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Abstract: InGaN quantum dots (QDs) have attracted significant attention as a promising material
for high-efficiency micro-LEDs. In this study, plasma-assisted molecular beam epitaxy (PA-MBE)
was used to grow self-assembled InGaN QDs for the fabrication of green micro-LEDs. The InGaN
QDs exhibited a high density of over 3.0 × 1010 cm−2, along with good dispersion and uniform
size distribution. Micro-LEDs based on QDs with side lengths of the square mesa of 4, 8, 10, and
20 µm were prepared. Attributed to the shielding effect of QDs on the polarized field, luminescence
tests indicated that InGaN QDs micro-LEDs exhibited excellent wavelength stability with increasing
injection current density. The micro-LEDs with a side length of 8 µm showed a shift of 16.9 nm in
the peak of emission wavelength as the injection current increased from 1 A/cm2 to 1000 A/cm2.
Furthermore, InGaN QDs micro-LEDs maintained good performance stability with decreasing
platform size at low current density. The EQE peak of the 8 µm micro-LEDs is 0.42%, which is 91% of
the EQE peak of the 20 µm devices. This phenomenon can be attributed to the confinement effect of
QDs on carriers, which is significant for the development of full-color micro-LED displays.

Keywords: InGaN quantum dots; micro-LEDs; molecular beam epitaxy; size effect

1. Introduction

Micro-LEDs refer to miniaturized light-emitting devices based on traditional LEDs,
with the diameter of the emission surface generally below 100 µm [1]. Combining multiple
independent micro-LEDs into a display device can achieve high brightness, high dynamic
range, high contrast, and ultra-long lifespan display effects [2–4]. The structure of micro-
LED display devices is simple and does not require a backlight source [5], thus, it has lower
power consumption and higher brightness. In addition, micro-LED display devices have
extremely high contrast and dynamic range, thus, high-quality image and video displays
can be achieved. Micro-LED display technology has wide application prospects in fields
such as smartphones, automotive displays, projectors, and display walls, and is one of
the important development directions for future display technology [6–8]. Furthermore,
GaN-based micro-LEDs were first reported in 2000, that is, S.X. Jin fabricated micro-LED
devices with a diameter of 12 µm and an electrode-interconnected micro-LED array [9,10].
In recent years, GaN-based micro-LEDs have been considered a promising candidate for
the next generation display due to outstanding advantages including high efficiency, high
resolution, and long lifetime [11,12]. However, when used in display technology, such
as near-eye display (NED) technology, GaN-based devices always show a low external
quantum efficiency (EQE) under the working current density, which is often lower than
2 A cm−2 [13]. This phenomenon is mainly caused by poor crystal quality and the quantum
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confined Stark effect (QCSE) arising from the strong polarization-induced electrical field in
the high In-content InGaN/GaN multi-quantum wells (MQWs) active region. In addition,
the need for high wavelength stability is consistently increasing [14]. However, the emission
wavelength of GaN-based micro-LEDs consistently exhibits a blueshift in response to
increasing injection current. Additionally, the “size effect” of micro-LEDs has become
an important factor limiting their development towards higher resolutions [15,16]. This
effect describes the phenomenon of device performance deteriorating as the size of micro-
LEDs decreases.

Compared with InGaN quantum well (QW) materials, InGaN QDs have advantages
as active region materials for LEDs and micro-LEDs in many aspects [17]. Self-assembled
InGaN QDs have weaker QCSE by suppressing the spatial separation of electrons and holes,
and hence improve the internal quantum efficiency of QDs-based optical devices [18,19].
In addition, InGaN QDs have a strong quantum confinement effect. In the last three
decades, LEDs and micro-LEDs based on InGaN quantum dots (QDs) have been studied
by many groups [20–23]. For example, Chunyu Zhao reported the built-in fields in the
QDs were effectively screened, resulting in improved performance of the QD LEDs [24].
As a result, these green QD LEDs exhibit high-temperature stability and operate with
minimal efficiency droop at a current density of up to 106 A/cm2. Lei Wang reported that
in comparison to QW micro-LEDs, QDs grown in Stranski–Krastanov (S-K) mode can shift
the efficiency peak of a micro-LED to an incredibly low current density of 0.5 A cm−2 while
achieving an EQE of 18.2% [25]. However, there is still a lack of systematic research and
reports on the performance of different sizes of micro-LEDs based on InGaN QDs grown
by MBE.

Herein, this paper focuses on the fabrication of green micro-LEDs based on self-
assembled InGaN QDs grown by molecular beam epitaxy (MBE) and the investigation
of their optical properties. Atomic force microscopy (AFM) and spherical aberration-
corrected transmission electron microscope (AC-TEM) tests were used to study the surface
morphology and microstructure of InGaN QDs materials. The EL method was used to
measure the EQE, EL spectrum, and peak wavelength of micro-LEDs, and electrical testing
was conducted to obtain the I-V curve. InGaN QDs-based micro-LEDs, exhibiting excellent
wavelength stability with injection current increasing form to 1 A/cm2 to 1000 A/cm2,
have been fabricated in different sizes. As the size decreases, the micro-LEDs do not exhibit
a significant decline in efficiency.

2. Experiment Details
2.1. Growth of InGaN QD-Based LED Wafers

The GaN templates were grown on sapphire wafers with a cut-off angle toward the
m-axis of 0.2◦ by metalorganic chemical vapor deposition (MOCVD). After that, the InGaN
quantum dots (QDs) sample and InGaN QD-based micro-LED wafer were grown by a Veeco
Gen20A plasma-assisted molecular beam epitaxy (PA-MBE) system. Before loading the
samples into the growth chamber, solvent cleaning and thermal cleaning were performed.
Thermal cleaning is a process of removing surface contaminants and oxide film for 1 h at
200 ◦C in a Load-lock chamber and 0.5 h at 760 ◦C in a growth chamber. The growth modes
were monitored by reflection high energy electron diffraction (RHEED) in situ. The growth
temperature was monitored by a BandiT system.

Figure 1 shows the schematic of the micro-LED structure using InGaN/GaN MQDs as
an active region, including 5 pairs of InGaN QDs layers and 11-nm-thickness GaN barriers.
The structure consists of a 630 nm Si-doped n-GaN layer, the MQDs structure, a 13.4 nm
AlGaN electrical barrier layer (EBL), and a 150 nm Mg-doped p-GaN layer. InGaN QDs
were grown at 605 ◦C with In flux in beam equivalent pressure (BEP) of 5.8 × 10−9 Torr
and Ga flux of 3.6 × 10−9 Torr, followed by a GaN barrier layer grown at a low temperature
of 650 ◦C with Ga flux of 5.2 × 10−8 Torr to reduce the damage to QDs active region.
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Figure 1. Schematic diagram of the QD micro-LED structure and the processing flowcharts of the QD
micro-LED.

2.2. Device Fabrication

The structure and the device fabrication process diagram of the QD-based micro-LEDs
are illustrated in Figure 1. The first step is inductively coupled plasma (ICP) etching to form
the micro-LED square mesa, and the side lengths were 4, 8, 10, and 20 µm, respectively.
Then, 20 nm Al2O3 and 200 nm SiO2 were deposited as the passivation layer by atomic layer
deposition (ALD) and plasma-enhanced chemical vapor deposition (PECVD), respectively.
A dry etching process was carried out to form a metal contact area for ITO and electrodes.
After that, a 130 nm thick indium tin oxide (ITO) film was deposited as a current spreading
layer by electron beam deposition. To form an ohmic contact, rapid thermal annealing was
carried out at 550 ◦C in an N2 atmosphere. Lastly, Ti/Al/Ni/Au (200/1200/600/1200 Å)
was deposited as the electrodes on the n-GaN and ITO layer. Single micro-LED chip and
10 × 10 micro-LED arrays were fabricated.

2.3. Measurements of Micromorphology and Optical Properties

Bruker Dimension ICON AFM was used to measure the surface morphology of InGaN
QDs, and the Thermo Scientific Themis Z AC-TEM system was used for microstructure
characterizations. The emission wavelength was determined by the electroluminescence
(EL) method with an iHR 320 spectrometer. The light output power (LOP) was measured by
a photometric integrating sphere, based on which, the external quantum efficiency (EQE) is
calculated by the following:

EQE =
PLOP/h · ν

I/q
(1)

where I is the injection current, h is Planck’s constant, ν is the light frequency, and q is the
electron charge. A Keysight 4200 semiconductor parameter analyzer was used for direct
current characterization.

3. Results and Discussion
3.1. Morphology and Optical Properties of InGaN QDs

The growth modes of InGaN QDs by MBE were monitored by RHEED in situ. The
RHEED patterns at different growing stages reveal the transition of surface morphology
and microstructure. It can be found that the InGaN wetting layer was first formed in
two-dimensional (2D) growth mode at the initial stage, as a streaky RHEED pattern was
observed, as shown in Figure 2a,b. After growing a certain thickness of the InGaN wetting
layer, RHEED patterns changed from streaky to spotty patterns in Figure 2c, which implied
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a spontaneous microstructure transition from 2D to 3D due to elastic relaxation, thus
resulting in the formation of self-assembled InGaN QDs. Figure 2d is the AFM image of
the GaN layer, and the atomic steps’ morphology can be observed. The 2D and 3D AFM
images of InGaN QDs are presented in Figure 2e,f, respectively. Self-assembled InGaN
QDs with truncated pyramidal features were obtained and uniformly distributed with a
density greater than 3.0 × 1010 cm−2. The average height and diameter of dot sizes are
mainly concentrated in about 1.6 nm and 31.7 nm, respectively. Furthermore, it can be
observed that InGaN QDs were distributed along the surface steps of the GaN layer, due
to the existence of the Ehrlich–Schwoebel barrier located at the step-edges, which will be
studied in future work.
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From the cross-sectional TEM images of the LED wafer in Figure 3a and the enlarged
TEM image of QD in Figure 3b, the InGaN/GaN MQDs structure with five cycles can
be clearly observed. A clear and steep heterointerface between InGaN QDs and GaN
barriers was formed. The energy dispersive spectroscopy (EDS) mapping test was used
to investigate the spatial distribution of In and Ga elements, and the image is shown in
Figure 3c. The result indicates that In elements are concentrated almost entirely in QDs.
This phenomenon is a result of the “lattice pulling effect” happening during the growth of
InGaN layers [26,27], causing a tendency for In atoms to segregate into the more relaxed
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regions, resulting in minimized system strain energy. The large lattice mismatch between
InGaN and GaN will cause elastic strain existing in the InGaN layer, which acts as the major
driving force for In surface segregation. Taking into account the three-dimensional island
structure of InGaN QDs, the internal region of InGaN is expected to be more strain-relaxed
compared with the surrounding regions. Therefore, In atoms are more likely to merge into
InGaN QDs.
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Figure 3. (a) Cross-sectional TEM image of InGaN/GaN MQDs in LED wafer; (b) enlarged local TEM
image of InGaN QDs; (c,d) EDS mapping image of Ga and In element; (e) In element line scanning of
the InGaN QD along the green arrow line.

Furthermore, the line scanning in direction of the green arrow in Figure 3d was per-
formed to study the In element distribution inside of the InGaN quantum island. According
to the line scanning curve of In elements as shown in Figure 3e, the distribution of In ele-
ments inside the QDs is likely to be not uniform. There are two possible reasons for this
phenomenon. The first one is the increasing of growth temperature after the growth of
InGaN QDs from 605 to 650 ◦C to grow the GaN QB layer. The heating process will cause
the desorption of some In atoms, resulting in a lower In component on the surface of QDs
than the center part. The second one is the influence of the projection effect during the EDS
measurement. Taking into account the 3D morphology of InGaN QDs, the truncated pyra-
midal shape is expected to bias the simple projected EDS profile, because the penetration
range of the electron beam used for detection is deeper than the diameter of a QD. In this
case, further study is needed to explore the spatial distribution and change mechanism of
the In element in the interior of InGaN QD.

3.2. Optical Properties of InGaN QD Based Micro-LEDs

Mesa sizes of the micro-LEDs were 4, 8, 10, and 20 µm, respectively. Figure 4a shows
an SEM image of the micro-LED with a mesa size of 4 µm, where the passive layer window
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with a diameter of 2 µm is located on top of the mesa. Figure 4b shows a 4 µm micro-LED
illuminated (the small green dot) on the probe station. Figure 4c shows an array of 4 µm
micro-LEDs.
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Electroluminescence (EL) tests were conducted to measure the emission characteristics
of micro-LEDs with side lengths of 8, 10, and 20 µm, as shown in Figure 5a–c. EL measure-
ments were performed with the injection current density from 1 A/cm2 to 1000 A/cm2. The
emission wavelength of 8 µm InGaN QDs micro-LEDs is 503 nm at 1 A/cm2. The variations
of emission wavelength, light output power (LOP), and external quantum efficiency (EQE)
with increasing injection current density were analyzed. It can be found that the InGaN
QDs-based green micro-LEDs showed excellent wavelength stability with a shift of less
than 17 nm as the injection current density increased from 1 A/cm2 to 1000 A/cm2. The
current density range tested in this work is bigger than the working range of micro-LEDs,
but the blue shift of the emission peak is still very slight, which is much smaller than
InGaN/GaN MQW micro-LEDs grown on c-plane sapphire [17]. This phenomenon can be
attributed to the weaker polarization field in InGaN QD structures [28]. The LOP linearly
increased with the increase of injection current for 8 and 10 µm micro-LEDs. However, the
20 µm micro-LED devices exhibited a nonlinear increase in LOP. When the injection current
density exceeded 600 A/cm2, the LOP especially showed a decreasing trend. Furthermore,
the EQE peak values of the 8, 10, and 20 µm micro-LEDs are 0.42% at 10 A/cm2, 0.44%,
and 0.46% at 20 A/cm2, respectively. The peak EQE of the 8 µm micro-LEDs is 91% of the
20 µm devices’ peak EQE. The results indicate that there is no significant decline in the
efficiency of QD-based micro-LEDs as the size decreases. However, the efficiency of 20 µm
micro-LEDs sharply dropped and became lower than that of the other devices when the
injection current density exceeds 60 A/cm2.

The efficiency drop of the 20 µm devices is related to the thermal effect of the micro-
LEDs [29]. Because sapphire thinning treatment and other effective heat dissipation treat-
ment were not performed during sample packaging, the heat accumulated during the
device tests. As the same current density was used in the test, the heat produced by
non-radiative recombination and photon reabsorption in the active region of the three
sizes micro-LEDs should be consistent. However, to explore the size effect of QD-based
micro-LEDs and avoid the interference of electrode shading, no metal electrode was de-
posited on the surface of the devices so that the current transport layer covered both the
surface of p-GaN and the surface of the passivation layer. As shown in Figure 4a, the
ITO layer folds at the edge of the contact area marked as A-arrow and the edge of the
n-type GaN mesa marked as B-arrow, which would lead to a large resistance positively
related to the length of the mesa edge. Therefore, more Joule heat was generated in the
ITO layer for larger micro-LEDs under the same injected current density. The wavelength
redshift under high current also confirms this conclusion [30], as the redshifted emission
wavelength for the 20 µm device originates from a narrower bandgap caused by the higher
junction temperature.
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The EQE of the InGaN QDs micro-LEDs is still very low. We inferred that it is attributed
to the following possible reasons. Firstly, GaN QB layers were grown at low temperatures
to protect InGaN QDs, but simultaneously, high-density defects would be introduced and
then result in nonradiative recombination. Secondly, as we discussed above, the lack of
heat dissipation treatment during the fabrication process of micro-LED would also reduce
the luminous efficiency. In addition, because of the smaller electron capture cross section in
QDs than that in QWs, the low capture probability has an adverse effect on the micro-LEDs
efficiency, so the surface density of InGaN QDs needs to be increased. In a word, the
epitaxial structure and fabrication process would be further optimized in future work to
improve the performance of InGaN QDs-based micro-LED.

4. Conclusions

In summary, self-assembled InGaN QDs material on GaN/sapphire substrate was
grown by PA-MBE, and then micro-LEDs based on MQDs structure were obtained. InGaN
QDs have a high surface density of over 3.0 × 1010 cm−2, and good size distribution
uniformity. TEM result suggested that abrupt InGaN/GaN interfaces are formed in MQDs
structure. In addition, micro-LEDs with square mesa side lengths of 4, 6, 10, and 20 µm were
prepared. The EL emission wavelength exhibited a blueshift of 17 nm with the injection
current density increasing from 1 A/cm2 to 1000 A/cm2, and the excellent stability should
be contributed to the shielding effect of InGaN QDs on the polarization-related built-in
field. At low current density, the EQE of 20, 10, and 8 µm micro-LEDs exhibits a slow
and steady decline, indicating that the size effect of QDs micro-LEDs is weak. However,
at higher injection currents of over 200 A/cm2, 20 µm micro-LEDs show lower EQE and
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stronger efficiency droop than the other two devices with smaller chip size. We inferred
that the anomalous behavior of the 20 µm device was attributed to more heat accumulation
in the larger micro-LEDs because of the lack of effective heat dissipation treatment. The
redshifted emission wavelength under high current was also caused by this effect.
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