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Abstract: Quarantine pathogens require the investigation of new tools for effective plant protection.
In particular, research on sustainable agrochemicals is the actual challenge. Plant extracts, essential
oils, and gels are natural sources of efficient biocides, such as aromatic secondary metabolites.
Thymol is the major phenolic constituent of thyme and oregano essential oils, and it can inhibit
many pathogenic microbes. Thymol nanoparticles were obtained through adsorption on CaCO3

nanocrystals, exploiting their carrier action. High loading efficiency and capability were reached as
verified through UV and TGA measurements. We report the first study of thymol effect on Xylella
fastidiosa, conducing both fluorometric assay and in vitro inhibition assay. The first test confirmed the
great antibacterial effect of this compound. Finally, an in vitro test revealed an interesting synergistic
action of thymol and nanocarriers, suggesting the potential application of thymol-nanoparticles as
effective biocides to control Xylella fastidiosa infection.

Keywords: thymol; CaCO3 nanocrystals; biocides; plants protection; Xylella fastidiosa

1. Introduction

Plants are constantly exposed to several pathogenic microorganisms, which affect
crops’ productivity and food quality in different agrifood compartments. The current
response is the massive agrochemical utilization. The term agrochemicals regard a wide
range of compounds, including fungicides, insecticides, herbicides, fertilizers, and plant
growth stimulants. These products provide a lot of benefits in crop management, but they
could have toxic effects toward not-target living organisms in the soil and in the waters [1,2].
The effects on human health are numerous, from cancer to obesity, as supported by several
human epidemiological investigations and experimental animal studies [3,4]. Therefore, the
actual challenge in agricultural sciences is the investigation of new strategies to control plant
pathogens, reducing the dependency on conventional agrochemicals. In the last years, the
exploitation of nanotechnologies led to the development and application of agronanochem-
icals, which provide controlled and targeted release of active substances, bypassing adverse
effects [5,6]. Furthermore, the recent boost comes from natural ingredients, exploiting
the ability of plants to produce several metabolites with high antimicrobial effect and
intrinsic plant defence mechanisms [7,8]. Aromatic secondary metabolites, such as phenols,
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phenolic acids, quinones, flavones, flavonoids, tannins, and coumarins, can inhibit both
Gram-positive and Gram-negative bacteria and many pathogenic fungi [9]. Plant extracts,
essential oils, and gels are natural sources of these efficient biocides, which could provide
different applications from agriculture to biomedicine [10]. Thymol (2-isopropyl-5-methyl
phenol) is the major phenolic constituent of thyme (Thymus vulgaris) and oregano (Origanum
vulgare) essential oils, and it has been shown great antimicrobial activity. It acts by affecting
cells membrane structure and permeability, thus binding bacterial proteins [11–13]. Thymol
has been extensively investigated to inhibit the proliferation of food fungi, wood decay
agents, molds, crop pests, and insects [14,15]. It has been also exploited to control food
spoilage and extend shelf life of food products as an alternative to synthetic preserving
food products, thanks to its great antioxidant activity [16] However, thymol’s potential in
agrifood applications is limited by its poor water solubility, which decreases bioavailability
and antimicrobial properties. Its bioactivity is also compromised by susceptibility to heat
and volatile character. Furthermore, its antimicrobial activity needs the penetration of mi-
croorganism cells by membranes depolarization; this effect takes place thanks to utilization
of high concentration [12]. All these drawbacks seriously restrict thymol real investigation
and application as a biocide. In recent years, nanoencapsulation of thymol has been inves-
tigated to enhance its stability and bioavailability. Exploited materials do not act only as
protective shells, but they allow a great interaction with target cells and a gradual release
in them [17]. Different systems and materials have been applicated for thymol, including
silica colloids, chitosan particles, and cyclodextrins [18–20]. Hence, nanogel, nanoparticles,
and nanoemulsions were studied for optimizing the usage of thymol as a biocide [19,21–23].
This is the first report about the investigation of thymol against the quarantine pathogen
Xylella fastidiosa. The effective action of several polyphenols is known. However, among
these, thymol is not included [24]. Xylella fastidiosa is one of the most aggressive and global
quarantine pathogens, infecting hundreds of plant species. Its pathogenic effect is due to
invasion and obstruction of xylematic vessels, forming biofilm and using many specific
sap-feeding vectors for the transmission between plant hosts. Since 2013, it seriously af-
fected olive trees southern Italy, changing the landscape and the regional economy [25].
The linked pathology is known as olive quick decline syndrome (OQDS), and it is caused
by the strain “De Donno” ST53 of the subspecies pauca of this bacterium (XfDD), and there
is not a resolutive cure [26]. Chemical nanotechnology can play a decisive role in the fight
against this phytopathogen, considering previous results about the nanoformulation of the
conventional biocide, fosetyl-Al [27]. Furthermore, calcium carbonate nanocarriers showed
an interesting interaction with the integrity of the cell wall of XfDD, perturbing cells vitality
with membrane detachment and spheroid particles production [28]. This nanomaterial
showed, also, a great affinity to phenols, as demonstrated for caffeic acid and pomegranate
peel extract [10,28].

We have investigated thymol in in vitro tests on XfDD, improving its antibacterial
activity through the adsorption on calcium carbonate nanocrystals (nanoCaCO3). In this
report, the adsorption of thymol on nanoCaCO3 was studied by tuning initial phenol
concentration and quantifying it both through direct and indirect methods. A preliminary
fluorescent test on X. fastidiosa was performed to evaluate the potential action of this
compound on bacteria vitality. In vitro growth assay has shown the bactericidal effect of
thymol-nanoparticles, comparing them with free thymol and empty nanoCaCO3.

2. Materials and Methods
2.1. Materials

Calcium chloride dehydrate 99.99% (CaCl2·2H2O), sodium hydrogen carbonate
(NaHCO3), 2-Isopropyl-5-methylphenol ≥98.5% (thymol), ethanol 96%, and PYE broth
components were purchased from Sigma Aldrich (Milan, Italy). LIVE/DEAD ®BacLight™
kit (MolecularProbes) was purchased from Thermo Fisher Scientific Inc. (Waltham, MA,
USA), Xpert Fast Probe 2X Mastermix was purchased from GRiSP, Lda. (Porto, Portugal).
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2.2. Thymol-Nanoparticles Preparation and Characterization

Thymol-nanoparticles (Thy-Np) were produced trough physical adsorption on
nanoCaCO3 nanocrystals. NanoCaCO3 were synthesized, as previous described [29].
Thymol (Thy) adsorption was carried out by adding, drop by drop, an ethanolic solution
of phenolic compound to an aqueous solution (pH 7.5) of nanoCaCO3 (fixed quantity
of 100 mg), reaching the selected final concentrations (2–5–25 mg/mL). The nanoCaCO3
suspension was sonicated for 20 min prior loading. The physical adsorption was carried out
mixing overnight the suspension at RT, in the dark. The feed concentrations were chosen to
overcome thymol solubility in water (0.098 g in 100 g at 25 ◦C), and a water/alcohol ratio
of 4/1 was maintained.

Nanoparticles were collected following centrifugation (6000 rpm for 10 min), and
supernatants were stored for subsequent UV-vis analyses. After three washings, Thy-Np
was dried in a stove at 50 ◦C. Washing solutions were stored for subsequent quantification.

Adsorption efficiency (AE) and adsorption capacity (AC) were calculated using the
following equations [30–33]:

%adsorption efficiency =
[loading solution]− [supernatant]

[loading solution]
× 100 (1)

%adsorption capacity =
mgadsorbed Thy

mgnanoCaCO3

× 100 (2)

where [loading solution] is the initial thymol concentration to which nanocrystals are
exposed, [supernatant] is the concentration of free thymol after adsorption experiment,
mgadsorbed Thy is the estimated quantity of thymol on nanocrystals surface after washing,
and mgnanoCaCO3 is the exposed quantity of nanocrystals.

These data were evaluated both through indirect and direct methods using two differ-
ent experimental techniques. The first provided the quantification of free thymol in reaction
supernatants, and the second provided the destructive analysis of nanoparticles powder.
Supernatants quantification was performed by spectrophotometric analysis, recording UV-
Vis absorption spectra at 276 nm by a Varian-Cary 500 spectrophotometer. The unknown
concentration was obtained referring to a standard curve using thymol solutions at known
concentrations in the range of 25–0.15 mg/mL and fitting the line through Origin software
(Abs values have been multiplied by dilution factor). Washing solutions were also analysed
to quantify thymol molecules, which were weakly adsorbed on nanocrystals. AE was
determined by subtraction quantifying, and not adsorbed molecules, into the supernatants.
Adsorbed thymol quantity was determined from AE, and the subtraction of thymol mg
of washing solutions were calculated with regard to mgadsorbed Thy and AC. The exclusion
of weak adsorption allowed us to determinate the exact thymol adsorption capacity on
nanocrystals. These data were confirmed by the direct method, exploiting thermogravimet-
ric analysis (TGA) on sample powder (5 mg). TGAs were carried out on a TA Instruments
Q600 instrument. A nitrogen flow of 100 mL min−1 was set, and a 10 ◦C/min heating rate
was applied, as reported previously [34]. TGA allowed us to quantify adsorbed Thy, as well
as recording weight loss % over temperature, observing thermal events of Thy-Np (after
washings), Thy and Np (nanoCaCO3 alone). Thymol analysis allowed us to determine
thermal evaporation of free molecules. Our carriers are inorganic nanomaterials, so it
is possible to clearly distinguish thermal events of nanoCaCO3 from those of adsorbed
organic molecule on Thy-Np.

FT-IR measurements were recorded on a JASCO 4200 spectrophotometer in attenuated
total reflectance (ATR) mode.

The morphological analysis of Thy-Np was conducted with scanning electronic mi-
croscopy (SEM). A drop of sample was placed on silicon support and dried at room
temperature and then was viewed under a SEM MERLIN ZEISS, with a FEG source, at
an accelerating voltage of 20 kV, using short exposure time (a few tens of seconds). In-
strument software was exploited to determine average diameter of dried Thy-Np. The
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average diameter (+/− Standard Deviation) has been calculated, analysing five images.
These images were taken randomly on representative fields of Thy-Np samples. In total,
100 nanoparticles were analyzed. Excel software was used for average calculations.

Hydrodynamic diameter and polydispersity index measurements were performed
through dynamic light scattering analysis (DLS) using the instrument Nano ZS90 (Malvern
Instruments, Malvern, UK).

2.3. Xylella Fastidiosa Strain

The strain CFBP 8402 of Xylella fastidiosa subsp. pauca was used in this work. The
strain was firstly isolated in symptomatic olive trees in 2014 in the Apulia region (Italy).
The bacterium was maintained on BCYE plates at 28 ◦C and subcultured every 20 days [35].

2.4. Fluorescent Assay (Live/Dead Cell Viability Assay)

To evaluate thymol effect on XfDD cells’ vitality, a water suspension of 1 × 108 cells
were treated with thymol solutions at different concentrations (0.1–0.25–0.5 mg/mL) for
0–1–2–24 h of incubation time at 38 ◦C. The treatments were subjected to a differential
fluorescent staining by the LIVE/DEAD ®BacLight™ (MolecularProbes; Waltham, Mas-
sachusetts, USA) viability kit to assess the vitality of bacteria cells. The kit contains two
nucleic acid dyes, SYTO 9 and propidium iodide (PI), which allow us to distinguish live
cells with intact plasma membranes (green) from dead bacteria with compromised mem-
branes (red). The bacteria–thymol suspensions were incubated at room temperature for
15 min in the dark in a solution of equal volumes of the two stains. Photomicrographs were
taken on a Nikon E800 microscope using a fluorescein isothiocyanate (480/30 excitation
filter, DM505 dichroic mirror, 535/40 emission filter) and tetramethylrhodamine isocyanate
(546/10 excitation filter, DM575 dichroic mirror, 590 emission filter) fluorescence filter sets.

2.5. In Vitro Inhibition Assay

To evaluate the antimicrobial properties of the proposed compounds, an in vitro assay
was performed on XfDD, following the protocol described by Baldassarre et al. [28]. An
amount of 10 µL of a bacterial suspension made from a fresh culture of XfDD, adjusted
at OD600 = 0.8, was put in sterilized tubes with 1 mL of PYE broth, previously amended
with Thy and nanoCaCO3 in order to reach the final concentrations of 0.125, 0.25, 0.5,
and 1 mg/mL, while Thy-Np was added in order to reach the final concentration of
0.25, 0.5, 1, and 2 mg/mL, since the loaded Thy correspond to 50% in the final Thy-Np
formulation. An amount of 1 mg/mL streptomycin sulphate and PYE broth, alone, were
used as controls. Tubes were kept under continuous orbital agitation at 28 ◦C. From each
replicate, 100 µL of bacterial suspension were taken after seven and fourteen days post-
inoculation (dpi) in order to quantify the presence of XfDD by a real time Taqman PCR [36].
The quantification protocol was performed using a Xpert Fast Probe 2X Mastermix and
following the manufacturer’s instructions (GRiSP, Lda. Porto, Portugal). Corresponding
cycle threshold (Ct) values of the same thesis were mediated and converted to bacterial
concentration (CFU/mL) thanks to the previously obtained calibration curve. For each
sample, three technical replicates were made (n = 41). The experiment was repeated twice.

Statistical Analysis

Collected data from each time point of the inhibition assay were statistical analysed by
performing one-way analysis of variance (ANOVA). Assumptions were checked (normal
distribution, homogeneity of variances, and homoscedasticity, as well as data indepen-
dence). Statistical significance of means was studied with Fisher’s LSD post hoc test.
p-values less than 0.05 were considered significant, while p-values of less than 0.01 were
considered highly significant. Statistical analyses were performed using XLSTAT 2020.4
(Addinsoft, France).



Nanomaterials 2023, 13, 1285 5 of 12

3. Results and Discussion
3.1. Thymol Nanoparticles

Calcium carbonate is a very porous material that can entrap different chemicals and, for
this feature, it is exploited in several applications, from bioremediation to drug delivery [37].
NanoCaCO3 have a great surface/volume ratio, allowing their use as nano-sponges to
load high drug concentrations. Hydrophobic molecules have shown a great affinity to
nanoCaCO3. Our recent results about pomegranate peels extract adsorption demonstrated
that, among many compounds, including citrate, sugars and amino acids, polyphenols are
those most stably adsorbed on a nanocrystals surface [10,28]. This entrapment efficiency
was confirmed for thymol. Adsorption efficiency and capacity are resumed in Table 1
by tuning the initial loading concentration. Adsorption efficiency derived from thymol
supernatants quantification. Adsorption capacity considered the quantity of thymol in
washing waters, eliminating the non-specific adsorption contribution. The experiments
were performed, maintaining fixed nanoCaCO3 quantity and choosing feeding concentra-
tions to overcome thymol solubility in water (0.098 g in 100 g at 25 ◦C). This feature allowed
us to promote capillary force of CaCO3 pores on dissolved thymol. However, the first
experiment, using a final concentration of 2 mg/mL (twice that its solubility), did not allow
thymol loading. Thymol loading was found to increase initial concentration to 5 mg/mL,
reaching an AE of 22%. This adsorption condition led to a weak entrapment with the
complete release of thymol after the two-water washing. Thymol adsorption and retention
efficiency were maximized, starting from a concentration of 25 mg/mL that carried out AE
and AC of about 90–95%. An increasing trend respect to the initial concentration has been
previously found for another phenol, caffeic acid [28]. The high value of AC confirmed the
stable physical interaction with nanocrystal surface and the saturation of their pores.

Table 1. Adsorption efficiency and capacity (mean ± standard deviation) from five replicates for each
condition on 100 mg of nanoCaCO3 mixing at RT o.n. in water/ethanol solutions (ratio 4/1).

[Loading Solution] AE AC

2 mg/mL - -
5 mg/mL 20 ± 1.6% -

25 mg/mL 90.7 ± 0.95% 95.4 ± 5.5%

These results are in line with a previous report about thymol loading by hierarchically-
structured biogenic silica particles [18]. However, inorganic nanomaterials, including ours,
provided better results than polymeric particles, which encapsulated thymol with low
capacity in the range of 2.5 to 10%, starting from very concentred solutions [20,31].

Thy-Np sample referred to the best loading condition (loading solution of 25 mg/mL),
which was investigated in the following characterizations and antibacterial tests.

Thymol adsorption on nanocrystals was also highlighted by SEM analysis. The Thy-
Np image in Figure 1 showed the loss of typical cubic shape of nanoCaCO3 with amorphous
appearance due to relevant organic molecule presence [10,29].

Thy-Np size was determined by direct evaluation on SEM images of dried particles
and by DLS analysis, determining the average hydrodynamic diameter and polydispersity
index of Np water suspensions. Dimensions data are resumed in the following Table 2.

Our previous works about nanoCaCO3 dimensions reported an average diameter
of 76.1 ± 0.9 nm (standard deviation) [38]. The Thy-Np measured diameter has a high
standard deviation due to the irregular morphology and polydispersity of the sample,
which was confirmed by DLS.
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Figure 1. SEM image of Thy-Np.

Table 2. Average diameter ± standard deviation of dried Thy-Np by SEM images analysis and
average hydrodynamic diameter ± standard deviation and PDI of Thy-Np water suspensions by
DLS. Image analysis was made on 100 Np and DLS data, which were obtained by mean of three
measurements, each constituting 14 runs.

SEM Measurement (nm) DLS Measurement (nm) PdI

82 ± 22 800 ± 0.1 0.8

Thymol capacity loading was confirmed by direct measure, carrying out a TGA
analysis on the powdered samples. A typical TGA trace of the thymol loaded material
has been reported in Figure 2A (black trace) in comparison with nanoCaCO3 (blue trace)
and pure thymol (red trace). The pure thymol thermogram shows the expected loss by
evaporation, which is complete at 175 ◦C; on the other hand, two clear thermic events can
be observed in the thermogram of the Thy-Np samples; the first, which is correlated to the
above mentioned loss of physiosorbed thymol, occurring at the same temperature of the
pure sample (red trace), followed by the expected CaCO3 calcination event, occurring at ca.
700 ◦C, was confirmed by comparison with the thermogram of nanoCaCO3 (blue trace).
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The weight loss in the first thermal event is ca. 50.2%, suggesting an analogous
amount of adsorbed thymol in the Thy-Np sample. This experiment is in agreement with
the loading capacity of ca. 0.9 mg of thymol/1 mg of nanoCaCO3, estimated by the indirect
method (see Table 1). The binding of the active principle to the inorganic support can
be supposed, as warranted by physisorption. Thymol total desorption, in fact, occurs at
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temperatures well below its boiling point. Moreover, the FT-IR spectrum of pure thymol
(Figure 2B, red trace) has been compared with that of Thy-Np (Figure 2B, black trace). As
expected, the latter contains the expected intense and broad carbonate absorption bands
centred at ca. 1400 cm–1, as well as a sharp absorption at ca. 872 cm–1. However, a
comparison of the FT-IR spectra of pure thymol and Thy-Np in the remaining section of
the IR fingerprint region (see Figure 2B) reveals thymol absorption bands, showing very
similar relative intensities at almost superimposable wavenumbers, supporting the fact
that the thymol structure is practically unperturbed upon adsorption (physisorption).

The X. fastidiosa pathogenic effect is due to invasion and obstruction of xylematic
vessels, as just discussed. Therefore, the contrast of this pathogen usually provides two
types of phyto-drugs administration: fertigation and endotherapy. We previously verified
nanoCaCO3 roots adsorption and translocation in olive cuttings and seedlings, which
are exposed to nanocarrier aqueous suspensions. Furthermore, we set a protocol for the
administration of phytodrugs-loaded nanoCaCO3 to olive infected plants through irrigation
under greenhouse conditions [28]. In this context, we set up the antibacterial studies of Thy
and Thy-Np. Aqueous bacterial suspensions (water for fluorometric test and PYE broth for
in vitro inhibition assay) were studied in line with biocide administration and its target site
(plants xylema).

3.2. Antibacterial Activity of Thy and Thy-Np on X. fastidiosa

Thymol is widely recognised as an antibacterial compound. However, there are
not yet data about its effect on X. fastidiosa. Maddox et al. investigated some phenolic
compounds on the X. fastidiosa strain Temecula; caffeic acid, catechin, p-coumaric acid,
resveratrol, rutin and sinapic acid catechol, coumarin, and gallic acid inhibited in vitro
X. fastidiosa growth [24]. Several works investigated antibacterial action of thymol on
foodborne pathogens, human pathogens, and plant pathogens, suggesting its wide use
as a biocide [16,22,23]. First, we have investigated the potential use of thymol on water
suspensions of XfDD cells by a fluorescence microscopy kit for monitoring bacterial popu-
lations’ viability as a function of membrane integrity. Cells with a compromised membrane,
which are considered non-vital, were stained in red by the propidium iodide fluorocrome
that penetrated inside by the disrupted membranes, while the flurocrome Syto 9 is capable
to penetrate the intact membranes of live bacteria, staining them in green. Fluorescence
microscopic images of control and treated bacteria are reported in Figure 3. Thymol af-
fected cells’ vitality just after a few minutes of exposition at the lower tested concentration.
The effect is more evident, increasing both phenol concentration and exposition time. X.
fastidiosa cells appeared completely dead within 1 h of treatment with Thy at 0.25 mg/mL.
This qualitative test confirmed the expected antibacterial effect of thymol, which is known
for its membrane destabilization action [12].

Then in vitro growth test was performed with two cells samples at seven and four-
teen days of treatment and comparing free thymol with Thy-Np and empty nanoCaCO3.
Moreover, streptomycin was used as a positive control (see plot in Figure 4). The tested
concentrations of Thy-Np are twice that of Thy and nanoCaCO3, as indicated by adsorption
capacity data (Section 3.1). This is important to compare samples with the same quantity
of biocide.
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Figure 4. In vitro growth test data (CFU/mL) on XfDD at seven and fourteen days post-inoculation
(dpi), following treatment with NanoCaCO3, Thy and Thy-Np at different concentrations (range
0.125–2 mg/mL). Streptomycin at 1 mg/mL and PYE broth alone were used as controls. Different let-
ters refer to statistical differences among the treatments after one way analysis of variance (ANOVA),
which was performed on the means at each time point. Data are represented as means ± standard de-
viation. The experiment was repeated twice. No differences among the results of the two independent
experiments were noted.
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The most promising results in terms of growth inhibition were showed by Thy-Np
when used, starting from 0.25 mg/mL at 7 dpi. Thy and nanoCaCO3 had just a slight
inhibitory effect on the growth of XfDD at higher concentration (1 mg/mL): indeed, no
statistically significant differences were observed among the lower concentrations of Thy
and NanoCaCO3, indicating that a synergic effect could be achieved by Thy-Np adminis-
tration. During the whole experiment, a strong dose-dependent effect was observed for
each tested substance. At 7 dpi, the amount of detected XfDD CFU/mL in Thy-Np samples
was the lowest and comparable to the one showed by the streptomycin control. The same
trend was also observed at 14 dpi: the higher concentration of tested Thy-Np (2 mg/mL)
exhibited an effect still comparable to streptomycin, while, in all other theses, the bacterial
populations were able to grow again. Albeit, the population levels detected at 14 dpi at
the higher concentration of the Thy-Np were the lowest, and they have been increasing
during time, pointing out that thymol could have a major role in inhibiting the bacteria
in the early interactions. These results are compatible with the observations made with
the live/dead cell viability assay: Thy alone has been shown to be able to inhibit most of
the bacterial cells after a short exposure time (0–2 h), but, after a long period (seven days
and more), the inhibition assay has revealed the loss of most of its antimicrobial properties.
Therefore, the combination with a nanocarrier could have shielded Thy from degradation
and deposition, preserving its biological properties for a longer period, even through a
smart delivery mechanism. In this sense, more studies are needed to better understand the
antibacterial properties of Thy in relationship with the X. fastidiosa biology.

These data suggested a synergic effect of phenol and nanocrystals. This mechanism is
supported by previous reports of thymol and other phenols bioactivity and by our results
about nanoCaCO3 interaction with X. fastidiosa (strain De Donno) cells [12,24,28].

Probably, Thy-Np caused great membrane depolarization, which not only allowed
cell uptake, but also killed bacteria at the lowest concentrations compared to free bio-
cide [39]. In fact, the poor water solubility of thymol is a key limiting factor in relation to
its bioavailability and activity at high concentrations. Kumari et al. have found a very sig-
nificant antibacterial and disease control on Xanthomonas axonopodis pv. glycine of soybean,
improving thymol bioavailability trough surfactants-based nanoemulsions [21].

Previous ultrastructural analysis demonstrated that nanoCaCO3 affected X. fastidiosa
bacterial wall integrity, and this mechanical effect could drive chemical action of thymol,
allowing its uptake in target cells [28]. Therefore, the nanoCaCO3 choice was functional to
increase thymol bioavailability.

4. Conclusions

Recently, thymol-based micro/nano spheres and nanoemulsions have been developed
and experimented as antibacterial tools in biomedical, cosmetical, food preservation, and
in crop production. These studies demonstrated the great potential of thymol nanoformula-
tions in several applications fields, including agriculture [16,22].

Our results are the first about thymol effect on X. fastidiosa conducting tests on
the strain “De Donno” ST53 of the subspecies pauca, the causal agent of olive quick
decline syndrome.

First, a fluorometric assay demonstrated the lethal effect of thymol after a few minutes
of exposition on water suspensions of XfDD cells, already at the lowest tested concentration.
These data confirmed the great potential of phenol as a biocide.

Then, we successfully adsorbed thymol on the nanoCaCO3 surface, and we also demon-
strated both by direct and indirect quantification, obtaining the Thy-Np nanoformulation.

An in vitro growth test was performed at seven and fourteen days post-inoculation,
following exposition to free thymol, which was compared to Thy-Np and nanoCaCO3. Free
thymol seemed to lose its inhibition effect during bacterial growth. Instead, a strong growth
inhibition effect was observed after 7 dpi, already at 0.5 mg/mL of nanoformulation. This
bactericidal effect is due to the synergic mechanism of nanoCaCO3 mechanical action and
thymol chemical effect on X. fastidiosa cells homeostasis. Thymol is poorly soluble in water,



Nanomaterials 2023, 13, 1285 10 of 12

and its free administration could be not very effective. Instead, Thy-Np formulation
increased its bioactivity thanks to the delivery action of nanocarriers. Previous data
demonstrated that nanoCaCO3 affected X. fastidiosa wall integrity, and this mechanical
effect could improve thymol bioavailability, allowing its uptake and action into pathogens
cells [28]. Further studies are now ongoing to evaluate the effectiveness of the proposed
compound in a controlled environment and field context, also taking into account the
possible desirable or less desirable effects on the physiology of the host plant.
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