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Abstract: Many articles have already been published dealing with silver ions and its nanoparticles,
but mostly from the environmental and toxicological point of view. This article is a review focused on
the various analytical techniques and detection platforms used in the separation and determination
of mentioned above species, especially on the trace concentration level. Commonly used are optical
methods because of their high sensitivity and easy automation. The separation methods are mainly
used for the separation and preconcentration of silver particles. Their combination with other
analytical techniques, mainly inductively coupled plasma mass spectrometry (ICP-MS) leads to very
low detection limits of analysis. The electrochemical methods are also powerful and perspective
mainly because of the fabrication of new sensors designed for silver determination. All methods may
be combined with each other to achieve a synergistic improvement of analytical parameters with an
impact on sensitivity, selectivity and reliability. The paper comprises a review of all three types of
analytical methods on the determination of trace quantities of silver ions and its nanoparticles.
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1. Introduction
Silver, Its Compounds and Forms

The extraordinary features of silver are known from ancient times. Silver and its
compounds played an important role in industrial and biological fields [1]. Attention is
currently being also paid to its toxic properties which are the main threat to the ecosystems
and human health [2–4].

Silver is an important environmental contaminant in sea, river and industrial wa-
ters [5,6]. The silver soluble forms in industrial waters occur as an impurity from copper,
zinc and arsenic treatments [7]. The crucial source of silver entering the environment
comes from humans; mainly from the pharmaceutical industry and medicine, photography,
manufacturing of electronic devices, jewelry, coins and others [5,8].

Silver antibacterial properties are used in the textile industry and in water purification
processes [9]. It was found that the cotton treated with the impregnation using silver
nano-colloid particles has antibacterial properties showing that over 99% of Staphylococcus
aureus and Escherichia coli cells are killed at a silver content on cotton of approximately
88 mg kg−1 [10].

The market consumption of silver and its compounds is higher than 30,000 tons annu-
ally in the last thirteen years. The influence of silver species emissions on the environment
significantly depends on their speciation.

As mentioned above due to its wide industrial use, silver may enter the environ-
ment and adversely affect aquatic ecosystems if the permissible limit announced by the
Environmental Protection Agency (EPA) is exceeded. The agency is also pointing out
the antagonistic properties of silver to some biologically important species, e.g., copper,
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selenium and vitamin E [11]. The principle of toxicity to some bacteria and viruses is related
to the silver ions inhibition of the mercaptoprotease biological function [12–14]. The cell
membrane destroying by Ag+ biological enrichment may lead to skin irritation and gastric
distress or organ edema (swelling) [15,16]. The safe concentration of Ag+ in the human
body is lower than 0.05 mg kg−1 and in drinking water not higher than 0.05 mg L−1 [17,18].

Recently, silver nanoparticles (AgNPs) are increasingly used in industry, science
(biosensors production) and biomedical applications [19]. This leads during production,
storage and application to the release this form into the environment which after physical,
chemical and biological transformations increased toxicity and harmful effects of silver [20].
Several studies demonstrated that AgNPs are toxic to the cells of mammals [21]. Exposure
to AgNPs occurs by drinking or direct skin contact implying associated health risks. The
development of effective analytical methods for the analysis of silver nanoparticles in
low concentration levels in the environment and food products is a crucial factor in the
prevention of these risks [22]. The characteristic parameters of nanoparticles such as
charge, size, as well as aggregation ability in certain media may predict the behavior
of nanoparticles. The smaller nanoparticles have a larger surface area and they can be
more easily excreted from the organisms [23]. The European Union takes this issue into
account by incorporating a new and robust analytical methodology for rapid detection,
quantification and characterization of AgNPs using the SERS method [24].

Silver compounds have been used traditionally in the medical field, especially in
surgical treatments where the antiviral and antimicrobial properties of silver were correctly
documented. These effects depend not only on their concentration but also on size and the
method of their preparation.

The current information was discussed recently worldwide to prove the antibacterial
and antiviral effects of silver (Ag) and/or AgNPs to fight the COVID-19 pandemic. It was
concluded that AgNPs are strongly bound to the SARS-CoV-2 virus eliminating its binding
on the host cell. This may lead to virus death [25,26].

The chemically modified AgNPs with citrate in environmental samples and body fluids
to simulate their real behavior were investigated. The kinetics of their dissolution in these
media may allow us to deeper understand their effects on humans and ecosystems [27,28].

2. Analytical Techniques for Silver Determination
2.1. Spectrometric Methods

Colorimetry is one of the traditional spectrometric analytical methods. Colorimetric
methods are generally simple, highly sensitive and may easily use portable detection
devices [29,30]. Colorimetric methods are commonly used in the detection of various
hazardous ions and contaminants [31]. Recently, due to its high sensitivity and selectivity
has gained more interest in analytical determination using gold nanoparticles (AuNPs) [32].
Gold nanoparticles are generally primarily selected for their simple, highly sensitive di-
agnostic capabilities for fast detection of various analytes. This group of methods has
high extinction coefficients with the possibility to visually detect the target species and
minimize the use of expensive instruments [33]. Gold nanoparticles produced by a chemical
reduction are very well dispersed forming a specific red-colored solution corresponding to
surface plasmon resonance absorbance maximum at 520 nm. Due to their easy synthesis,
desirable properties, biocompatibility and environmental friendliness, they are suitable
for use in many scientific and technological fields [34]. Several reports using gold/silver
nanoparticles and have been published [35–38]. A simple and highly selective colorimetric
probe for the determination of Ag+ ion was described in paper [37]. The detection system
is based on a strong aggregation of AuNPs using ammonium pyrrolidine dithiocarbamate
(APDC) as an aggregation agent. This aggregation leads to a red-to-blue color change. If
the Ag+ ions are present, the mentioned above aggregation is inhibited due to its com-
plex formation with APDC. As Ag+ concentration is increased the opposite color change
blue-to-red is occurred. This method has a wide dynamic linear range (0.05–0.9 µM) and
a relatively low detection limit of 20 nM. This detection system shows high selectivity
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towards Ag+ ions in comparison to other tested metals. This technique was successfully
used in the trace analysis of silver ions in real samples of environmental water [37].

The selectivity of the Ag+ colorimetric determination was investigated in [38]. UV-Vis
spectrometry is used to investigate the chemical reaction of various metal ions to thiamazole
and their influence on colorimetric probe analytical performance. The estimated average
size of the gold nanoparticles during testing was 33 nm. The investigated metal included
Cu2+, Ca2+, Mg2+, Cd2+, Fe2+, K+, Mn2+, Al3+, Ni2+, Hg2+, Zn2+ and Pb2+ were investigated.
A graphical representation of the selectivity and sensitivity of the colorimetric probe for
Ag+ ions compared to other metal ions based on data given in paper [38] is depicted in
Figure 1.
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Figure 1. The graphical depiction of the sensor for Ag+ ions selectivity and sensitivity compared to
other metal ions based on data given in paper [38]. UV-Vis absorption ratio (A520/A660) of gold
nanoparticles dispersions mixed with thiamazole in the presence of Ag+ with a concentration of 5 nM.
The concentration of Pb2+, Hg2+ and Cu2+ was 50 nM. The concentration of other ions was 100 nM
(concentration of thiamazole was 2 µM; pH: 7.5).

As can be seen from Figure 1 the interferences of other ions were negligible at the given
concentrations. Despite Cu2+ and Pb2+ concentrations which were 10-fold higher than
Ag+ concentration no change in signal was achieved in comparison to the blank solution.
The only slightly interfering ion was Hg2+. It is attributed to the fact that the oxidation
potential of mercuric ions is similar to those of Ag+ ions. Nevertheless, this interference
could be solved by EDTA. The obtained results indicate that high selectivity of the Ag+

determination was reached due to the strong linking of the Ag+ ions on amino groups and
the sulfhydryl groups oxidation by the analyte. The sensor exhibits a linear dynamic range
of 0.002–0.015 µM L−1. The limit of detection (LOD) of the designed sensor is equal to
0.046 nM L−1. This colorimetric sensor was applied for the Ag+ analysis of the river water
as real samples [36].

Surface-Enhanced Raman Scattering (SERS) method is used in the qualitative analysis
of many analytes. It is because of its two advantages. The first one is that each kind of
chemical bond has its own vibrational energy as well as Raman spectrum is used for the
identification of molecules [39]. The second advantage is that the peak area is related to
the concentration of analyzed species. SERS is an ultrasensitive analytical method because
it can up to 1000 times amplify a weak Raman signal [40,41]. The SERS method has been
used for the determination of illicit drugs [42], sensing and diagnostics of gas molecules in
the environment [43] and the detection of alternariol [44]. Recently, the SERS method is
important both in scientific and industrial fields [45] as well as in the monitoring of surface
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plasmons [46–50]. Surface plasmon-promoted reactions are highly dependent on the SERS
substrate and the probe molecules [51].

The catalytic transformation of p-aminothiophenol (PATP) to imercaptoazobenzene
(DMAB) was interrogated by SERS [52,53]. Silver nanoparticles were used as the substrate.
The reaction of 4-aminodiphenyl disulfide (APDS) to DMAB on AgNPs in the presence of
laser irradiation was also reported [54,55]. The interferences of various metal species (Cu2+,
Zn2+, Mn2+, Co2+ and Ni2+) on the photochemical transformation of 4-aminothiophenol
(4-ATP) to 4,4′-dimercaptoazobenzene (DMAB) was studied using the SERS method. The
above-mentioned reaction was performed on the surface of gold nanoparticles and gold
nanorods at 632.8 nm and 532 nm laser excitation in the presence and absence of metallic
cations [56].

Fluorescence methods for the determination of silver nanoparticles came into use with
nanotechnology development. Nanomaterials with fluorescence ability have unique ad-
vantages allowing designing diverse fluorescence sensors [57]. Quantum dots (QDs) are
nanomaterials based on semiconductors that have received significant attention due to
their unique features. These are narrow and very symmetric emission spectrum, broad
excitation spectrum, higher quantum yield, high selectivity and sensitivity together with
excellent stability under the light [58].

Much effort has been devoted to the detection of Ag+ by single quantum dots as a
fluorescence probe. This probe is based on switch on and switch of the intensity of the
fluorescence [59]. These single-intensity sensors are usually difficult to calibrate and often
show interferences caused by other metal ions. Therefore expensive, toxic and environ-
mentally unacceptable masking agents are required [60]. Furthermore, the approaches are
probably not suitable for single and rapid detection because very long analytical procedures
are involved in this case. Many other kinds of fluorescent probes, carbon dots and metal
nanoclusters, have been reported to detect silver [61–63]. The ratio fluorescence technique
based on dual emission and/or multi-emission is able to overcome these disadvantages
effectively and thus enable the detection of analytes in complicated samples using the ratios
of fluorescence signals at different wavelengths [64]. Additionally, ratio-metric fluorescence
probes have improved sensitivity and selectivity because background interferences in
samples with complex matrices are diminished [65,66].

The ratio-metric fluorescence method for a cheap and sensitive technique for the detec-
tion of Ag+ was reported in [67]. NAC (N-acetylcysteine) modified with CdTe (cadmium
telluride) of various particle diameters together with dually assembled quantum dots were
used to determine Ag+ by fluorescence ratio method. The method was found to have a
wide linear dynamic range of 0–800 nM L−1 with a LOD equal to 7.7 nM L−1. This meets
WHO and EPA standards and capacitates the method for the trace determination of Ag+.
In addition, the method is interference-free in the presence of a tenfold concentration of
various metal ions and no toxic masking species are needed. This method was successfully
used for the determination of Ag+ in water real samples. The ratio fluorescence detection
technique with dual quantum dots of various excitation wavelengths was also used for
real water sample analysis [68]. The obtained recovery of Ag+ in different ways was in the
interval of 95.5–107.3% with the relative standard deviations in the interval from 0.2 to 2.6%
(n = 3). The high recovery results and small standard deviations approved this method for
the analysis of silver ions water as real samples with a complex matrix.

2.2. Separation Methods

Some separation techniques such as turbidity point extraction [69,70] or two-step
fractionation as well as cation exchange with CdSe quantum dots [71] as a principle of
the separation and subsequent determination of silver nanoparticles have been published
recently. Even though the results of both methods are reliable, the analytical operations are
time-consuming and some poisonous chemicals are often used. Therefore, the development
of a simple and acceptable method is still necessary and challenging.
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Solid phase extraction is an effective approach used for the separation of metals [72,73],
especially for both Ag+ and AgNPs [74,75]. It was applied for the separation of thiomalic
acid-coated AgNPs using anion resin. Separation is due to the electrostatic interactions
of ammonium groups in the resin and the carboxylic groups on the surface of silver
nanoparticles; however, the cleavage time was found to be very long (more than 42 h) [74].
The extraction with preconcentration of silver nanoparticles was also evaluated by magnetic
Fe3O4 nanoparticles modified with glutathione and dopamine. This method enables simple
monitoring in a flow cell with a neodymium magnet. The high recovery (more than 97%)
of enriched silver nanoparticles in tap or fresh water was achieved [75].

Ag+ silver ions and silver nanoparticles can be separated in solution on silica amino-
propyl oxide (SiAP). This species behaves as a solid adsorbent before its determination
by inductively coupled plasma optical emission spectrometry (ICP-OES). Both above-
mentioned silver species can be extracted from a binary mixture relatively rapidly in 5 min
at optimum pH of 3. The adsorption behavior obeyed the Langmuir isotherm at 298 K. The
top adsorption capacity of SiAP for both species was 34.01 and 52.91 mg L−1. Metallic silver
and silver nanoparticles are selectively desorbed with thiourea. The presented method
was found to be easy to use, reliable and economical. It was successfully applied for the
determination of silver compounds in consumer products [76].

Cloud Point Extraction (CPE) is a relatively novel and ecological method of liquid–
liquid extraction. It is a low-cost, convenient, efficient and economical method requiring a
short extraction time. Surfactants are non-toxic, non-volatile and non-flammable [77,78].
The cloud point extraction method is commonly used in biology and the environment to
isolate hydrophilic and hydrophobic substances [79,80]. It has also a high potential as an
analytical method of the preconcentration and extraction of metal cations forming poorly
soluble complexes in water. CPE was used for pre-concentration and determination of trace
amounts of silver ions in water samples. The calibration curve was linear in the range of
1–500 ng mL−1 with a LOD at 0.3 ng mL−1 [81].

The cloud point extraction method was also used for the Ag+ determination. The pre-
concentration of Ag+ from the aqueous solution was performed using a nonionic surfactant
(Triton X-114) and the chelating agent 6-(4-bromophenylazo) m-anisidine. In the next step,
spectrophotometric determination was performed at 514 nm. The efficiency of CPE was
found to be affected by several conditions such as Triton X-114 concentration as well as
[6-(4-BrPAA)] concentration, pH, time and temperature which need to be optimized. Silver
ions react with [6-(4-BrPAA)] to form a complex in a one-to-one ratio in the linear dynamic
range of 0.009 to 1.5 µg mL−1. The LOD of Ag+ ions determination was 5.4 ng mL−1 [82].

Asymmetric Field Flow Fractionation (AF4) and Hydrodynamic Chromatography (HDC)
both usually in conjunction with inductively coupled plasma mass spectrometry (ICP- MS)
are used for the separation and determination of inorganic NPs in various samples [83,84].
HDC and AF4 were compared to evaluate their ability to characterize and quantify gold
nanoparticles [85]. It was found lower resolution of HDC than AF4. On the contrary, the
amount of parent substance retained after completion of the reaction was on average better
than that of AF4. It was in the range of 77 to 96% for HDC and 74 to 89% for AF4. Another
advantage of HDC in comparison with AF4 is the time of analysis. This time can be reduced
to under 10 min compared to AF4′s 30–45 min. In the case of HDC, dissolved substances of
low molecular weight are not lost as in the case of AF4 because the ultrafiltration on the
membrane is performed in the separation channel. The HDC-ICP-MS provides information
about dissolved and particulate forms of metal [86].

Hydrodynamic chromatography is a separation technique similar to liquid chromatog-
raphy. The analyte in the sample is placed into a tube with beads creating flow channels.
The separation of the species is determined by a velocity gradient in the capillaries between
beads. The transport of large particles is faster than small ones. The smaller particles spend
less time at the edge of the capillaries. Working tubes are of an inert material to minimize
non-HDC enthalpic interactions between analytes in the solution and the beads. Non-HDC
effects are minimized by salts adding and surfactants in the mobile phase [87]. A series of
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tubes were used for the separation and determination of the particle diameter of colloidal
silica, carbon blacks and polystyrene latexes [88].

HDC in connection with ICP-MS was used in the environmental analysis of nanoma-
terials [89–91]. The determination of the particle size is simple as well as the separation
mechanism is also easy [92]. The hyphenation of HDC with ICP-MS in single particle mode
(SP-ICP-MS) [93,94] was used to characterize gold nanoparticles in drinking water. Particle
mass, hydrodynamic diameter and concentration were successfully determined. HDC-
ICP-MS has been successfully used to separate and determine metallic nanoparticles. The
ability of HDC-CP-MS to simultaneously determine dissolved forms and nanoparticles of
the same element is still a challenging task. Despite limitations, the HDC-ICP-MS method
is considered a viable alternative to other methods such as single-particle ICP-MS in which
the detection ability towards nanoparticles is significantly influenced by soluble species.
The simultaneous detection of ionic and gold and silver in the form of nanoparticles by
hydrodynamic chromatography connected with inductively coupled plasma mass spec-
trometry was investigated in [86]. The addition of 0.05 mM penicillamine to the mobile
phase caused very high recoveries for ionic gold and its nanoparticles of 50 nm. In the
presence of 1 mM penicillamine in the mobile phase also quantitative recoveries for ionic
silver and its nanoparticles up to 40 nm were reached. The best detection limits for gold and
silver forms were 0.05 and 0.75 µg L−1. This characterization and determination of silver
and gold forms were also tested on dietary supplements as real samples. The obtained
results are in statistically good agreement in comparison with ones reached by electron
microscopy used as an independent technique in this case.

2.3. Electroanalytical Methods

Potentiometry for the determination of silver is often associated with the development
of ion-selective electrodes (ISE). The first silver selective electrode was described in 1968
and it is based on Ag/Ag2S crystal membrane [95]. This electrode exhibited a Nernstian
dependence of the signal from 0.1 mM to 0.1 M silver ion concentration. It shows a very
high selectivity to primary Ag+ ions and was only weakly affected (with the exception
of Hg2+) by other transition metal ions [96]. High selectivity was also important in the
fabrication process of liquid membranes for silver ion selective electrodes. The electrode
introduced in [97] was of the internally filled type containing dithia-crown ether as silver
ionophore. Other ISE methods are based on different types of ionophores. The typical
silver ionophore is currently thioether-functionalized calixarene [98]. Electrodes based on
thiocarbamate derivatives have specifically controlled Ag+ fluxes across the membrane and
detection limits in the nanomolar range [99]. This was achieved by various procedures such
as tuning the composition of the internal filling solution or membrane conditioning [100].
Detection limits were further improved using plasticizer-free membranes based on methyl
methacrylate-decylmethacrylate copolymer with small ion diffusion coefficients for solid-
state ISE [101]. A detection limit of 4 × 10−11 M was achieved when the conditioning
procedure to fluorine membranes modified with perfluorodecylethylthiomethyl benzene
as ionophore was used [102]. All reported Ag+ selective electrodes have demonstrated that
they are suitable for real water sample analysis even on the subnanomolar concentration
level. The rather complicated procedure of electrode fabrication and the requirements of
the membrane modifications still limit their portability and measurements in dynamic real
conditions. The extensive research of ion transfer across various membranes will bring new
opportunities into Ag+ analysis [103]. Figure 2 shows the structures of some compounds
commonly used as silver ionophores depicted on the base of data given in paper [1].
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Figure 2. The depiction of the structures of some compounds commonly used as silver ionophores
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Some of the potentiometric electrodes selective for silver ions which are based on
polyvinyl chloride (PVC) membrane and carbon paste electrodes (CPE) have still some
disadvantages such as short lifetime or interference of other ions in the analyzed solution.
The liquid constitution of PVC also diminishes its use as a concentration detector. Moreover,
the relatively large size of CPE prevents their commercialization. Therefore, new sensors
with powerful detection parameters are urgently needed for metal ions detection.

Sophisticated screen-printed electrodes (SPE) modified with Alizarin Red S (ARS)
for silver ion detection were developed [103]. The content of the ionophore was opti-
mized. The optimization indicates that ink with 30 mg of Alizarin Red S is the best for
a monovalent Nernstian slope of 59.95 mV over a considerable concentration dynamic
range from 5.0 × 10−7 to 1.0 × 10−2 mol L−1. The detection limit of 5.0 × 10−7 mol L−1

was reached in this case. The developed sensor has a response time of 7 s and is stable for
more than 112 days. During this period no substantial potential drift was noticed. The
interaction between silver ions and ionophore modified by ARS on the electrode surface
was optically interrogated by scanning electron microscopy (SEM), energy dispersive X-ray
analysis (EDX) and FTIR. This sensor has a constant potentiometric response in the range of
pH 4–8 and it is thermally stable to 50 ◦C. The proposed sensor has the ability to selectively
distinguish Ag+ ions among other common metals and was used for the determination of
silver ions in X-ray photographic film. Moreover, it can be used as a working electrode in
potentiometric end-point detection of precipitation titrations.

The comparative study of two different analytical methods, spectrometric and electro-
analytical, for the determination of the silver ions and negatively charged silver nanoparti-
cles in an aqueous solution was reported in [104]. The tested AgNP particles have been
obtained by electrochemical synthesis (Patent Application EP 18181873) and were highly
stable in solution. This has been demonstrated in zeta potential and dynamic laser light scat-
tering measurements. Further UV/Vis spectroscopy and field emission scanning electron
microscopy (FE-SEM) were performed for this purpose. Transmission electron microscopy
was carried out to find out the average nanoparticle size which was estimated to be 3 nm
in diameter at the maximum of the Gaussian distribution curve. The inductively coupled
plasma optical emission spectrometry (ICP-OES) was applied for the information of the
concentration of silver particles in an aqueous solution. Next, after treatment of the sample
solution, and oxidation of the negatively charged silver nanoparticles (AgNPs), the amount
of Ag+ ions in the solution was determined by Ag+ selective electrode. The electrode
before the application was adjusted using AgNO3 solutions of the concentration range
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of 1 × 10−2–1 × 103 ppm, and the relatively low limit detection of 2.3 × 10−1 ppm was
reached. In Table 1 are the results of both tested methods [102].

Table 1. Ag+ concentration in ppm by ICP-OES and ISE analysis, RSD values are in brackets.

Sample ICP-OES ISE

1 31.4 ± 1.0 (3.2) 31.8 ± 0.8 (2.5)
2 23.7 ± 0.8 (3.4) 23.4 ± 0.8 (3.4)
3 29.2 ± 0.1 (0.3) 29.3 ± 0.8 (2.7)
4 24.2 ± 0.2 (0.8) 24.1 ± 0.2 (0.8)
5 26.8 ± 0.4 (1.5) 27.2 ± 1.6 (4.0)

The concentrations achieved by ISE are in statistical agreement with results obtained
by ICP-OES. The good correlation between techniques expresses that ISE could be served
as a reliable alternative to ICP-OES.

Voltammetry. Stripping voltammetry is the most sensitive electroanalytical method
for trace analysis of metals. A crucial thing in detection limit lowering to achieve the
trace level of silver concentration is an effective optimization of the accumulation step
as the most important part of this analytical technique. Several procedures have been
used for this purpose [105]. The most common of them is the classical anodic stripping
voltammetry (ASV). This sensing platform is generally the most preferred approach for
metal and carbon electrodes. A negative deposition potential (typically from −0.7 V to 0 V)
is kept for a given deposition time (typically between 60 and 180 s) to reduce Ag+ to metallic
silver accumulated on the electrode surface as metallic film. Next, this metallic silver is
re-oxidized back to silver ion and released from the electrode during this stripping step. The
analytical signal is a well-developed oxidation peak. The analytical parameters are strongly
influenced by the material of the electrode. The lowest LODs obtained are in the order of
nanomoles per liter [106]. More sophisticated procedures for stripping voltammetric trace
determination of Ag+ ions have been developed. The graphical depictions of two such
procedures based on data in [1] are shown in Figure 3.

First of all, the electrode with a proper ligand shows an affinity for silver ions and
can be used in the procedure of the accumulation step depicted in Figure 3A. The dipping
of the electrode into the measured solution at open circuit potential allows the binding
of Ag+ which is accumulated directly on the electrode surface. The negative potential
reduces accumulated Ag+ to metallic silver. By applying an anodic scan of potential the
stripping step is started. During this stage, metallic silver is oxidized back to silver ions
and diffuses into the bulk phase of the solution. This will appear as an oxidation peak
of a better shape in comparison with the reduction peak. Even though the deposition
step is relatively longer (3–20 min), this procedure practically always leads to enhanced
analytical parameters for subnanomolar concentrations [107]. The choice of an optimal
ligand is substantial because its bond with silver ion must be sufficiently strong to allow the
accumulation of metallic silver but not so strong to impede its dissolution and release into
solution during the stripping step. Since metal–ligand bonds are influenced by pH value,
the binding and release of Ag+ into solution is reached by careful optimization of storage
and stripping solutions. The pH value for each step is different which necessitates the use
of two supporting electrolytes. For example, the bis (2-hydroxyacetophenone) butane-2,
3-dihydrazone-modified carbon paste electrode (CPE) requires 0.1 M NaNO3 during Ag+

accumulation and 5 mM HCl for the dissolution step [108].
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In Ref. [1] and in Figure 3B the stripping voltammetric microprobe is introduced. It is
based on microelectrode modification with KCl or NaCl followed by poorly soluble silver
chloride precipitation when silver ion comes from the bulk phase of the measured solution.
The stripping step is similar to the case of silver complexation with ligands. In addition, this
constitution of accumulation-stripping experiment allows the analysis of a substantially
smaller volume of sample. The low LODs and wide linear concentration range make these
sensors an acceptable green mercury-free alternative for silver analysis [109–111].

Chemically-modified carbon paste electrodes were widely used in potentiometry
for Ag+ determination [112–116]. A classic bare carbon paste electrode was introduced
for the analysis of Ag+ [117]. The lack of selectivity compared to chemically modified
carbon paste electrodes was achieved. Several complexing agents for instance alizarin
violet [118] or 3-amino-2-mercaptoquinazolin-4(3H)-one [119] have been proposed as car-
bon paste modifiers for the detection of Ag+ ions in the last decade. The complex ligand,
2-hydroxybenzaldehyde benzoylhydrazone (2-HBBH) is often used in the carbon paste
electrode as a complexing species for the determination of Ag+ in water samples. The
arylhydrazone is also an important complexing species. It has excellent donor properties
coordinating such a large number of metals [120,121]. Its ability to behave as a polydentate
ligand a modifier in carbon paste electrode has not been studied yet.

Coulometry. This electroanalytical technique has also been used to characterize nanopar-
ticles and assess their nanotoxicity. It can provide information about their physical and
chemical features as well as size distribution, aggregation and diffusion coefficients or
surface oxidation states [122,123]. The electrochemical monitoring of direct and mediated
collisions of individual nanoparticles on microelectrodes is based on nanoparticles’ random
collisions due to their Brownian motion which makes it possible to measure their sizes.
This access is so-called particle collision coulometry (PCC) or nanoparticle impact coulom-
etry as well as anodic particle coulometry. These approaches are reported in [124–126].
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After impinging on an anodically polarized electrode silver nanoparticles are oxidized and
generate low current peaks. The size of these peaks is proportional to the number of atoms
taking part in the individual incident of nanoparticle through charge parity thus providing
size information. The critical issue is the mathematical treatment of current maxima in data
obtained by the nano-impact method to distinguish background from faradaic currents.
To solve these problems Fourier transforms or deconvolution of signals originating from
nanoparticle aggregation [127] is used. The frequency of recorded impacts is certainly
related to the number of nanoparticles, but this method has not been used for quantitative
purposes yet [128]. Nano-impact techniques have already been studied from a theoretical
point of view. Their real applications are very rare except for the case AgNPs in seawater
detection [125]. Determination of extremely low concentrations of nanoparticles is also
accessible through measurements of the first arrival time required needed for reaching the
electrode surface in random collisions. Femtomolar concentrations of silver nanoparticles
have been reported in [129,130]. AgNPs were detected, characterized and quantified by
particle collision coulometry (PCC) at a potential of + 0.70 V vs. Ag/AgCl in commercial
products [24]. On the base of data given in [24], a typical chronoamperogram for the
solution of 20 ng L−1 silver nanoparticles in 0.02 M NaClO4 as base electrolyte is depicted
in Figure 4.
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Figure 4. The depiction of a chronoamperogram of a dispersion containing 20 ng L−1 silver nanopar-
ticles with a characteristic diameter of 20 nm in 0.02 mol.dm−3 NaClO4 measured at 0.70 V vs. SCE
using carbon fiber microelectrode based on the data given in [24]. Inset: AgNPs size distribution
calculated from the spikes measured in the time domain from 2 to 10 s.

The impact spikes of AgNPs collision events manifested themselves in oxidation
peaks with durations of 5–10 ms; the spikes did not appear in blank solutions without
nanoparticles. Taking into account the spherical shape of AgNPs, the maximum charge
passed in nanoparticle oxidation (1 electron per atom) was calculated according to Faraday’s
first law. The diameter of the individual nanoparticle was calculated from the area of above
mentioned current–transient peaks.

A typically sized distribution of silver nanoparticles is depicted in the inset of Figure 4.
The electrochemical results were compared with data provided by electron microscopy as
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well as single-particle inductively coupled plasma mass spectrometry. The theoretical and
practical singularities of the PCC technique toward the characterization of AgNPs were
studied. Reproducible size distributions of the AgNPs were recorded in a diameter range of
10–100 nm. By fitting with power allometric function the relation between the frequency of
the nanoparticle collisions on the electrode surface and the concentration of nanoparticles
was found. A linear relationship between the number of collisions and the concentration of
silver nanoparticles was observed up to 5 × 107 L−1. The PCC method was successfully
applied for the quantification and size determination of the AgNPs in consumer products
containing silver.

Size distributions obtained by the PCC method (of the order 10–20 nm diameters) were
in good agreement with the distribution obtained by electron microscopy. The developed
PCC method enables the characterization of silver nanoparticle size as well as quantifying
their bulk concentration in real samples. A significant amount of Ag+ ions should be
present, especially in the case of relatively small nanoparticles with diameters of around
10 nm. The SP-ICP-MS method is reliable for larger nanoparticles only with diameters
higher than 20–45 nm. However, has good results also for very small diameters, but the
fast charge transfer and the complete oxidation of the AgNPs are involved. Statistical
analysis showed an agreement between results obtained by TEM/FESEM and PCC at the
95% confidence level in the three studied samples.

3. Conclusions

This article is an overview of all three types of analytical methods used for the de-
tection, separation and determination of silver ions and silver nanoparticles, especially at
trace concentrations.

Spectrometric methods such as colorimetry, SERS or fluorescence methods are at
present based on new nanotechnologies which improve sensor performance, especially in
reducing detection limits and increasing selectivity of silver determination. These methods
are therefore the most frequently used and their high recovery values (99–104%) proved
that they can be used for the determination of different silver forms in real samples.

Separation methods are mainly used for the preconcentration of silver nanoparticles.
They are usually combined with another analytical method, for example with ICP-MS.
Thanks to SP-ICP-MS methodological approach, the time of analysis was significantly
reduced, making determination more convenient and economical.

Electrochemical methods are also powerful and promising. This is due to the develop-
ment of new sensors which together with better ion flow control provide a better analytical
performance of selective electrodes for silver ions making them suitable for its trace deter-
mination in the presence of various interfering metallic ions. More attention is gaining the
potentiometric sensor in solid form which facilitate the miniaturization of measurements in
small and complicated samples. The stripping voltammetric methods have demonstrated
applicability in the subnanomolar concentration level of silver ions. The excellent approach
is represented by collision and nano impact coulometry allowing the measurement of the
size distribution of silver nanoparticles deposited on the electrode surface.

The new approach in all analytical methods will be focused on lowering detector size,
its long-term stability, resistance to biofouling and the possibility of portable analysis.
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