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Abstract: Thermal treatment is applied for the direct conversion of palm stalk waste to Fe3O4

(np)@carbon sheets (Fe3O4 (np)@CSs). The effect of conversion temperature was investigated. The
TEM examination of the prepared magnetic Fe3O4 (np)@CSs showed the formation of Fe3O4 (np) in
a matrix of carbon sheets as a coated layer with surface functional groups including carbonyl and
hydroxyl groups. Removal of dyes such as methyl orange, methylene blue, and neutral red was
achieved using fabricated Fe3O4 (np)@CSs which were prepared at 250 ◦C, 400 ◦C, and 700 ◦C in a
weak acidic medium. By studying the contact time effect for the adsorption of methylene blue, neutral
red, and methyl orange, using the fabricated Fe3O4 (np)@CSs which were prepared at 250 ◦C and
400 ◦C, equilibrium occurred between 120 min and 180 min. In addition, the first-order and second-
order kinetic models were applied to the adsorption data. The results revealed that the adsorption
data fit better with the second-order kinetic model. Furthermore, the Freundlich model was found to
be more suitable for describing the process of the separation of the dyes onto Fe3O4 (np)@CSs which
were prepared at 250 ◦C and 400 ◦C, suggesting heterogenous surfaces and multi-layer adsorption.

Keywords: nanoparticles; waste recycling; water treatment; adsorption; dye pollution; UV–visible
spectroscopy

1. Introduction

Pollution is a global problem that is increasing day by day; therefore, it is necessary to
assess this problem and develop solutions to prevent its associated negative impacts. As a
result of water pollution, deaths and diseases occur all over the world [1–3]. The discharge
of sewage and waste into water bodies poses significant threats to the pollution of lakes and
rivers, in addition to garbage discharges, oil spills, and threats to the liquefaction capacities
of lakes and rivers in major cities [4,5]. Water contamination with dyes constitutes a serious
health problem and may cause toxicity or cancer [6–8].

Currently, the adopted techniques to control dye pollution include coagulation, co-
sedimentation, ion exchange, membrane techniques, and adsorption processes. The purifi-
cation methods must exhibit high efficiency, simplicity, low cost, and easy utilization of local
resources. Adsorption is the most interesting technique, and many materials can be used
as sorbents. Typical adsorbents are mainly activated carbon, metal oxides, and zeolites [9].
Low-cost materials represent a good alternative to the challenge of more widespread water
treatment technologies. Recycling and reuse of waste are two energy-saving processes that
have gained popularity due to their low cost and environmental friendliness. An example
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of these processes is the use of agricultural materials such as secondary waste resulting
from various human activities [10–13].

Magnetic materials have great advantages as they can be easily rotated using an ex-
ternal magnetic field, and they can be controlled and directed towards the pollutant or
separated from it [14]. One of the distinguishing properties is that the non-magnetic iron
oxide can be reused after easy treatment. Easy reuse methods are possible by ultrasonic
washing with hexane or ethanol within minutes [15]. According to recent studies, oil
adsorbents can be used up to 1000 times [16]. Adsorption onto magnetic materials has
biocompatibility properties suitable for organic materials, and the functional groups of
organic materials can provide active sites for iron oxide particles, expanding their appli-
cation processes in pollutant removal [17–19]. These functional groups play a major role
in passivating iron oxide nanoparticles to prevent agglomeration before or after synthesis.
Mostly, the polymers are chemically fixed or physically adsorbed on iron oxide nanopar-
ticles to lower the surface tension to form Fe3O4 nanoparticles coated with a single or
double organic layer [20,21]. There are many forms of iron oxides in nature. Magnetite
(Fe3O4), hematite (α-Fe2O3), and maghemite (γ-Fe2O3) are the most common forms [22,23].
As a result of the inevitable problems that the bare iron oxide particles are exposed to,
such as agglomeration and oxidation by air as a result of its high chemical activity, the
very important magnetic property can be lost, preventing its application [24]. Magnetism
prevents deterioration, including the iron oxide being covered with protective scales on its
surface [25]. In previous years, it has been grafted and painted with organic and inorganic
layers to protect it [26]. The reason for the efficient use of activated carbon as a coating
layer around the magnetic core for efficient adsorption is due to the large number of surface
pores that make the surface area subject to adsorption wider, relative to the actual effective
volume, as well as providing the possibility of its recovery [27]. The magnetic carbon was
developed by loading small particles of activated carbon on the surface of hydrated iron
sulfate as a backing material. A group of researchers [27] prepared an effective adsorbent
material by melting one of the polymeric compounds known as polyoxy2,6-dimethyl-1,4-
phenylene with an n-caprolactam compound in the presence of some fine magnetic particles
and used this substance in the adsorption of azo dyes prepared from triphenylmethane
and some heterocyclic compounds from aqueous solutions. The study proved that there
is a large variation in the adsorption of the selected dyes, and the dyes prepared from
heterocyclic compounds demonstrated less adsorption. The conversion of biomass waste
to carbon-based materials is a serious economic application as it is a renewable source, it
is cost-effective, and there is the possibility of large-scale production [28–32]. Biomass, as
a source of carbon during material processing, has been utilized to fabricate a tea waste/
Fe3O4 composite using a co-precipitation process for the removal of chromium (VI), with an
adsorption capacity of 75.76 mg g−1. In addition, the coprecipitation process was applied
to produce magnetic biochar from cotton which produced an adsorbent that promised
separation efficiency for aniline removal [33]. Zhang et al. used Pt-nanoparticle-containing
catalysts with a core–shell structure (Fe3O4-C-Pt) that were synthesized and applied for
5-hydroxymethylfurfural oxidation [34]. Anton et al. applied microwave-assisted fabrica-
tion of magnetic biochar for methylene blue removal [35]. Ferrone et al. applied a two-step
method to fabricate Fe3O4–activated carbon from wastepaper, in which the Fe3O4 was
fabricated first and then combined with the activated carbon of the wastepaper [36]. These
methods consume more time and effort during the preparation procedures. Therefore, this
study aimed to convert palm stalk waste to magnetic activated carbon using the direct
thermal method to achieve the carbonization of waste simultaneously, with the formation
of Fe3O4 magnetic nanoparticles (Fe3O4 (np)@CSs). In addition, this study aimed to in-
vestigate the potential of the fabricated Fe3O4 (np)@CSs for the adsorption of some dyes
including methylene blue, methyl orange, and neutral red. Furthermore, we assessed the
kinetic and isotherm models for the adsorption of the tested dyes onto the fabricated Fe3O4
(np)@CSs.
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2. Materials and Methods
2.1. Fabrication of Fe3O4 (np)@CSs

The applied chemicals including iron (III) chloride hexahydrate, sulfuric acid, sodium
hydroxide, hydrochloric acid, sodium dihydrogen phosphate, disodium hydrogen phos-
phate, methylene blue, methyl orange and neutral red were purchased from Sigma Aldrich,
St. Louis, MO, USA. Palm stalk waste was collected from Riyadh city, divided into pieces
between 5 cm and 10 cm, then washed with distilled water and dried in an oven at 105 ◦C.
The palm stalk waste pieces were then ground to a fine powder. For the preparation of
Fe3O4 (np)@CSs, a 10 g sample of the palm stalk fine powder was mixed with 6.75 g of
iron (III) chloride hexahydrate in a sulfuric acid medium to form a paste-like mixture. The
mixture was then heated in a muffle furnace at various temperatures of 250 ◦C, 400 ◦C, and
700 ◦C in the near absence of oxygen. Then, the formed Fe3O4 (np)@CSs were ground and
washed with deionized water and ethanol several times. The obtained Fe3O4 (np)@CSs
were examined by transmission electron microscopy (TEM), energy-dispersive spectroscopy
(EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Zeta
potential analysis was applied to assess the surfaces charge variation of the prepared ad-
sorbents including Fe3O4 (np)@CSs prepared at 250 ◦C, 400 ◦C, and 700 ◦C, with the pH
variation from 2 to 12, using a Zeta nanosizer, Malvernpanalytical, Worcestershire, UK. A
0.05 g of Fe3O4 (np)@CSs prepared at 250 ◦C, 400 ◦C, and 700 ◦C was dispersed in 10 mL of
NaOH (0.01 M), and the pH was adjusted to the desired pH values of 2, 4, 6, 8, 10, and 12
by adding drops of HCl or NaOH. The mixtures were exposed to ultrasonic waves for one
minute, and then analyzed by zeta potential.

2.2. Adsorption Investigation for the Uptake of Dyes onto Fe3O4 (np)@CSs

The batch method was used to investigate the adsorption of methylene blue, methyl
orange, and neutral red, as described in the previous literature [37,38]. Five hundred
mg/L stock solutions from methylene blue, methyl orange, and neutral red were separately
prepared. These stock solutions are diluted daily during adsorption studies. A 0.02 g of
Fe3O4 (np)@CSs was mixed with 20 mL of methylene blue (100 mg/L), methyl orange
(100 mg/L), and neutral red (100 mg/L) solution separately. The pH was controlled by
adding 2 mL phosphate buffer solution and adjusted by adding drops of HCl or NaOH
to the desired pH (2, 4, 5, 6, 8, 10, and 12). The mixtures were then shaken for 240 min
at 150 rpm. Then, the Fe3O4 (np)@CSs adsorbents were separated from the aqueous
medium by an external magnetic field, and the remaining dye solution was analyzed
using UV–visible spectroscopy. The batch treatment processes were conducted in three
replicates. In addition, the blank experiments were carried out at the same time during the
dye adsorption processes. Then, the adsorption capacity for dye uptake was calculated
by evaluating the dye concentration before and after the treatment process, using the
following equation:

qe =
(C0 − Ce)× V

M
(1)

where C0 represents the dye initial concentration, Ce is the dye equilibrium concentration,
V is the solution volume in liters, and M is the Fe3O4 (np)@CSs adsorbent mass in grams.

After investigation of the pH effect, pH 6 was selected for further study of methylene
blue and methyl orange, while pH 2 was selected for further evaluation of neutral red. The
previously described batch adsorption process was repeated to study the effect of contact
time in the range of 10 min to 900 min at a dye concentration of 120 mg/L, an adsorbent
dose of 0.02 g, a shaking rate of 150 rpm, and a temperature of 25 ◦C.

The effect of methylene blue, methyl orange, and neutral red dye concentration was
investigated in the range 50 mg/L to 500 mg/L, at a contact time of 360 min, an adsorbent
dose of 0.02 g, a shaking rate of 150 rpm, and a temperature of 25 ◦C. The adsorption data
of methylene blue, methyl orange, and neutral red onto Fe3O4 (np)@CSs were subjected to
kinetic and equilibrium modeling and compared with other adsorbents from the literature.
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3. Results and Discussion
3.1. Morphology and Structural Characteristics of the Fabricated Fe3O4 (np)@CSs

Activated carbon is a highly stable adsorbent material with a stable performance as
an adsorbent in an acidic or basic medium. Herein, the combination of carbon materials
with iron oxide was applied to produce Fe3O4 nanoparticles embedded into carbon sheets
(Fe3O4 (np)@CSs). The produced nanocomposite exhibited magnetic properties which
facilitate the separation of adsorbent using an external magnet after the adsorption of dyes.
The nanocomposites of Fe3O4 as the core and carbon sheets as the shell improve the stability
of Fe3O4 (np) during adsorption application and prevent leaching in an acidic medium. In
addition, the whole particles of Fe3O4 (np)@CSs exhibit magnetic properties which enable
easy filtration using the magnetic properties and avoid the difficulties associated with
the adsorbent separation [39–41]. Herein, the high temperature was applied to enhance
the formation of carbon sheets around the Fe3O4 nanoparticles. The temperature effect
was investigated at 250 ◦C, 400 ◦C, and 700 ◦C. Figure 1 shows the TEM examination of
the morphology and structure of a fabricated magnetic Fe3O4 (np)@CSs adsorbent. The
preparation process at 250 ◦C produced an adsorbent material that poses high carbon
content which is formed simultaneously with Fe3O4 (np) (Figure 1A,B). The formed Fe3O4
particles possess sizes between 50 nm to 100 nm. On the other hand, the heating at 400 ◦C
during the preparation of magnetic Fe3O4 (np)@CSs led to the formation of well-coated
Fe3O4 (np) with particle sizes between 100 nm to 300 nm which is embedded in carbon
sheets as the shell, as presented in Figure 1D,E. The further increase in temperature at
700 ◦C, during the preparation of magnetic Fe3O4 (np)@CSs, led to the formation of Fe3O4
(np) with particles sizes between 50 nm and 100 nm, which are surrounded by a thin carbon
shell due to the formation of ash and loosening parts of sample organic content, resulting
in a poorly coated carbon shell (Figure 1G,H). By comparing the surface elemental ratio
with the EDS, the main elements were found to be carbon, oxygen, and iron (Figure 1C,F,I).
The carbon content was the highest in the case of samples prepared at 250 ◦C (Figure 1C),
while the higher iron content was detected when the samples were heated to 400 ◦C
(Figure 1F) and 700 ◦C (Figure 1I). This indicates that the applied heating conditions led to
the successful formation of Fe3O4 (np)@CSs, most notably at higher temperatures of 400 ◦C
and 700 ◦C. These results agreed with those of Hu et al., who reported the formation of
pure Fe3O4 (np) at higher heating temperatures of 450 ◦C and 650 ◦C [42].

XRD was applied to identify the crystallinity in the formed structure of the fabricated
Fe3O4 (np)@CSs at 250 ◦C, 400 ◦C, and 700 ◦C (Figure 2). It can be seen that the peaks
relating to the Fe3O4 nanoparticles were detected in the fabricated samples at 400 ◦C
(Figure 2b) which were similar to magnetite ((220), (311), (400), (511), and (440) planes).
These results confirm the successful formation of a cubic crystal structure (Fe3O4 (JCPDS,
85-1436)) [42]. In contrast, under heat treatment at 700 ◦C (Figure 2c), some patterns in
the plane of (222) and (531) were added, indicating the presence of a mixture of Fe3O4
and α Fe2O3 (np). However, the fabricated samples at 250 ◦C (Figure 2a) exhibited a
lower crystalline structure, while the formed Fe3O4 (np)@CSs at 400 ◦C exhibited the
clearest peaks.

Through FTIR analysis of the fabricated Fe3O4 (np)@CSs at 250 ◦C, 400 ◦C, and
700 ◦C, the peak related to the Fe–O bond in the structure of the Fe3O4 nanoparticles was
detected in the three tested samples at approximately 570 cm−1. In addition, the carbonyl
and hydroxyl groups appeared between 1600 cm−1 and 1700 cm−1 and 3300 cm−1 and
3450 cm−1, respectively, in the case of fabricated Fe3O4 (np)@CSs at 250 ◦C (Figure 3a).
However, peaks related to the carbonyl and hydroxyl groups were reduced in the case of
higher temperature fabrication (400 ◦C and 700 ◦C) (Figure 3b,c) due to carbonization and
the formation of carbon sheets and iron oxide nanoparticles [43].
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Figure 1. The TEM with various magnification and EDS examination for the magnetic Fe3O4 (np)@CSs
prepared at 250 ◦C (A–C), at 400 ◦C (D–F), and at 700 ◦C, (G–I).
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3.2. Evaluation of the Adsorption Capacity of the Fabricated Fe3O4 (np)@CSs Prepared at 250 ◦C,
400 ◦C, and 700 ◦C for the Removal of Dyes

The removal of dyes was applied to investigate the efficiency of the prepared magnetic
carbon sheets as an adsorbent for water purification. The applied dyes included methy-
lene blue, neutral red, and methyl orange. The pH of the adsorbent/adsorbate solution
was studied from 2 to 12 and the adsorption capacity for the fabricated Fe3O4 (np)@CSs
prepared at 250 ◦C, 400 ◦C, and 700 ◦C was calculated and is presented in Figure 4A–C.
The fabricated Fe3O4 (np)@CSs prepared at 250 ◦C and 400 ◦C showed higher adsorption
capacities compared with those prepared at 700 ◦C, which may be attributed to the loss of
carbon content. In addition, the weak acidic medium was the most suitable for adsorption
compared with the strong acidic or basic mediums, except for neutral red which possesses
a higher adsorption capacity at pH 2 in the case of Fe3O4 (np)@CSs prepared at 400 ◦C
(Figure 4B). The study of the effect of pH on adsorption was conducted by Anirudhan and
Ramachandran (2015) using organoclay on the methylene blue (MB), reactive blue (RB),
and crystal violet (CV) dye solutions. Their results showed that increasing the pH enhanced
the adsorption capacity. A possible explanation for this is that increasing the pH reduces
the positive charge on the surface and the clay surface becomes negatively charged, which
favors the absorption of positive dyes due to electrostatic attraction [44]. When studying
the effect of pH on the adsorption of divalent and trivalent heavy metal ions (nickel, lead,
chromium, cadmium, copper, and manganese) on Na-montmorillonite, the researchers
also expected the adsorption to decrease as the pH decreased because the silanol and
aluminol groups were more protonated [45]. Herein, for the adsorption of methylene blue,
neutral red, and methyl orange onto the Fe3O4 (np)@CSs prepared at 250 ◦C, 400 ◦C, and
700 ◦C, a possible explanation for the adsorption mechanism is provided in Figure 5A.
The incorporation of iron oxide nanoparticles with the waste-derived carbon structure
produces a heterogenous surface which is expected to enhance the electrostatic interaction
with dyes to separate and move them from an aqueous solution to the surfaces of the
Fe3O4 (np)@CSs, resulting in an effective adsorption process. The point of zero charge is
important to illustrate the response of the adsorbent surfaces due to the pH change. The
zeta potential has been applied to evaluate the effect of pH on the surface charge of the
prepared Fe3O4 (np)@CSs prepared at 250 ◦C, 400 ◦C, and 700 ◦C. As presented in Figure 5B,
by increasing the temperature during thermal treatment the surface electrostatic charge is
increased with reporting of the lower surface charge for the materials prepared at 250 ◦C,
which may be attributed to the higher carbon content. In addition, the overall surface
charge remains positive until pH 10, reporting the point of zero charge between 10 and 12
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for Fe3O4 (np)@CSs prepared at 400 ◦C and 700 ◦C, and for Fe3O4 (np)@CSs prepared at
250 ◦C, the surface charge became around 0.4 at pH 12. However, the adsorbent prepared
at 700 ◦C showed higher surface electrostatic charge, and it exhibited the lowest adsorption
capacity. This may be attributed to ash formation at a higher temperature which leads
to lower carbon content, as confirmed by EDS examination (Figure 1I). The presence of
carbon sheets decorated with carbonyl groups in the entire structure of the Fe3O4 (np)@CSs
enabled the required matrix to carry and protect magnetic iron oxide nanoparticles, as
well as the carbonyl active sites attracting dye molecules during adsorption [46–48]. The
driving forces during the adsorption of methylene blue, neutral red, and methyl orange
onto magnetic Fe3O4 (np)@CSs may involve Van der Waals forces, electrostatic interaction
and dipole–dipole interaction between lone pairs of electrons in the dyes molecules and
iron oxide structures which cause the positively charged Fe3O4 (np)@CSs surfaces, as well
as between the carbonyl groups and S centers in methylene blue dye [49].
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Figure 5. (A) Scheme for the adsorption of methylene blue, neutral red, and methyl orange onto
magnetic Fe3O4 (np)@CSs, and (B) the zeta potential for magnetic Fe3O4 (np)@CSs prepared at 250 ◦C,
400 ◦C, and 700 ◦C.

By studying the contact time effect for the adsorption of methylene blue, neutral
red, and methyl orange using the fabricated Fe3O4 (np)@CSs prepared at 250 ◦C and
400 ◦C, the equilibrium occurred at a time between 120 min and 180 min, as shown in
Figure 6A,B. This can be attributed to the fabricated Fe3O4 (np)@CSs reaching a steady state
due to the saturation of the Fe3O4 (np)CS adsorbent surfaces. The adsorption capacities
of Fe3O4 (np)@ CSs-250 ◦C were 95 mg/g, 77 mg/g, and 93 mg/g for methylene blue,
neutral red, and methyl orange, respectively, while for Fe3O4 (np)@ CSs-400 ◦C were
92 mg/g, 99 mg/g, and 90 mg/g for methylene blue, neutral red, and methyl orange,
respectively. As is shown in Figure 6A,B, the prepared magnetic Fe3O4 (np)@CSs showed
rapid adsorption of dyes; however, the adsorption capacity in the case of magnetic Fe3O4
(np)@CSs prepared at 400 ◦C was the best. The dye adsorption onto porous adsorbents
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may include three steps: adsorption on the outer material surfaces, dye diffusion into the
internal pores, and adsorption onto the internal surfaces [50,51].
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Figure 6. Studying the effect of contact time on adsorption of methylene blue (pH 4), neutral red
(pH 2), and methyl orange (pH 4) onto magnetic Fe3O4 (np)@CSs prepared at (A) 250 ◦C and
(B) 400 ◦C, at 25 ◦C, and 100 mg/L dye concentration.

In addition, the kinetic models of the pseudo-first-order and the pseudo-second-order
kinetics were applied to the adsorption data, which fit better with the second-order kinetic
model (Figure 7A–D). The pseudo-first-order (Equation (2)) [52,53] kinetic model was
applied to investigate the rate of the adsorption of methylene blue, neutral red, and methyl
orange using the fabricated Fe3O4 (np)@CSs prepared at 250 ◦C and 400 ◦C.

log(qe−qt) = log qe − K1t/2.303 (2)

Figure 7A,B presents the relationship between log(qe – qt) and t, and from the slope
and intercept, the values of K1 and qe were calculated (Table 1).

The pseudo-second-order kinetic model in its integrated form of Equation (3) [54], was
applied to investigate the rate of the adsorption of methylene blue, neutral red, and methyl
orange using the fabricated Fe3O4 (np)@CSs prepared at 250 ◦C and 400 ◦C.

t/qt = (1/K2 qe2) + (1/qe) × T (3)

Figure 7C,D presents the relationship between t/qt and t, from which qe and K can
be calculated (Table 1). The values of q experimental and q calculated showed a good
correlation, indicating that the pseudo-second-order kinetic model is more suitable for
describing the adsorption process. These results indicate a fast adsorption process [55].
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Table 1. The kinetic constant for adsorption of methylene blue, neutral red, and methyl orange using
the fabricated Fe3O4 (np)@CSs prepared at 250 ◦C and 400 ◦C.

Adsorbent
Material

Dye Name
qe, exp
(mg/g)

Pseudo-First-Order Kinetics Pseudo-Second-Order Kinetics

K1
(min−1)

qe, cal
(mg/g) R2 K2

(g/mg×min)
qe, cal
(mg/g) R2

Fe3O4 (np)@
CSs 250 ◦C

Methyl orange 80.7 9.6 × 10−3 63.8 0.66 1.01 × 10−3 76.9 0.99
Methylene blue 84.7 9.2 × 10−3 68.1 0.93 6.9 × 10−4 84.7 0.99

Neutral red 77.4 1.4 × 10−3 8.1 0.90 2.06 × 10−2 76.9 0.99

Fe3O4 (np)@
CSs 400 ◦C

Methyl orange 89.2 1.3 × 10−2 73.6 0.97 3.5 × 10−4 92.5 0.99
Methylene blue 92.4 6.2 × 10−3 43.1 0.57 3.7 × 10−4 94.3 0.99

Neutral red 99.5 2.1 × 10−2 11.5 0.91 2.7 × 10−4 106.3 0.99

The equilibrium status correlating to the concentrations of dyes with the adsorption
capacities during the removal of methylene blue, neutral red, and methyl orange onto mag-
netic Fe3O4 (np)@CSs, according to the Langmuir and Freundlich models, was investigated.

The Langmuir Equation (4) was applied:

Ce

qe
= (

1
Q0

max
)Ce +

1
Q0

maxKL
(4)

considering that the Q0
max (mg/g) is the maximum saturated monolayer adsorption ca-

pacity of the magnetic Fe3O4 (np)@CSs, Ce (mg/L) is the adsorbate concentration at
equilibrium, qe (mg/g) is the amount of adsorbate uptake at equilibrium, and KL (L/mg)
is a constant associated with the affinity between the dyes and magnetic Fe3O4 (np)@CSs.

The correlation coefficient, R2, for the adsorption of methylene blue, neutral red, and
methyl orange onto magnetic Fe3O4 (np)@CSs (Table 2) had lower values, revealing that
the Langmuir model was not fitted with the adsorption data.
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Table 2. Langmuir and Freundlich isotherm constants for the adsorption of methylene blue, neutral
red, and methyl orange using the fabricated Fe3O4 (np)@CSs prepared at 250 ◦C and 400 ◦C.

Langmuir Constants Freundlich Constants

KL (L/mg) Q max.
(mg/g) R2 KF

(mg/g)/(mg/L)1/n n R2

Fe3O4 (np)@
CSs 250 ◦C

Methyl orange 0.002703 5000 0.49 3.93 1.39 0.95
Methylene blue 0.001658 10,000 0.25 3.07 1.19 0.96

Neutral red −0.0049 −10,000 0.74 8.85 1.33 0.86

Fe3O4 (np)@
CSs 400 ◦C

Methyl orange 0.000322 100,000 0.02 4.12 1.29 0.82
Methylene blue 0.001873 10,000 0.24 5.77 1.36 0.96

Neutral red 0.002688 1428 0.72 2.70 1.21 0.83

The correlation coefficient, R2, for the adsorption of methylene blue, neutral red,
and methyl orange onto magnetic Fe3O4 (np)@CSs (Figure 8A,B) (Table 2) revealed that
the Freundlich model was found to be more suitable for describing the process of the
separation of dyes onto Fe3O4 (np)@CSs prepared at 250 ◦C and 400 ◦C, especially in the
case of methylene blue, suggesting the presence of heterogeneous surfaces and multi-layer
adsorption.
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Nanomaterials 2023, 13, 1266 12 of 15

where qe (mg/g) is the amount of adsorbate uptake at equilibrium, Ce (mg/L) is the
adsorbate concentration at equilibrium, KF (mg/g)/(mg/L) n is the Freundlich constant,
and n (dimensionless) is the Freundlich intensity parameter.

The removal of dyes from wastewater has received significant efforts from scientists
to reduce the negative environmental impacts of water pollution [56–60]. The adsorption
capacity obtained in this work for the removal of methyl orange, methylene blue, and
neutral red onto the fabricated Fe3O4 (np)@CSs was compared with others in the literature
(Table 3) [61–68].

Table 3. Comparison of the adsorption capacities of the fabricated Fe3O4 (np)@CSs for this study and
those reported in the literature for the removal of methyl orange, methylene blue, and neutral red.

Application Materials Methyl Orange Methylene Blue Neutral Red Reference

(MMAC) 98.5% 82% - [61]

BiFeO3 nanoparticles 4.06% 71.04% 98% [62]

Zeolitic imidazole frameworks (ZIFs) 1340 mg/g - - [63]

ZIF-67 at Co-layered double hydroxide 72.3% 79.9% - [64]

Activated carbon prepared from rice husk residue 63.8% - 50.8–56.6% [65]

Fruit peels - 62.58 mg/g - [66]

Micro/nanoscale magnesium silicate - 353 mg/g - [67]

(β-CD/PAA/GO) - 247.99 mg/g - [68]

Fe3O4 (np)@CSs-250 ◦C 93 mg/g 95 mg/g 77 mg/g This work

Fe3O4 (np)@CSs-400 ◦C 90 mg/g 92 mg/g 99 mg/g This work

4. Conclusions

The thermal treatments at 250 ◦C, 400 ◦C, and 700 ◦C for palm stalk waste together
with the iron (III) chloride hexahydrate in an acidic medium led to the formation of Fe3O4
(np)@carbon sheets (Fe3O4 (np)@CSs). The fabricated adsorbents of Fe3O4 (np)@CSs pre-
pared at 250 ◦C, 400 ◦C, and 700 ◦C, exhibit positively charged surfaces under a pH range up
to 10 as indicated from zeta potential measurements. However, the Fe3O4 (np)CS adsorbent
prepared at 250 ◦C and 400 ◦C showed higher efficiency for the removal of methylene blue,
neutral red, and methyl orange dyes. The thermal conditions at 400 ◦C were considered
optimal for the formation of Fe3O4 in the entire structure of Fe3O4 (np)@CSs, as indicated
by XRD. The fabricated Fe3O4 (np)@CSs at 250 ◦C and 400 ◦C showed high efficiency and
fast performance for the removal of methylene blue, neutral red, and methyl orange. The
adsorption capacities of Fe3O4 (np)@ CSs-250 ◦C were 95 mg/g, 77 mg/g, and 93 mg/g
for methylene blue, neutral red, and methyl orange, respectively, while for Fe3O4 (np)@
CSs-400 ◦C, the adsorption capacities were 92 mg/g, 99 mg/g, and 90 mg/g for methylene
blue, neutral red, and methyl orange, respectively. In addition, the reported adsorption pro-
cess in this work is considered as a fast and effective method for the removal of dyes from
wastewater. The practical and future applications of the prepared Fe3O4 (np)@CSs may
include the adsorption of various pollutants such as pesticides, polychlorinated biphenyls,
and/or heavy metals from wastewater. In addition, thermal treatment can be applied in
future investigations to incorporate various metal oxide nanoparticles into waste-derived
carbon for environmental and sustainable purposes.
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