [9,10], Tersoff [11] and charge-optimized many-body (COMB) [12] potentials obvi-
ously improved the calculation performance and speed of MD. However, the application
of these empirical potentials is hindered by their poor transferability. In terms of systems
described by two-body interactions, the LJ potential has favorable accuracy. The SW and
Tersoff potentials are able to combine two-body and three-body interactions to stabilize
tetrahedral solids, but the description accuracy of bond breaking and metallic phases of
silicon and carbon is not sufficient. Owing to the rapid development of machine learning
(ML) and data science, it is meaningful to take the advantages of ML to create reliable ML
interatomic potentials to replace the conventional empirical potentials [13–15]. In 2007,
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J. Behler and M. Parrinello first proposed a method to create ML interatomic potentials
based on artificial neural network deep learning [16]. Various ML potentials have been
generated and further applied to material property calculations. Among these ML potential
training methods, deep potential molecular dynamics (DEEPMD) is one of the most useful
methods to create interatomic potentials recently [16,17]. Results prove that the various
systems that used DEEPMD methods delivered good accuracy [18,19]. For example, Wang
et al. developed a DEEPMD potential to describe the properties of Li-Si alloys [20]. The
DEEPMD potential is about 20 times faster than the AIMD simulations. Meanwhile, the
accuracy of DEEPMD potential is comparable with that of AIMD.

Amorphous silicon nitride (SiNx) has been widely used in advanced semiconductor packag-
ing owing to its good electrical insulation, abrasion resistance, and mechanical strength [21–23].

However, compared to the plenty of experimental studies about SiNx, there is less
research about SiNx on theoretical calculations at present [24–26]. In this work, we con-
ducted a preliminary and comprehensive theoretical calculation of SiNx. At the same time,
considering that current classic MD potentials are not suitable for SiNx simulations due to
efficiency and accuracy [27–32], it is of great interest to train a new potential to describe the
interatomic interactions.

In our work, a neural network potential (NNP) was trained based on the ML in
the DEEMD package for SiNx with the 3:4 composition, owing to its high stability. To
validate the accuracy of the NNP, the energies and forces obtained by the NNP were
compared with its AIMD counterpart. The structure and properties of Si3N4 calculated
-by MD + NNP were compared with the AIMD through the radial distribution functions
(RDFs), coordination numbers (CNs), and bond angle distributions (BADs). Similar to
the empirical potentials, the NNP trained by DEEPMD can also be used for SiNx with
different compositions. Therefore, the NNP was confirmed to be reliable and applicable for
SiNx. In the following parts, SiNx all refers to the amorphous silicon nitride with different
compositions. Then, the NNP was applied to MD simulations to predict the properties of
SiNx. To further investigate the influence of compositions on the mechanical properties
of SiNx, the tensile tests of SiNx were carried out at 300 K. Among these SiNx models, the
Si3N4 has the desired mechanical strength, which is consistent with the microstructure,
including the maximal RDF peak and CNs.

2. Materials and Methods

DEEPMD is one of the most popular methods to create interatomic potentials recently
owing to its calculation speed and accuracy [17,33]. The details of the NNP training process
are listed as follows.

2.1. AIMD Calculations

In our work, Si3N4 was chosen as an example to train the NNP because of the high
stability of the 3:4 composition. The training database of Si3N4 at different tempera-
tures was obtained by first-principles calculations using the Vienna ab initio simulation
package (VASP) [34]. The exchange–correlation interaction was described by Perdew–
Burke–Ernzerhof (PBE) functional [35]. The interaction between electrons and ions was
described by the projector-augmented wave (PAW) approach. The cut-off energy is 520 eV.
We use the k-point mesh grid with a spacing of 0.4 Å within the Gamma-centered
k-sampling to sample the Brillouin zone. The initial Si3N4 configuration with 112 atoms is
a cube with randomly distributed atoms; the model was built by LAMMPS “create_atoms”
command and modified by Material Studio. The periodic boundary conditions were ap-
plied in x, y, and z directions. The cube size in the x, y, and z directions is 11.935 Å, 11.935 Å,
and 11.55 Å, respectively. The AIMD calculations were fulfilled at a constant temperature
of 2000 K with an NVT ensemble. The Nose-Hoover thermostat was used to control the
temperature of the AIMD simulation. The timestep is 1 fs running 10,000 steps. The energy
and force errors less than 10−5 eV/atom and 0.01 eV/Å, respectively, are convergence
criteria for geometry optimization.
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2.2. Deep Potential Training Process

Based on the AIMD calculations, 10,000 data points were transferred from the output
file “OUTCAR”; the data points were divided into five sets. The four sets were used for
training databases, with the remaining one selected as a testing database. The smooth
edition of the DEEPMD and DeepPot-SE model, implemented in the DEEPMD-kit pack-
age [33], was used to train the interatomic potential. The cutoff radius of the model is 6.0 Å
for neighbor searching with the smoothing function starting from 5.8 Å. The hidden layers
were divided into three layers, and the number of neurons in each layer is 25, 50, and 100,
respectively. The learning rate starts from 0.001 using a decay rate of 0.95 every 5000 steps.
The decay step and stop learning rate are 5000 and 3.51 × 10−8, respectively. Based on the
datasets of AIMD calculations at 2000 K, the NNP potential at 2000 K was obtained. In
order to obtain a high-quality potential, a training database including different tempera-
tures is crucial; as a result, the same method was used for the 3000 K potential training
as well. Then, the 2000 K and 3000 K NNP potentials were combined to achieve a new
NNP. Finally, the NNP was frozen, and the frozen model can be used in model testing and
MD simulations.

3. Results and Discussions
3.1. The Accuracy of NNP

To verify the accuracy of NNP at 2000 K and 3000 K, the energies and forces from NNP
after DEEPMD training were compared with those from AIMD shown in Figures 1 and 2.
The results show that the validation data generally distribute around the y = x line,
showing that the obtained potential can predict the energies and forces precisely. The
root-mean-square errors (RMSEs) and R-Square (R2) of energies were calculated to evaluate
the performance of NNP. The smaller RMSEs mean better prediction. On the contrary,
the higher R2, between 0 and 1, indicates better results. It can be seen that the NNP with
larger R2 and smaller RMSE at y and z directions, respectively, works better than that of the
x direction, both in Figures 1 and 2. Meanwhile, the R2 and RMSE are acceptable for NNP
at x direction as well.

To further validate the reliability of NNP, the RDFs, CNs, and BADs of Si3N4 calculated
by NNP were compared with those of AIMD. To research these properties of Si3N4, a
simulation at 2000 K was conducted by a large-scale atomic/molecular massively parallel
simulator (LAMMPS) [36] with the MD [37]. The detailed simulation parameters are shown
in the Supplementary Material. The RDFs, also known as pair correlation function, usually
refer to the distribution probability of other particles in the ∆r thickness shell at the distance
r of a specified particle. RDFs are widely used to study the degree of order of materials and
describe the correlation of atoms, which can be calculated by

gαβ(r) =
V

NαNβ
∑
α

〈
Nαβ(r,4r)

〉
4πr2 (1)

where V is the volume of the simulation cell. Nα and Nβ are the number of α-type ions and
β-type ions, respectively. Nαβ (r, ∆r) is the average number of α-type ions around β-type
ions in a spherical space. The results of the NNP + MD and AIMD simulations in Figure 3a
confirm the accuracy of the NNP. The MD in the following content is specified as MD
coupled with NNP. It can be seen that the first peak values of Si3N4 RDFs calculated by MD
are located around r = 1.7 Å. The results show that the distribution function g(r) obtained
by MD is consistent with the AIMD results calculated by VASP. The same conclusion can
be reached at 3000 K in Figure 4a. Therefore, it is concluded that the NNP is capable
of predicting structure information of SiNx with AIMD accuracy within this range from
2000 K to 3000 K.



Nanomaterials 2023, 13, 1352 4 of 12Nanomaterials 2023, 13, x FOR PEER REVIEW 4 of 13 
 

 

(a) (b)

(d)(c)

 
Figure 1. The comparisons of (a) energies and (b–d) forces from NNP and AIMD for Si3N4 at 2000 K 
in x, y, and z directions. 

 
Figure 2. The comparisons of (a) energies and (b–d) forces from NNP and AIMD for Si3N4 at 3000 K 
in x, y, and z directions. 

Figure 1. The comparisons of (a) energies and (b–d) forces from NNP and AIMD for Si3N4 at 2000 K
in x, y, and z directions.

Nanomaterials 2023, 13, x FOR PEER REVIEW 4 of 13 
 

 

(a) (b)

(d)(c)

 
Figure 1. The comparisons of (a) energies and (b–d) forces from NNP and AIMD for Si3N4 at 2000 K 
in x, y, and z directions. 

 
Figure 2. The comparisons of (a) energies and (b–d) forces from NNP and AIMD for Si3N4 at 3000 K 
in x, y, and z directions. 
Figure 2. The comparisons of (a) energies and (b–d) forces from NNP and AIMD for Si3N4 at 3000 K
in x, y, and z directions.



Nanomaterials 2023, 13, 1352 5 of 12

Nanomaterials 2023, 13, x FOR PEER REVIEW 5 of 13 
 

 

To further validate the reliability of NNP, the RDFs, CNs, and BADs of Si3N4 calcu-
lated by NNP were compared with those of AIMD. To research these properties of Si3N4, 
a simulation at 2000 K was conducted by a large-scale atomic/molecular massively parallel 
simulator (LAMMPS) [36] with the MD [37]. The detailed simulation parameters are 
shown in the supplementary material. The RDFs, also known as pair correlation function, 

usually refer to the distribution probability of other particles in the Δ r thickness shell at 
the distance r of a specified particle. RDFs are widely used to study the degree of order of 
materials and describe the correlation of atoms, which can be calculated by 

2

( , )
( )

4
N r rVg r

N N r
αβ

αβ
αα β π
 

= 


 (1)

where V is the volume of the simulation cell. Nα and Nβ are the number of α-type ions and 
β-type ions, respectively. Nαβ (r, Δr) is the average number of α-type ions around β-type 
ions in a spherical space. The results of the NNP + MD and AIMD simulations in Figure 
3a confirm the accuracy of the NNP. The MD in the following content is specified as MD 
coupled with NNP. It can be seen that the first peak values of Si3N4 RDFs calculated by 
MD are located around r = 1.7 Å. The results show that the distribution function g(r) ob-
tained by MD is consistent with the AIMD results calculated by VASP. The same conclu-
sion can be reached at 3000 K in Figure 4a. Therefore, it is concluded that the NNP is 
capable of predicting structure information of SiNx with AIMD accuracy within this range 
from 2000 K to 3000 K. 

0.0 0.8 1.6 2.4 3.2 4.0
0

5

10

15

N

r (Å)

  NNP 
  AIMD

0 1 2 3 4 5 6
0.0

0.8

1.6

2.4

3.2

4.0

g 
(r

)

r (Å)

  NNP
  AIMD

(a) (b)

 
Figure 3. The comparisons of (a) Si3N4 RDFs between NNP + MD and AIMD calculations and (b) 
Si3N4 CNs between NNP + MD and AIMD calculations. The temperature is 2000 K. 

0.0 0.8 1.6 2.4 3.2 4.0
0

2

4

6

8

10

12

14

D
ist

ri
bu

tio
n 
(°

 −1
)

Pair Distance (Å)

 NNP
 AIMD

(a) (b)

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

D
ist

ri
bu

tio
n 
(°

 −1
)

Pair Distance (Å)

 NNP
 AIMD

 

Figure 3. The comparisons of (a) Si3N4 RDFs between NNP + MD and AIMD calculations and
(b) Si3N4 CNs between NNP + MD and AIMD calculations. The temperature is 2000 K.
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Figure 4. The comparisons of (a) Si3N4 RDFs between NNP + MD and AIMD calculations and
(b) Si3N4 CNs between NNP + MD and AIMD calculations. The temperature is 3000 K.

CNs are the number of coordination atoms around the central atom of a compound.
The RDFs depend on the multilayered coordination radius and coordination particle
numbers. The CNs could be calculated by integration of the RDFs

N = 4πρ
∫ Rmin

0
gαβ(r)r2dr (2)

where N is the CN. ρ is particle density in the simulation cell. Rmin is the first minimum
in Figures 3a and 4a. As is shown in Figure 3b, we now concentrate on the CNs of Si3N4.
The results calculated by MD are compared with the AIMD simulation results. The CNs
calculated by MD fit the AIMD results accurately, as well as in Figure 4b. The CNs are
proportional to the pair distance and CNs are zero when the pair distance is less than 1.5 Å,
so the minimal pair distance of Si3N4 is 1.5 Å. The BADs were calculated to analyze the
local geometries of the first coordination shell, which can be calculated by

θijk = 〈cos−1
r2

ij + r2
ik − r2

jk

2rijrik
〉 (3)

where θ is the bond angle. rij, rik, and rjk are the bond length between atoms. The BADs
of Si3N4 obtained by MD and AIMD at 2000 K and 3000 K are shown in Figures 5 and 6,
respectively. At 2000 K, there are few BAD smaller than 45◦. The majority of BADs are
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localized between 75◦ and 120◦, and the Si-N-Si and N-Si-N peak values of MD BADs are
90◦, which is consistent with AIMD BADs. As for 3000 K, though the curves are rougher
than that of 2000 K, the Si-N-Si and N-Si-N peak values of MD BADs are consistent well
with AIMD BADs. Therefore, NNP is reliable enough to predict CNs and BADs information
of SiNx. Based on the RDFs, CNs, and BADs analysis above, it can be concluded that we
can use the NNP to calculate the structure information of SiNx.
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3.2. The NPP Applied for Structure Information

Similar to the empirical potentials, the NNP can also be used for different compositions
with the same elements. To study the effect of compositions on SiNx structures, we used the
NNP to simulate the heating process of SiNx and analyzed the simulation results, including
RDFs, CNs, and BADs. The models of SiNx were built by LAMMPS, as shown in Figure 7.
The parameters of SiNx models are shown in Table 1. The boundary condition, timestep,
ensemble, and other parameters of MD simulations are the same as part 3 for Si3N4.

Table 1. The simulation parameters in SiNx heating process.

Si:N x (Å) y (Å) z (Å) Atoms

4:5 54 54 54 13500
5:6 54 54 54 13750
6:7 54 54 54 14625
7:8 54 54 54 13125
1:1 54 54 54 13500
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The RDFs of SiNx at 2000 K and 3000 K are shown in Figure 8. In terms of a given
temperature, the g(r) peak values decrease while the proportion of Si composition increase,
indicating that the pair distance decrease in SiNx with a higher Si proportion. In the case of
2000 K, the peak and valley values fluctuate more obviously. As the temperature increases
to 3000 K, there are few differences between the peak values of different compositions, indi-
cating that all the SiNx are in the same phase and there is less difference in microstructure
as the temperature increases. The heating process for SiNx was calculated as well with the
RDFs at different temperatures shown in Figure S1.
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During the heating process, CNs and BADs at 3000 K are shown in Figure 9. The CNs
of SiNx in Figure 9a share the same profile, which is all proportional to the pair distance.
Among these CNs, SiNx, with a 3:4 composition, has the largest CN, which corresponds
to the largest g(r) in the Si-poor model. Therefore, Si3N4 is expected to deliver the most
stable configuration at the micro level. With the increase of x in SiNx, the CNs decrease
slightly, indicating that the CNs are weakly affected by composition. The BADs of SiNx at
3000 K are shown in Figure 9b,c. Similar to the CNs, the composition has little influence
on the BADs, especially for the N-Si-N BADs in Figure 9c. In summary, the RDFs, CNs,
and BADs of SiNx are different, so the structures of SiNx are different as well. In the next
section, we used tensile simulations to explain the impact of different compositions on SiNx
mechanical properties from a macro perspective.
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3.3. The NNP Applied for Tensile Tests

To evaluate the accuracy of tensile by MD, the simulated strain–stress curve of Si3N4
compared with the experimental result is shown in Figure 10. The elastic modulus E of the
simulation and experiment is 284.6 GPa and 253.3 GPa, respectively, which are consistent
well with the reported E in the previous reference [38,39]. As is known, the E depends on
the size of the model [39,40]; the simulated E 10.9% higher than the experimental case is
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acceptable for the tensile test. It is impossible to fabricate the perfect single crystal Si3N4
in the experiment. The Si3N4 mechanical strength is determined by the defects and grain
boundaries, so the experimental mechanical strength of Si3N4 is typically smaller than those
of calculated results. The tensile tests of Si3N4 at different temperatures were calculated
as well shown in Figure S2. The results show that the elastic modulus and peak values
vary inversely with the temperature increasing, so when the temperature is 300 K, the
mechanical properties of Si3N4 perform better than those at 1000 K and 3000 K. Since the
accuracy of MD has been confirmed, the tensile tests of SiNx with compositions from 3:4 to
1:1 were calculated at 300 K. The tensile models of SiNx were repeated to supercells from
the stable structures in part 4 with parameters of tensile models shown in Figure S3. The
cross-sections of SiNx in the tensile tests are shown in Figure 11. It can be seen that the
cross-section of Si3N4 is flat, and the strain is small, so the Si3N4 cracked immediately and
exhibited brittleness properties. In terms of other SiNx, the lengths in the y direction are
larger than that of Si3N4 when the fractures occurred, indicating that it takes a long time
for the SiNx to crack. With the increase of x, the SiNx starts to exhibit flexibility, especially
the SiN with the largest deformation when the fracture occurred.
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The strain–stress curves and mechanical properties of SiNx are shown in Figure 12.
All the curves have a linear increase at the initial stage, which corresponds to an elastic
deformation. The slopes of SiNx at the initial linear stage are different, indicating that
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the E varies with different compositions. The E is an important parameter of materials at
the macro level, which represents the ability of an object to resist elastic deformation and
reflects the bond strength between atoms, ions, or molecules at the micro level. The Si3N4
curve has a steep slope and large yield stress σs in the linear stage, illustrating that Si3N4
is a typical brittle material. On the contrary, another SiNx demonstrates ductile property,
especially the SiN with an obvious yield stage. When the strain ranges from 10% to 22%,
the SiN curve becomes flat in the yield stage. The flexibility of SiN significantly improved
compared with its Si3N4 counterpart, which is consistent with the analysis in Figure 8. The
E of the maximal and minimal slope is 349.78 GPa and 138.39 GPa for x = 4/3 and x = 1/1,
respectively. The E is 199.68 GPa, 188.95 GPa, 240.82 GPa, and 160.48 GPa, respectively,
when x = 5/4, 6/5, 7/6, and 8/7. Besides the E, the σs of SiNx are different as well, showing
that fracture occurs at different stages during the tensile simulations. The maximal σs is
27.45 GPa of Si3N4. Although the σs of other SiNx decrease with higher x, the σs of SiNx
fail to vary inversely with the x due to the amorphous structures of SiNx (x = 5/4, 6/5, 7/6,
and 8/7). Among these curves, the 3:4 composition has the maximal E and σs, which can
correspond to the largest RDFs and CNs in Figures 8 and 9, respectively. The RDFs and
CNs decrease with the decreasing of x, leading to the flexibility improvement of SiNx, since
for Si3N4 x = 4/3 while for SiN x = 1. Meanwhile, the E of SiNx excluding Si3N4 decrease
compared with that of Si3N4, which is generally inversely proportional to the RDFs. The
results show that the RDFs and CNs at the micro level can reflect the macro mechanical
properties of SiNx to a large extent.
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4. Conclusions

In this work, the interatom potential for SiNx was created by the DEEPMD kit with
a neural network. Based on the comparison of energies and forces from NNP and AIMD
for tranSi3N4, we find that NNP can easily achieve DFT accuracy. The RDFs, CNs, and
BADs simulations between the NNP and AIMD confirmed that the NNP is reliable enough
to calculate the structure information Si3N4 as well. Then, we conducted comprehensive
calculations to predict the RDFs, CNs, and BADs of SiNx. Therefore, we used tensile
simulations to explain the impact of different compositions on SiNx properties from a
macro perspective. Si3N4 is a typical brittle material with the largest E and σs. The
flexibility of SiNx, excluding Si3N4, improved, leading to the decrease of E and σs. The
E and σs fail to be inversely proportional with x due to the amorphous structures of SiNx.
The RDFs and CNs at the micro level can reflect the macro mechanical properties of SiNx
to a large extent. Among these compositions, x = 4/3 features high mechanical strength,
owing to the largest CN and RDF. The E of SiNx, excluding Si3N4, decreases compared with
that of Si3N4, leading to the flexibility improvement of SiNx, which is generally inversely
proportional to the RDFs.
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//www.mdpi.com/article/10.3390/nano13081352/s1, Figure S1: The RDFs of SiNx with different
compositions in heating process; Figure S2: Amorphous Si3N4 tensile simulations; Figure S3: The
whole process of fracture during tensile simulations; Table S1: The specific simulation parameters in
SiNx tensile simulations.
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