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Carbon nanomaterials are a class of materials that include allotropic modifications
of carbon [1]. These include 0D allotropes—carbon dots, 1D—carbon nanotubes (CNT),
2D—graphene, and 3D—graphite. Investigating the chemistry of carbon allotropes has
led to many new, interesting discoveries in all the above groups [2]. The physics of carbon
allotropes is an interesting topic which has attracted the attention of researchers [3]. The
scope of our Special Issue, “Advanced Carbon Nanostructures: Synthesis, Properties, and
Applications”, is advanced carbon nanostructures, such as carbon nanotubes, graphene,
graphene nanoribbons, and 2D van der Walls heterostructures. The papers presented with
discuss aspects of synthesis, sorting, functionalization, and characterization of chemical
and physical properties, leading to many interesting applications being highlighted and
experimental, theoretical, and modelling aspects being discussed. In the Special Issue,
15 papers were published, consisting of 2 reviews [4,5] and 13 research papers [6–18].

In this Editorial, we summarize the published papers.
In a review paper [4] invited by the Guest Editors, the authors present a review of

metal and metal-halogenide-filled single-walled carbon nanotubes (SWCNTs). The kinetic
and electronical properties of the filled SWCNTs and their applications are considered, and
the results of a quantitative analysis of charge transfer are discussed. A comparison of the
electronic properties of SWCNTs filled with different substances is performed (Figure 1).

In [5], the peculiarities of machine learning for property prediction of materials are
discussed (Figure 2). The authors summarize the significant contribution of machine
learning to property prediction in two fields: material property detection and degradation
detection. The outstanding challenges of description and perspectives are presented,
including method and application innovation, principle exploration, and data support.

In [6], the authors synthesized carbon hybrid materials mainly using the gas-phase
pyrolysis method. They performed characterization of hybrids by microscopy and ther-
mogravimetric analysis (Figure 3). This allowed them to study the morphology and
composition of the carbon nanotubes. The authors also discussed the examples of potential
applications of carbon hybrid materials.
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right 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY 
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Figure 1. The C 1s and Ag 3D X-ray photoelectron spectroscopy data of the pristine (a) and silver-
filled SWCNTs (b). The roman numbers denote the components of the spectra. M. V. Kharlamova
et al. Donor doping of single-walled carbon nanotubes by filling of channels with silver, Journal
of Experimental and Theoretical Physics, V. 115, № 3, pp. 485–491, 2012, reproduced with permission
from SNCSC [19].
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Figure 2. Machine learning for property prediction of materials. ANN—artificial neural networks.
OA—orientation averaging. Digimat-MF—mean-field predictions. Reprinted from Ref. [20]. Copy-
right 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC
BY license.

In [7], the authors performed photoemission spectroscopy studies of graphene. The
contribution of epoxide and hydroxyl groups in C 1s X-ray photoelectron spectra were
experimentally revealed. In the valence band spectra, the molecular orbitals of these
functionalities were determined. The density functional theory calculations corresponded
to the experimental findings (Figure 4).

In [8], the authors prepared CNT/Mg composites using a procedure including grind-
ing manganese powder with distributing CNTs. The concentration of Ni-coated CNTs
defined the uniform distribution. The composites were analyzed by transmission electron
microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction, and compression
tests (Figure 5).
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Figure 3. Thermogravimetric analysis data for chopped carbon fiber (CF) and CNT-integrated
chopped fiber. Reprinted from Ref. [6]. Copyright 2023 by the authors. Licensee MDPI, Basel,
Switzerland. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY) license.
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Figure 4. (a) Fourier–transformed infrared (FT–IR) spectra and (b) solid–state 13C nuclear magnetic
resonance (NMR) spectroscopy of E–xy and H–xy graphenes, and schematics of graphene chemistry.
Reprinted from Ref. [7]. Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This
article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license.

In [9], hierarchical CNTs/AZ61 composites were synthesized by dispersing Ni-coated
CNTs in AZ61 matrix by ball milling. It was shown that the fracture strain and compressive
strength were improved as compared with homogeneous CNTs/AZ61. With an increase in
CNT concentration, the fracture strain was gradually lowered because of the agglomeration
of CNTs, whereas the compressive strength did not change (Figure 6).
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(d) 0.75% CNTs, (e) 1% CNTs, and (f) 1.25% CNTs. Reprinted from Ref. [9]. Copyright 2022 by the
authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under
the terms and conditions of the Creative Commons Attribution (CC BY) license.
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In [10], the authors investigated the impact of sp2 concentration in nanodiamonds
catalysts for acetylene hydrochlorination. They were treated at 500 ◦C, 700 ◦C, 900 ◦C, and
1100 ◦C, which led to increase in the sp2 concentration (Figure 7), whereas the catalytic
activity showed nonmonotonic behavior. The highest catalytic activity was observed for
nanodiamonds calcinated at 900 ◦C with a sp2 concentration of 43.9%.
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Figure 7. The TEM images of nanodiamond catalysts calcinated at 500 ◦C (a), 700 ◦C (b), 900 ◦C (c),
and 1100 ◦C (d). Reprinted from Ref. [10]. Copyright 2022 by the authors. Licensee MDPI, Basel,
Switzerland. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY) license.

In [11], CNTs/refined-AZ61 composites were synthesized by dispersing Cu-coated
CNTs in an AZ61 matrix by ball milling and hot-pressing sintering. It was shown that
at a concentration less than or equal to 1 vol.%, CNTs are uniformly distributed, and the
yield strength and compressive strength of composites improves with increasing CNT
concentrations (Figure 8).

In [12], the authors investigated the morphology of annealed SWCNTs (Figure 9). The
SWCNTs were filled with europium (III) chloride and then were investigated by SEM, TEM,
and energy-dispersive X-ray analysis, confirming the filling and closed ends. It was shown
that the apparent surface area of SWCNTs, amount of closed ends, and content of filler can
be tuned by annealing.



Nanomaterials 2023, 13, 1268 6 of 11Nanomaterials 2023, 13, x FOR PEER REVIEW 7 of 12 
 

 

 

Figure 8. The SEM images of CNTs/refined-AZ61 composites: (a) 0.5% CNTs, (b) 1% CNTs, (c) 1.5% 

CNTs, (d) 2% CNTs. Reprinted from Ref. [11]. Copyright 2022 by the authors. Licensee MDPI, Basel, 

Switzerland. This article is an open access article distributed under the terms and conditions of the 

Creative Commons Attribution (CC BY) license. 

In [12], the authors investigated the morphology of annealed SWCNTs (Figure 9). 

The SWCNTs were filled with europium (III) chloride and then were investigated by SEM, 

TEM, and energy-dispersive X-ray analysis, confirming the filling and closed ends. It was 

Figure 8. The SEM images of CNTs/refined-AZ61 composites: (a) 0.5% CNTs, (b) 1% CNTs,
(c) 1.5% CNTs, (d) 2% CNTs. Reprinted from Ref. [11]. Copyright 2022 by the authors. Licensee MDPI,
Basel, Switzerland. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution (CC BY) license.
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Figure 9. (a) SBET, the apparent specific surface area. (b) Nonlocal density functional theory (NLDFT)
pore size distribution. (c) VC, cumulative volume for as–received, purified (RT) and annealed
SWCNTs. Reprinted from Ref. [12]. Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY) license.

In [13], the authors investigated temperature-dependent inner SWCNT growth in
nickelocene-, cobaltocene-, and ferrocene-filled SWCNTs with Raman spectroscopy. The
influence of temperature, diameter, and metal catalyst type on the growth of inner SWCNTs
was revealed (Figure 10). The growth of 36 chiralities of inner SWCNTs was investigated.
It was shown that smaller-diameter tubes grow faster for all three catalysts.
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Figure 10. The dependence of growth temperature T(I1/2) on diameter for metallocene-grown inner
carbon nanotubes. The linear fits are denoted as solid lines. Reprinted from Ref. [13]. Copyright 2021
by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed
under the terms and conditions of the Creative Commons Attribution (CC BY) license.

In [14], the authors suggested the original method of calculation of piezoelectric
coefficient of CNTs. They investigated the dependence of piezoelectric coefficient of CNTs
on temperature of growth and thickness of catalyst layer. They found a correlation between
the effective piezoelectric coefficient of CNTs, their defectiveness, and diameter (Figure 11).
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Figure 11. (a) The SEM images of CNT arrays grown at 675 ◦C and different catalyst layer thicknesses
t = 10–30 nm, and (b) at catalyst layer thickness t = 15 nm, and at different temperatures 630–690 ◦C.
Reprinted from Ref. [14]. Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This
article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license.

In [15], the authors synthesized a hierarchical porous carbon material (HPC) using
sisal fiber (SF) as a precursor. H3PW12O40·24H2O (HPW) was dispersed on the surface of
SF-HPC. HPW/SF-HPCs were characterized by a high surface area. Their X-ray diffraction
analysis (XRD) and FT-IR spectra are shown in Figure 12. HPW/SF-HPW had a superb
catalytic activity for oxidative desulfurization.
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In [16], the growth kinetics of inner SWCNTs were investigated for nickelocene- and
cobaltocene-filled SWCNTs. Nine individual-chirality inner tubes, (8,8), (12,3), (13,1), (9,6),
(10,4), (11,2), (11,1), (9,3), and (9,2), were investigated. It was shown that the growth rates
were larger for smaller-diameter SWCNTs. The activation energies showed dependence on
the diameter of SWCNTs, which is shown in Figure 13.
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article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license.

In [17], metallic nickelocene-filled SWCNTs were obtained using density-gradient ultra-
centrifugation of filled carbon nanotubes. The electronic properties of metallic nickelocene-
filled SWCNTs were investigated with Raman spectroscopy and X-ray photoelectron spec-
troscopy (XPS). It was shown that the electronic properties of sorted filled SWCNTs can be
tuned by annealing at 360–1200 ◦C (Figure 14).
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Figure 14. The schematics of the band structures of metallic SWCNTs (EF is the Fermi level and
M1, and M1* are van Hove singularities) (a), upshift (b), and downshift (c) of the Fermi level of
treated SWCNTs. Reprinted from Ref. [17]. Copyright 2021 by the authors. Licensee MDPI, Basel,
Switzerland. This article is an open access article distributed under the terms and conditions of the
Creative Commons Attribution (CC BY) license.

In [18], the authors synthesized nanohybrids consisting of oxidized single-walled car-
bon nanohorns (ox-SWCNH)-SnO2-polyvinylpyrrolidone (PVP) with stoichiometry 1/1/1
and 2/1/1, and ox-SWCNH-ZnO-PVP with stoichiometry 5/2/1 and 5/3/2 (mass ratios).
Raman spectra of ox-SWCNH-SnO2-PVP are presented in Figure 15. The nanohybrids were
tested as sensing films for ethanol vapor detection in dry air.
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