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Abstract: The reaction of octakis(3-chloropropyl)octasilsesquioxane with four equivalents of 1-
hexylimidazole or 1-decylimidazole gave two products labelled as HQ-POSS (hexyl-imidazolium
quaternized POSS) and DQ-POSS (decyl-imidazolium quaternized POSS) as regioisomer mixtures.
An investigation of the biological activity of these two compounds revealed the higher antimicrobial
performances of HQ-POSS against Gram-positive and Gram-negative microorganisms, proving
its broad-spectrum activity. Due to its very viscous nature, HQ-POSS was adsorbed in variable
amounts on the surface of biologically active oxides to gain advantages regarding the expendability
of such formulations from an applicative perspective. Titania and 5 wt% Cu on titania were used
as supports. The materials 10HQ-POSS/Ti and 15HQ-POSS/5CuTi strongly inhibited the ability of
Pseudomonas PS27 cells—a bacterial strain described for its ability to handle very toxic organic sol-
vents and perfluorinated compounds—to grow as planktonic cells. Moreover, the best formulations
(i.e., 10HQ-POSS/Ti and 15HQ-POSS/5CuTi) could prevent Pseudomonas PS27 biofilm formation at a
certain concentration (250 µg mL−1) which greatly impaired bacterial planktonic growth. Specifi-
cally, 15HQ-POSS/5CuTi completely impaired cell adhesion, thus successfully prejudicing biofilm
formation and proving its suitability as a potential antifouling agent. Considering that most studies
deal with quaternary ammonium salts (QASs) with long alkyl chains (>10 carbon atoms), the results
reported here on hexylimidazolium-based POSS further deepen the knowledge of QAS formulations
which can be used as antifouling compounds.

Keywords: marine biofouling; polyhedral oligomeric silsesquioxane; imidazolium salt; copper
nanoparticles; titania

1. Introduction

The attachment and thrift of microorganisms on boat surfaces immersed in seawater
cause the growth of plants and animals, generating abnormal weight increases and high
frictional resistance that, in turn, result in higher fuel consumption and much lower overall
sustainability [1,2]. The higher cost associated with these events also relates to the higher
frequency of dry dock work. Furthermore, the association of different marine species
with ship hulls, especially for vessels sailing worldwide, can introduce invasive species
into a specific marine environment. Maintaining fouling-free surfaces is challenging since
thousands of marine organisms are responsible for biofouling and many of these can adapt
to environmental changes. Innovative and sustainable solutions to this topic are still of
paramount interest for commercial reasons and the environment’s safety. Thus, devel-
oping new cost-effective and eco-friendly formulations featuring powerful antifouling
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properties is highly desirable. A class of compounds extensively investigated for such a
purpose is quaternary ammonium salts (QASs). Molecules and polymers based on QASs
exert a killing effect against a wide range of microorganisms, including Gram-positive
and Gram-negative bacteria, with the nature of their cation (aliphatic, heteroaromatic)
and the length of their alkyl chains being responsible for modulating their antibacterial
activity [3–10]. In addition to QASs, polyhedral oligomeric silsesquioxane (POSS)-based
molecules are gaining momentum in this context. Quaternization of dimethyl-n-octylamine
by octakis(3-chloropropyl)octasilsesquioxane gave the corresponding salts in which al-
most all eight chloropropyl groups of the silsesquioxane cage, or a part of these groups,
were transformed into ionic quaternary ammonium chloride functions. The product con-
taining ca. 50% ionic groups exhibited a broad-spectrum of bactericidal activity [11].
Alkyl QAS-functionalized POSS compounds with different alkyl chain lengths, counte-
rions, and cross-linked polydimethylsiloxane networks containing dispersed QAS-POSS
molecules displayed antimicrobial activity [12]. Sum frequency generation vibrational
spectroscopy (SFG) was used to investigate the molecular surface structures of two types
of QAS-incorporated polydimethylsiloxane (PDMS) systems in different chemical environ-
ments, giving more insights into their antifouling properties [13]. Several ammonium POSS
compounds varying in their extent of quaternization and alkyl chain length showed an-
timicrobial activity, which was strongly dependent on their quaternized POSS composition.
Quaternized POSSs characterizing a relatively low degree of quaternization and long alkyl
chain lengths provide the highest antimicrobial activity. Contrarily, the low antimicrobial
activity of POSSs having a relatively high level of quaternization was ascribed to the aggre-
gation of such molecules in solution, inhibiting their diffusion into bacterial cell surface
structures and affecting the mobility of their alkyl chains in aqueous environments [13,14].
POSSs modified with 1,2,3-triazolium functional groups showed bactericidal activity [15].
A POSS cage can be used as a polymer core thanks to its eight functional groups in three di-
mensions and employed in the synthesis of sulfobetaine/quaternary ammonium-modified
star-shaped poly[2-(dimethylamino)ethyl methacrylate]-based copolymers [16]. A POSS
structure was also applied to obtain hydrogels containing octa-betaine esters [17]. More-
over, a POSS nanocage used as a bridge in a multifunctional antimicrobial agent containing
light-harvesting oligo(p-phenylenevinylene) electrolytes (OPVEs) multi arms and a central
porphyrin core was designed [18].

In addition to organic molecules, metal nanoparticles play a role in this field. The an-
tifouling and antimicrobial activity of Cu nanoparticles supported on silica and titania are
well-known [19]. The tunable surface properties of silica and titania (e.g., high specific
surface area, hydrophobic/hydrophilic balance) and their high thermal, chemical, and bi-
ological stability make such oxides suitable as metal supports. Silica, titania, and mixed
silica-titania powders were used as supports for loading copper, silver, or copper-silver
(5 wt%), and these materials displayed antimicrobial properties [20].

Here, two new quaternary ammonium salts based on a POSS cage structure and their
preliminary biological evaluation as antimicrobial agents are presented. Then, the most
active one was used in conjunction with titania or titania copper-based powders by simple
adsorption to obtain an easily manageable powder possessing antimicrobial properties.
Biological investigations on these materials are also reported.

2. Materials and Methods
2.1. Sample Preparation
2.1.1. Synthesis of HQ-POSS and DQ-POSS

Octakis(3-chloropropyl)octasilsesquioxane 1 (300 mg, 0.289 mmol) was placed in a vial
and dissolved in toluene (150 µL), along with adding 1-hexylimidazole (185 mg, 4 equiv.)
or 1-decylimidazole (241 mg, 4 equiv.). The solution was heated at 90 ◦C for 19 h and
formed, after this time, a very viscous phase. The latter was dissolved in a minimum
amount of chloroform by gentle heating and sonication and transferred to a round bottom
flask. This procedure was repeated three times and the solvent was removed under reduced
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pressure to give very viscous compounds (nearly quantitative yield, a small amount of
solvent remained).

2.1.2. Synthesis of 5 wt% Cu/TiO2 and HQ-POSS-Loaded Cu5 wt%/TiO2 Samples

The 5 wt% Cu/TiO2 material was prepared by the wetness impregnation method of
commercial TiO2 oxide (Sigma-Aldrich) with Cu(NO3)2·2.5H2O dissolved in the minimum
volume of distilled water. The impregnation of the solid was performed by adding the cop-
per solution to the powder drop-by-drop, by getting it wet but not soaked. The procedure
was repeated until all the precursor was added. Then, after drying at 120 ◦C overnight,
the resulting material was labelled as 5CuTi and calcined at 500 ◦C for 2 h with a heating
ramp of 5 ◦C/min.

Based on the obtained support, a series of HQ-POSS/CuTi samples with loadings
ranging from 2 to 30% by weight were prepared, as listed in Table 1. All samples were
prepared by impregnating the support with chloroform solutions containing the right
amount of the HQ-POSS molecule. This molecule was added to a flask with CHCl3
solution and stirred (about 600 rpm) until complete dissolution. Subsequently, the amount
corresponding to the percentage by weight of 5%Cu/TiO2 was added, and it was left to stir
to promote its complete impregnation. After this time, the solution was dried by rotavapor
at 40◦C. The dry residue thus obtained was recovered and signed (Table 1). As a reference,
a sample with a selected loading, 10 wt% HQ-POSS, was prepared on commercial TiO2
previously calcined at 500 ◦C for 2 h (5 ◦C/min). The resulting materials were labeled as
xHQ-POSS/5CuTi (x = 2, 10, 15, 30 wt%) and 15HQ-POSS/Ti.

Table 1. Composition of samples.

Label Nominal Composition (wt%)

5CuTi 5 wt% Cu + 95 wt% TiO2
10HQ-POSS/Ti 10 wt% HQ-POSS + 90 wt% TiO2

2HQ-POSS/5CuTi 2 wt% HQ-POSS + 98 wt% 5 wt% Cu/TiO2
10HQ-POSS/5CuTi 10 wt% HQ-POSS + 90 wt% 5 wt% Cu/TiO2
15HQ-POSS/5CuTi 15 wt% HQ-POSS + 85 wt% 5 wt% Cu/TiO2
30HQ-POSS/5CuTi 30 wt% HQ-POSS + 70 wt% 5 wt% Cu/TiO2

2.2. Sample Characterization

Elemental analysis of the 5CuTi sample was carried out by atomic emission spec-
troscopy (MP-AES 4200; Agilent Technologies Italia S.p.A., Cernusco sul Naviglio (MI),
Italy) after treatment in acidic solution with H2SO4 and HNO3 at 250 ◦C. The real chemical
composition corresponded well to the nominal one with a 5.0 wt% ± 5%.

The specific surface area (SSA) and pore volumes of selected samples were determined
from N2 adsorption–desorption isotherms at −196 ◦C, using Micromeritics ASAP 2020
equipment through the Brunauer–Emmett–Teller (BET) method in the standard pressure
range 0.05–0.3 P/P0. Before the measurements, the samples were degassed at 250 ◦C for 2 h.
By analysis of the desorption curves, using the Barrett–Joyner–Halenda (BJH) calculation
method, pore size distributions were also obtained [21]. The precision of the SSA values
was ±1%, ±0.01 for pore volume and ±0.1 for the mean pore size values.

X-ray diffraction (XRD) patterns were recorded with a D5000 diffractometer (Bruker
AXS; Bruker, Karlsruhe, Germany), employing Ni-filtered Cu Kα radiation in the 2θ range
between 20◦ and 80◦ with a 0.05◦ step size and time per step of 20 s. The assignment of the
crystalline phases was based on the ICSD files.

The materials’ thermogravimetric analyses (TGAs) were performed in a TGA/DSC1
STAR System from Mettler Toledo Inc.( Mettler-Toledo S.p.A., Milano, Italy) For each
analysis, the sample (15 mg) was subjected to a pretreatment in airflow (30 mL/min)
from 25 ◦C to 100 ◦C with a heating rate of 10 ◦C/min and a holding time at 100 ◦C for
30 min, to remove any eventual residual solvent. Then, the temperature was increased
from 100 to 1000 ◦C under airflow (30 mL/min), and the weight loss occurring during
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this step was considered for calculating the organic weight content of the HQ-POSS-based
Cu5TiO2 materials. The precision of the mass loss values was ±0.001 and ±2% of the wt%
of HQ-POSS in the samples.

2.2.1. Antimicrobial Activity of Quaternized POSS Compounds

The minimal inhibitory concentration (MIC), i.e., the lowest amount of an antimicro-
bial compound that visually impairs bacterial growth, of HQ- and DQ-POSS against the
Gram-positive (i.e., Bacillus cereus) and Gram-negative (i.e., Stenotrophomonas maltophilia)
marine environmental isolates was tested as described elsewhere [22]. Briefly, pre-cultures
of selected microorganisms were carried out by inoculating a single bacterial colony in
the Luria Bertani ((LB); composed (g L−1) of sodium chloride (NaCl; 10), tryptone (10),
and yeast extract (5)) medium and grown for ca. 16 h at 30 ◦C under shacking conditions
(180 rpm). Then, 5 × 105 colony-forming units per milliliter of culture (CFU mL−1) were
inoculated in fresh LB medium with increasing concentrations (up to 500 µg mL−1) of HQ-
or DQ-POSS. Bacterial cultures were incubated for 24 h as previously described. Afterward,
the bacterial cultures’ optical densities at 600 nm (OD600nm) were evaluated using a UV–Vis
spectrophotometer (SPECTROstar® Nano; BMG Labtech, Milan, Italy).

Kill curves were carried out to evaluate the minimal bactericidal concentration (MBC),
i.e., the lowest concentration of a bactericidal agent able to kill off all microbial cells of
a given bacterial species, of HQ and DQ-POSS. Bacterial strains were pre-cultivated and
inoculated as previously described in the presence of 1, 2.5, 5, or 7.5 µg mL−1 of quaternized
POSS. After a 24 h challenge, bacterial cultures were serially diluted and each dilution was
spotted onto LB-agar (15 g L−1) recovery plates, which were incubated at 30 ◦C under static
conditions to allow bacterial colony growth [23]. The average value (n = 3) of the number of
CFUs that survived the 24 h challenge is expressed in a logarithmic scale as a function of the
concentration of quaternized POSS. In the case of adsorbed HQ-POSS onto copper/titania
(CuTi) or titania (Ti) supports, Pseudomonas PS27 was used as a Gram-negative strain
instead of S. maltophilia.

The most promising adsorbed HQ-POSS (i.e., 10HQ-POSS/Ti and 15HQ-POSS/5CuTi)
were tested to unveil their ability to prevent Pseudomonas PS27 biofilm formation, as de-
scribed elsewhere [24]. Pseudomonas cells were pre-cultivated as described earlier and
inoculated at an initial biomass load corresponding to 1 × 107 CFU mL−1. Afterward,
the bacterial culture was aliquoted (200 µL) in a 96-well microtiter plate and amended
with 250 µg mL−1 (corresponding to the best biocidal concentration against Pseudomonas
PS27 cells) of either 10HQ-POSS/Ti or 15HQ-POSS/5CuTi. Thus, bacterial cultures were
incubated at 37 ◦C for 24 h under static conditions to allow bacterial cells to grow as a
biofilm. Then, planktonic cells were disposed of and each well was washed 3 times with a
sterile saline (NaCl 0.9% w/v) solution to loosely remove adherent cells. Thus, Pseudomonas
biofilms were stained (for 15 min at room temperature) using 200 µL of an aqueous solu-
tion of crystal violet (0.2% w/v). After staining, excesses of unreacted crystal violet were
removed through 5 washing steps with 200 µL of saline solution, with the plate left to dry
for 20 min at 65 ◦C. Crystal violet bound to Pseudomonas cells was solubilized by adding
200 µL of an aqueous solution of acetic acid (30% v/v) and the absorbance of each well
was read at 595 nm (Synergy HT; Biotek). Unchallenged Pseudomonas biofilm was used as
a reference (positive control) and wells containing uninoculated medium, as a negative
control. Thus, the percentage of biofilm formation was calculated as follows:

Bio f ilm f ormation (%) =
absorbance positive control − absorbance negative control

absorbance positive control
× 100 (1)

All the experiments were performed at least in triplicate and data are reported as the
average value (n = 3) with standard deviations.

All reagents were purchased from Merck Life Science S.r.l. (Milan, Italy).
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2.2.2. HPLC/MS Analysis

HPLC/MS analysis was performed by adapting previously reported methods [25,26].
Samples for HPLC (Agilent 1260 Infinity) were prepared by solubilizing the compound
HQ-POSS (0.4 mg) in MeOH (1 mL). Water and acetonitrile were of an HPLC/MS grade.
Formic acid was of analytical quality. A reversed-phase Phenomenex Luna Omega 5 µm
Polar C18 100 column (150 mm × 2.2 mm) with a Phenomenex C18 security guard column
(4 mm × 3 mm) was used. The injection volume was 10 µL. The eluate was monitored
through mass total ion count (MS TIC) and UV (250 nm). Mass spectra were obtained
on an Agilent 6540 UHD accurate-mass quadrupole time-of-flight (Q-TOF) spectrometer
equipped with a dual AJS electrospray ionization (ESI) source working in positive mode.
Nitrogen N2 was employed as desolvation gas at 300 ◦C and a flow rate of 8 L/min.
The nebulizer was set to 45 psig. The sheath gas temperature was set at 350 ◦C and a flow
of 12 L/min. A potential of 3.2 kV was used on the capillary for the positive ion mode.
The fragmentor was set to 175 V. MS spectra were recorded in the 150–3200 m/z range.
Mass spectrum data were analyzed by using the software MassHunter Qualitative Analysis
B.06.00 (Agilent Technologies Italia S.p.A. Cernusco sul Naviglio (MI), Italy).

3. Results and Discussion
3.1. Synthesis and Characterization of HQ-POSS and DQ-POSS

Based on the antimicrobial activity of 1,3-disubstituted imidazolium salts and con-
sidering the usefulness of the POSS cage and the biological activity of quaternized POSS
molecules, the possibility of easily synthesizing new alkylimidazolium-POSS salts to inves-
tigate their antimicrobial activity was envisioned. Then, due to the high polar nature of
such imidazolium-POSS salts and to obtain powders easily manageable and mixable with
the proper paint, the obtained salts were adsorbed on the surface of materials suitable for
this purpose.

The synthesis started with octakis(3-chloropropyl)octasilsesquioxane 1 by its reac-
tion with four equivalents of 1-hexylimidazole or 1-decylimidazole (Scheme 1). The use
of four equivalents depended on the fact that a high level of quaternization can give
substrates with low antimicrobial activity. Quaternization reactions were carried out in
concentrated toluene solutions by simply heating a solution of POSS 1 and alkylimida-
zole, resulting in very viscous products. The two products were labelled as HQ-POSS
(hexyl-imidazolium quaternized POSS) and DQ-POSS (decyl-imidazolium quaternized
POSS). Tetra-substitution can give a mixture of inseparable regioisomers that were used
as obtained.
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Scheme 1. Synthesis of tetra-substituted HQ-POSS and DQ-POSS. For simplicity, only one possible
regioisomer is reported.

The 1H NMR spectrum of HQ-POSS was in accordance with the proposed structure
(Figure 1). Protons of the imidazolium ring are visible at 10.51 ppm and in the range of
7.30–8.60 ppm. Methylene groups (H-6 and H-7) linked at the nitrogen atoms resonate at
4.26 and 4.48 ppm. Protons H-1′ (CH2Cl) resonate at 3.52 ppm and protons H-2′ could
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be assigned to the shoulder at ca. 1.99 ppm, whereas protons H2′ and H-5 could relate
to the signal at 1.86 ppm. The signal at 1.22 ppm could be assigned to H-2, H-3, and H-4
protons, the signal at 0.85 ppm, to H-1, and the signal at 0.76, to methylene groups linked
to silicon (H-9 and H-3′). Considering the signals of H-6 and H-7 protons and the signal of
H-2′, it was possible to estimate a ca. 1:1 ratio between chloropropyl and 1-hexyl-3-propyl-
1H-imidazol-3-ium chains that was in agreement with a tetra-substituted POSS. This NMR
pattern included the presence of possible regioisomers and did not exclude the possible
presence of mono-, di-, and tri-substituted POSSs. The 1H NMR spectrum of DQ-POSS
(Figure 2) showed the same signal patterns. In the case of DQ-POSS, the ratio between
chloropropyl and 1-decyl-3-propyl-1H-imidazol-3-ium chains was about 60:40, indicating
that a tetra-substitution pattern was less complete. This result can be explained by the
presence of the more hindered decyl chain.
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HPLC/MS analysis of HQ-POSS showed, in addition to the presence of tetra-substituted
HQ-POSS isomers, the presence of at least two tri-substituted HQ-POSS, the expected three
di-substituted HQ-POSS [27], and the mono-substituted HQ-POSS (see Supplementary
Materials, Figures S1–S5).

3.2. Biological Evaluation of HQ-POSS and DQ-POSS

The next step investigated the antimicrobial activity of HQ-POSS and DQ-POSS.
The quaternized HQ- and DQ-POSS exhibited different antimicrobial activity against the
Gram-negative and -positive marine bacteria S. maltophilia and B. cereus strains, respectively
(Table 2). The antimicrobial activity of these quaternized POSSs appears to depend on the
alkyl chain length of QAS groups. Specifically, HQ-POSS showed an enhanced antimicrobial
potential (MIC < 10 µg mL−1) compared to DQ-POSS, which exhibited an impairment of
bacterial growth at a concentration as high as 500 µg mL−1.

Table 2. MIC of HQ- and DQ-POSS against Gram-positive and -negative marine environmental
isolates.

MIC (µg mL−1)

Bacterial Strain HQ-POSS DQ-POSS

Stenotrophomonas maltophilia <10 >500
Bacillus cereus <10 >500

According to the MIC values of the HQ- and DQ-POSS formulations (Table 2), lower
concentrations were tested to evaluate whether the POSS compounds’ MBC corresponded
to their MIC. Direct estimation of bacterial survival (CFU ml−1) due to the challenge exerted
by quaternized POSSs underlines the far greater proficiency of HQ-POSS in inhibiting
bacterial growth (Figure 3). As a result, HQ-POSS exhibited great antimicrobial activity
since the lowest concentration (1 µg mL−1) was sufficient to carry out a 100% killing
effect—corresponding to the MBC value—toward Gram-negative bacterial cells within
the 24 h challenge (Figure 3a). Gram-positive bacterial cells appeared instead to be more
resilient against the biocidal action of HQ-POSS since it was necessary to increase its
concentration up to 2.5 µg mL−1 to observe a complete killing effect. Indeed, the lowest
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HQ-POSS concentration (1 µg mL−1) only determined a slight decrease in CFU evaluated
(Figure 3b). Instead, the formulation DQ-POSS did not affect bacterial survival (Figure 3).
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From a physicochemical standpoint, QASs are compounds featuring a single head,
an aliphatic chain, and a counterion. All these structural elements contribute to determining
their antimicrobial potential against bacterial species growing planktonically or forming a
biofilm [28]. Research to date suggests that the mechanism of action of such compounds
relies on severe perturbations of the cell membrane and alteration of their physiologi-
cal fluidity, which lead to protein membrane instability, causing the malfunctioning of
their transport and energy-transducing systems, sensing, signal transductions, migration,
and adhesion among others [29,30]. Alkyl chain length is a structural element that strongly
influences the antimicrobial potential of QASs. The optimal alkyl tail length is specific
for each set of structures and is related to the other fragments of the molecule. Generally,
it can be within C10-C14 or even longer (C18), but it can vary depending on the number
of charges: C12 and longer for mono-QASs and C10-C12 for bis-QASs. Nevertheless, in
selected cases, those with tails of C10 and shorter demonstrated the highest activity [31].
The different antimicrobial behavior featuring short- and medium to long-chain QASs relies
on the ability of the latter to better intercalate within the bacterial cell membrane [28,32].
A separate dependency for short- (n < 10) and long- (n >10) chain substituents in the an-
timicrobial potential of alkyltrimethylammonium bromides possessing alkyl chain lengths
ranging from 5 to 22 carbon atoms against Staphylococcus aureus, Pseudomonas aeruginosa,
and Saccharomyces cerevisiae strains has already been demonstrated [33]. This was inter-
preted in terms of distinct mechanisms of action, binding site, and/or physicochemical
properties for extreme members of the series. The evidence reported here further enlarges
the spectrum of QAS-based formulations (i.e., those featuring short-chain QASs), which
can be used as bactericidal agents.

However, it is worth mentioning that when it comes to quaternized POSS, its antimi-
crobial activity is dependent on both its alkyl chain length and extent of quaternization,
where a low degree of the latter alongside a long alkyl chain QAS confers good lipophilicity
and diffusivity to the final QAS-POSS, which can effectively bind to the microbial cell sur-
face deploying its antimicrobial potential [14]. An opposite behavior features QAS-POSS
holding a high level of quaternization with long-chain QASs, which can interact with one
another through hydrophobic interactions occurring between their alkyl chains in an aque-
ous solution, leading to aggregation phenomena of these molecules and the consequent
formation of large-sized particles that diffuse slowly and are not as bioavailable as POSS
with a low degree of quaternization featuring a short-chain QAS [12,14]. Thus, the latter
has the advantage of diffusing, binding, intercalating, and permeating the outer layer
structures of bacterial cells better compared to POSSs quaternized with long-chain QASs,
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enhancing cell death events, and reasonably explaining why DQ-POSS did not highlight
any antimicrobial potential against the bacterial strains tested (Figure 3).

3.3. Preparation of Adsorbed HQ-POSS-Based Materials and Their Biological Evaluation

Considering the highly viscous nature of HQ-POSS and its very interesting biological
results compared to DQ-POSS, a variable amount of HQ-POSS was adsorbed on the surface
of biologically active oxides [20] to gain advantages regarding the expendability of such
formulations from an applicative perspective (e.g., enhanced dispersibility into paints
for boat surfaces). The specific surface areas (SSAs), pore size distributions, and pore
volumes of the xHQ-POSS/5CuTi materials are listed in Table 3. The parent TiO2, TiO2
after calcination at 500 ◦C and the 10HQ-POSS/Ti samples are also enclosed.

Table 3. BET specific surface areas, pore size distributions, and pore volumes of the materials
(see Supplementary Materials, Figures S6 and S7).

Sample SSA (m2/g) Pore Volume (cm3/g) Mean Pore Size (nm)

TiO2 82 0.52 17.7
TiO2_calcined 69.5 0.35 26.9

10HQ-POSS/Ti 32.4 0.31 29.7
5CuTi 52.8 0.47 32.5

2HQ-POSS/5CuTi 43.8 0.43 30.4
10HQ-POSS/5CuTi 22.6 0.25 37.2
15HQ-POSS/5CuTi 9.9 0.11 39.8
30HQ-POSS/5CuTi – – –

The data revealed that the textural properties of all samples doped with the HQ-
POSS molecule showed significant differences compared to the calcined TiO2 and the
parent material (5%CuTi). Firstly, from the comparison between commercial TiO2 oxide,
as received, with the material after calcination, the latter resulted in a lowering of the SSA
values along with pore volumes, while pore sizes increased. Such findings agree with the
shrinkage of the external surface and porosity of titania as a consequence of the calcination
process, which likely causes the removal of the structural water and surface OH groups, the
collapse of the smallest pores, and a shift of the mean pore size distribution toward higher
values. A similar trend arises by comparing the properties of 5CuTi with the parent TiO2.
Indeed, the 5CuTi sample was characterized by an SSA of 52.8 m2/g vs. 82 m2/g for the
titania, the mean pore size shifted toward higher values, and the pore volume decreased.
The reported data suggest that after copper nitrate impregnation over titania and further
calcination, the CuO nanoparticles formed may have partially covered the external surface
of the support and blocked some pores. Accordingly, XRD patterns registered on the 5CuTi
sample revealed crystalline peaks assigned to the CuO phase along with the typical features
of titania, as anatase and rutile, which were confirmed by cross-referencing it with ICSD
files (see Supplementary Materials, Figure S8).

By depositing increasing loadings of the complex HQ-POSS structures onto the 5CuTi,
further decreases in specific surfaces, pore volumes, and pore sizes arose as a function of
the loading. The textural properties of 30HQ-POSS/5CuTi were not determined due to
the high loading of the organic moieties that destabilized the system under the vacuum
pretreatment necessary to perform N2 physisorption.

The results of the thermogravimetric analysis (Figure 4), which investigated the ther-
mal stability of the xHQ-POSS/5CuTi composites, confirm the effective modification of
5CuTi oxide by HQ-POSS and estimate effective HQ-POSS loading. This analysis reveals
that the most weight loss (71%) occurred in the HQ-POSS molecule in the temperature
range of 150 to 700 ◦C. The first weight loss peak below 200 ◦C can be attributed to the
removal of water contained in the sample, while the second weight loss peak in the range
of 250–700 ◦C corresponds to the decomposition of the organic part. As the HQ-POSS
loading decreased, the percentage of mass lost also decreased, which is consistent with the
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percentage by mass of the molecule loaded on 5CuTi. The remaining residual mass was
likely due to the formation of SiO2 oxide deposited over the parent oxides, 5CuTi or titania.
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Figure 4. Thermogravimetric analysis of samples of HQ-POSS and materials (see Table 4).

Table 4. Real composition of samples as determined by TGA.

Sample Mass Loss (%) wt% HQ-POSS in the Samples

HQ-POSS 71.047 100
10HQ-POSS/Ti 8.969 12.7

2HQ-POSS/5CuTi 2.371 3.3
10HQ-POSS/5CuTi 8.016 11.3
15HQ-POSS/5CuTi 15.966 22.5
30HQ-POSS/5CuTi 29.103 41

To further prove the suitability of such formulations in inhibiting bacterial cell pro-
liferation, the Gram-negative microbe tested, in this case, was Pseudomonas PS27, an envi-
ronmental isolate far more resilient to environmental stress than S. maltophilia, utilized to
screen the antimicrobial potential of HQ- and DQ-POSS. Indeed, this Pseudomonas strain
can use organic solvents (i.e., octane and a mixture of ethanol-octane) as its only sources
of carbon and energy, which concomitantly stimulate its biotic accumulation of the toxic
xenobiotic compound perfluorohexane sulfonate [34].

As a result, 10HQ-POSS/5CuTi, 15HQ-POSS/5CuTi, and 10HQ-POSS/Ti are the
formulations that most affected bacterial survival (Figure 5), although some differences
between Gram-positive and -negative strains were observed. The former resulted in an
enhanced susceptibility toward the most effective formulations since 50 µg mL−1 (15HQ-
POSS/5CuTi) or 100 µg mL−1 of (10HQ-POSS/5CuTi or 10HQ-POSS/Ti)—corresponding
to the MBC values—was sufficient to completely kill B. cereus cells within the 24 h challenge
(Figure 5b). The 10QH-POSS/5CuTi and 10HQ-POSS/Ti formulations exerted the same
effect as 15HQ-POSS/5CuTi at a higher concentration, likely due to less HQ-POSS having
been adsorbed onto the supports. In the case of the Gram-negative strain, these formula-
tions showed their antimicrobial potential at a concentration of 250 µg mL−1, highlighting
a dramatic impairment of Pseudomonas PS27 cell growth, which resulted in a CFU reduction
of ca. 6 (10HQ-POSS/5CuTi) or 8 (15HQ-POSS/5CuTi and 10HQ-POSS/Ti) logarithmic
units (Figure 5a). The enormous drop in CFUs already observed at 100 µg mL−1 of 10HQ-
POSS/5CuTi and 15HQ-POSS/5CuTi compared to 10HQ-POSS/Ti was likely dependent
on the fastest-release kinetic of HQ-POSS from CuTi supports compared to those containing
only titania, which would explain the reason why 10HQ-POSS/Ti only exerted its full
antimicrobial potential at the highest concentration tested (250 µg mL−1). However, in the
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case of Pseudomonas PS27, MBC values for the most active formulations were not found.
This aspect corroborates the good adaptability of this environmental isolate to organic
xenobiotics that, similarly to QASs, can compromise bacterial cell membrane fluidity and
functionality, leading to cell death [35,36]. These results are of some importance, consider-
ing (i) the resilience of this environmental isolate against toxic organic xenobiotics and (ii)
the far greater resistance of Gram-negative strains to antimicrobial compounds. Indeed,
these bacterial strains possess an outer cell membrane that acts as an additional physical
barrier that opposes incoming stressors [37,38]. The 2HQ-POSS/5CuTi formulation and the
supports alone (i.e., 5CuTi and Ti) did not exhibit any influence on the bacterial cell growth
of both strains (Figure 5), likely due to the low weight percentage of HQ-POSS adsorbed
onto the support, or because of the short incubation time of the assay to allow supports to
elicit their antimicrobial activity. In line with this hypothesis, Calabrese and colleagues [20]
successfully demonstrated the bacteriostatic effect of titania supports doped with copper
nanoparticles against three marine bacterial isolates over nine days of bacterial incubation.
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tions of HQ-POSS, which was adsorbed onto CuTi and Ti supports.

The vast majority of bacterial species feature the ability to grow, forming complex
structural communities known as biofilms, through a highly regulated process involving
intercellular signaling, which overall regulates bacterial growth and cell behavior [39].
After bacterial cells adhere to a surface and aggregate with each other, the microbes grow as
a biofilm and encapsulate themselves into an extracellular polymeric substance. In this con-
text, bacterial cells acquire intriguing biological traits that correlate with stratified cell
metabolism, genetic, and physiological features and increased antimicrobial tolerance,
resistance, and virulence. All these factors contribute to improving bacterial cell fitness and
resilience to external stress [40–42]. Moreover, biofilms represent a major cause of biofoul-
ing in aquaculture, targeting culture species and infrastructures with significant economic
losses [43,44]. Thus, it is crucial to combat biofilm development at the very beginning
of its formation, for instance, by using antifouling compounds. Moreover, Pseudomonas
species are of extreme concern for such a matter since they are proficient biofilm producers,
opportunistic pathogens for immunocompromised humans, as well as the cause of spoilage
in aquatic environments [43,45,46]. Since POSS materials do not feature antimicrobial action
per se, their functionalization with QASs can lead to efficient antifouling agents. The killing
effect would rely on the cationic nature (i.e., the positively charged nitrogen atom) of QAS
and the amphiphilic character of its chain. These chemistry features allow QASs to interact,
with a high affinity, with the bacterial cell membrane [47,48]. Thus, quaternary ammonium
groups first adsorb to the bacterial cell surface through electrostatic interactions, which is
emphasized in the case of POSSs functionalized with QASs due to the small size of the for-
mer and, consequently, an increased charge density similar to dendrimers [49]. Then, these
compounds diffuse through superficial bacterial cell structures. Finally, QASs’ alkyl chains
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intercalate the cytoplasmic membrane, altering its physiological integrity, and leading to the
leakage and shedding of intracellular and superficial macromolecules, thus compromising
cell survival [50]. Here, the best antimicrobial formulations (i.e., 10HQ-POSS/Ti and 15HQ-
POSS/5CuTi) strongly inhibited the ability of Pseudomonas PS27 cells to grow and develop
as a biofilm (Figure 6) at a concentration (250 µg mL−1) that greatly impaired Pseudomonas
PS27 planktonic growth (Figure 5a). Specifically, 15HQ-POSS/5CuTi completely impaired
cell adhesion, thus successfully impairing biofilm formation and proving its suitability as
an antifouling agent, whereas 10HQ-POSS/Ti still allowed cell adhesion events to occur,
likely due to the slow kinetic release and lower amount of HQ-POSS adsorbed onto the
titania support compared to the copper/titania one.
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Figure 6. Pseudomonas PS27 biofilm inhibition assay in the presence of 10HQ-POSS/Ti and 15HQ-
POSS/5CuTi formulations.

The evidence reported here on the biological activity of short-chain QAS-functionalized
POSS structures even when adsorbed on a suitable support sheds an interesting light on
the exploration of new highly functional materials from a biocidal perspective.

4. Conclusions

Two imidazolium-based POSS compounds were easily prepared by a reaction between
octakis(3-chloropropyl)octasilsesquioxane and four equivalents of 1-hexylimidazole or
1-decylimidazole. The use of four equivalents of imidazole compounds was dictated by
the fact that an extensive quaternization may feature derived compounds with low an-
timicrobial potential. HQ-POSS (hexyl-imidazolium quaternized POSS) showed excellent
antimicrobial activity toward Gram-positive and Gram-negative microorganisms, com-
pared to DQ-POSS (decyl-imidazolium quaternized POSS). The absence of antimicrobial
activity by the latter compound could be ascribed to agglomeration phenomena occurring
between the alkyl chains of QASs via ionic and van der Waals interactions. Thus, the best
working formulation, HQ-POSS, was adsorbed in different amounts onto the surface of
titania and 5 wt% copper/titania for an applicative perspective. Two of these materials
(i.e., 10HQ-POSS/Ti and 15HQ-POSS/5CuTi) strongly inhibited the ability of Pseudomonas
PS27 cells to grow and develop as a biofilm at a concentration of 250 µg mL−1. In particular,
15HQ-POSS/5CuTi completely impaired cell adhesion, thus successfully impairing biofilm
formation, which represents a major biofouling cause in aquatic environments, and proving
its suitability as a potential antifouling agent.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13071291/s1, Figure S1. HPLC/MS analysis of HQ-POSS.
Figure S2. Mass spectra of tetra-substituted HQ-POSS. Figure S3. Mass spectra of tri-substituted
HQ-POSS. Figure S4. Mass spectra of di-substituted HQ-POSS. Figure S5. Mass spectra of mono-
substituted HQ-POSS. Figure S6. Adsorption–desorption isotherms of samples of HQ-POSS and
materials. Figure S7. Pore size distribution of samples of HQ-POSS and materials. Figure S8. XRD
patterns of the material 5CuTi and related reference ICSD files.
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