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Abstract: Doxorubicin (DOX) is the most clinically important antibiotic in cancer treatment, but
its severe cardiotoxicity and other side effects limit its clinical use. Therefore, monitoring DOX
concentrations during therapy is essential to improve efficacy and reduce adverse effects. Here, we
fabricated a sensitive electrochemical aptasensor for DOX detection. The sensor used gold wire as
the working electrode and was modified with reduced graphene oxide (rGO)/gold nanoparticles
(AuNPs) to improve the sensitivity. An aptamer was used as the recognition element for the DOX.
The 5′ end of the aptamer was modified with a thiol group, and thus immobilized to the AuNPs, and
the 3′ end was modified with methylene blue, which acts as the electron mediator. The combination
between the aptamer and DOX would produce a binding-induced conformation, which changes
the electron transfer rate, yielding a current change that correlates with the concentration of DOX.
The aptasensor exhibited good linearity in the DOX concentration range of 0.3 µM to 6 µM, with a
detection limit of 0.1 µM. In addition, the aptasensor was used for DOX detection in real samples and
results, and showed good recovery. The proposed electrochemical aptasensor will provide a sensitive,
fast, simple, and reliable new platform for detecting DOX.

Keywords: doxorubicin; electrochemical detection; aptasensor; reduced graphene oxide; gold nanoparticles

1. Introduction

Cancer, also known as a malignant tumor, has become a severe public health problem
and a primary cause of death worldwide with population growth and global aging [1–3].
The application of anticancer drugs is one of the most widely used therapeutic options [4,5].
Doxorubicin (DOX) is an anthracycline antibiotic with broad spectra of chemotherapeu-
tic applications and anti-neoplastic applications [6–8], widely used in the treatment of
lung cancer, liver cancer, Hodgkin lymphoma, acute leukemia, and many other types
of cancer [9–11]. DOX facilitates cancer treatment through several mechanisms, such as
the disruption of DNA replication by inserting DNA base pairs and the disruption of
DNA repair by interacting with topoisomerase II [12–16]. However, the effects of DOX
are not cancer cell-specific; it also affects the DNA functioning of normal cells, resulting
in irreversible toxicity to organs such as the heart, brain, and kidneys, which can be life-
threatening in severe cases [17,18]. Based on the dangerous side effects of DOX and the
individual differences of patients, monitoring DOX levels in patients’ biological samples
during treatment is vital to improve the effectiveness of therapy, reduce adverse effects,
and promote personalized medicine [19–21].
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As research proceeds, a variety of methods have emerged, greatly enriching the
detection of DOX. Liquid chromatography [14,22], high-performance liquid chromatogra-
phy [23,24], UV-Vis spectroscopy [25,26], capillary electrophoresis [27,28], and fluorescence
spectroscopy [29,30] are currently the classical methods for the detection of DOX, and the
detection limits can reach several nanomoles. However, some of these methods require
sophisticated and complex sample processing, expensive equipment, extensive technical
experience, and long measurement and analysis times. In contrast, others are poorly re-
producible and lack sufficient sensitivity and selectivity [31,32]. Electrochemical methods
have been recognized as an ideal alternative to other assays, with inexpensive equipment,
simple operation, no complex pretreatment of biological samples, high selectivity, high
sensitivity, and fast response times, which are well suited for the rapid clinical detection of
DOX [9,33].

An electrochemical aptasensor is an essential analytical tool that uses aptamers as
recognition elements, combined with electrochemical detection methods. The aptamer
is an oligonucleotide sequence obtained by in vitro selection and has a binding affinity
comparable to antibodies [34]. Aptamers also have many advantages that antibodies
cannot match, such as a broader range of targets, lower production costs, better stability,
and easier chemical modification, making them an increasingly crucial molecular tool in
medical diagnostics [35,36]. For example, Sun and Xing et al. have achieved the detection
of vascular endothelial growth factor C and programmed death-ligand 1 by exploiting
the change of steric hindrance after target binding to aptamer [37,38]. Cao et al. utilized
analyte-kissing-induced structure-switching aptamers to accomplish drug delivery and
simultaneously achieve in vivo detection of interferon-γ (IFN-γ) [39]. There are few stud-
ies on electrochemical aptamer sensors for DOX, and most of them focus on the direct
electrochemical detection of DOX, but this requires high oxidation potential and has lim-
ited anti-interference ability [40]. Therefore, developing a DOX detection tool based on
electrochemical aptamers has excellent application prospects.

Due to their unique properties that are different from traditional materials, nanomateri-
als are making a splash in sensor modifications and can improve the analytical performance
of sensors [41,42]. Graphene, a new material consisting of carbon atoms tightly stacked into
a monolayer two-dimensional honeycomb structure [43], has been attracting widespread
attention since it was first stably prepared by micromechanical exfoliation in 2004 [44].
Graphene has excellent electron mobility, extremely low resistivity, a large specific surface
area, and good flexibility [45]. These unique mechanical and electrical properties make it
widely used in the field of electrochemical sensing [46,47]. Gold nanoparticles (AuNPs)
are a kind of metal nanomaterial with superior properties and are widely used for the
modification of electrodes [48,49]. The large specific surface area of AuNPs allows more
material to be immobilized, and its good conductivity improves the detection sensitivity of
the sensor [50]. In addition, AuNPs have good biocompatibility and high surface activity
and can interact with various groups to facilitate the immobilization of antibodies and
aptamers [51].

In response, we have fabricated a highly sensitive and selective electrochemical sensor
for the timely and rapid detection of DOX. The reduced graphene oxide (rGO)/AuNPs were
used as a platform to improve the analytical performance of the sensor, and were modified
onto the electrode surface by one-step electrochemical deposition. A published DOX
aptamer was used as the recognition element, which is a hairpin structure with methylene
blue (MB) acting as the signal molecule modification at the 3′ end. The combination of DOX
and aptamer produces a binding-induced conformational change, leading to a change in
the rates of electron transfer rates from MB at the end of the aptamer to the electrode. We
evaluated the analytical performance of the DOX electrochemical aptasensor by detecting
DOX in phosphate-buffered saline (PBS). We also assessed the repeatability and selectivity
of the sensors, using the same method. Considering the advantages of simple, convenient,
and sensitive electrochemical sensors, we are optimistic that this sensor will provide a
promising platform for the timely and rapid detection of DOX.
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2. Materials and Methods
2.1. Apparatus

We used Gamry Reference 600 electrochemical instruments (Philadelphia, PA, USA)
to perform the chronocoulometry (CC) experiment. Other electrochemical experiments, in-
cluding electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square
wave voltammetry (SWV), were carried out in an Autolab PGSTAT302N electrochemical
workstation (Herisau, Switzerland). The deionized water used for the experiments was
generated with the Michem ultrapure water apparatus (Chengdu, China) with a resistance
of 18 MΩ/cm. Scanning electron microscope (SEM) images were obtained using a Hitachi
S-3500 scanning electron microscope (Tokyo, Japan). A Hechuang KH2200E ultrasonic
generator (Kunshan, China) was used in homogenizing the solution.

2.2. Reagents and Materials

The 6-mercapto-1-hexanol (MCH) was ordered from TCI Chemicals (Tokyo, Japan).
Ethanol, potassium chloride (KCl), Potassium ferrocyanide trihydrate (K4Fe(CN)6), Sodium
hydroxide (NaOH), and gold (III) chloride (HAuCl4) trihydrate were received from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Potassium ferricyanide (K3Fe(CN)6),
tris-2-carboxyethyl-phosphine (TCEP), Tris (hydroxymethyl) aminomethane (Tris), and
doxorubicin hydrochloride were purchased from Sigma Aldrich (Saint Louis, MO, USA).
Graphene oxide solution (GO, 2 mg mL−1) was obtained from Xianfeng nanomaterials
company (Nanjing, China). Hexaammineruthenium (III) chloride (RuHex), dacarbazine
(DTIC), tetracycline hydrochloride (TET), and chloramphenicol (CPL) were obtained from
Acmec Biochemical Co., Ltd. (Shanghai, China). The Tris-EDTA buffer (TE buffer, PH = 8.0)
and phosphate-buffered saline (PBS, pH = 7.4) were purchased from Solarbio (Beijing,
China). All of the reagents used in the work were of analytical grade and used as received.

The 200 µm diameter gold wire was ordered from Alfa Aesar (Ward Hill, MA, USA).
Heat-shrink polytetrafluoroethylene insulation was obtained from ZEUS (Branchburg
Township, CA, USA).

The DOX aptamer was chosen according to prior reported works in the literature [52]
and synthesized by Sangon Biotechnology (Shanghai, China) with the following sequence:
5′-SH-(CH2)6-ACC-ATC-TGT-GTA-AGG-GGT-AAG-GGG-TGG-T-Methylene Blue-3′. Upon
receipt, we diluted the aptamer concentration to 200 µM with TE buffer and stored it in
200 µL aliquots at −20 ◦C until use.

2.3. Fabrication of the Sensor Working Electrodes

Gold wire was cut into 3.5 cm lengths to make the sensor working electrode. The
actual sensing window was 7 mm long and located at the front end of the gold wire. There
was a 1.5 cm conductive part at the other end for the electrochemical instrument connection.
The rest of the middle part was insulated with polytetrafluoroethylene tube. The insulated
sensors were sonicated in 2 M NaOH solution, anhydrous ethanol solution, 2 M H2SO4
solution, and deionized water, in turn, for 10 min to initially remove impurities from the
electrode surface. After that, the electrode was electrochemically cleaned by CV in 0.5 M
H2SO4 solution. Electrochemical cleaning was performed on the gold wire at a scan rate of
100 mV s−1 over a voltage range of −0.35 V to 1.5 V for 8 to 10 cycles.

2.4. Preparation of rGO/AuNPs-Modified Electrode

The rGO/AuNPs composites were modified on the surface of the working electrode
by a one-step electrochemical deposition technique to increase its surface area and obtain
a larger response current. Our plating solution was obtained by mixing 2 mg mL−1 GO
solution with 10 mg mL−1 HAuCl4 solution at a volume ratio of 9:1 and ultrasonicating it
for 30 min. Then, CV was conducted in the potential ranges of −1.5 to 0.6 V for 15 cycles at
a scan rate of 50 mV s−1.
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2.5. Frabriction of DOX Aptasensor

The thiol group of the aptamer and the gold nanoparticles on the electrode formed
a Au-S bond, thus fixing the aptamer to the electrode. Firstly, an aliquot of the DOX
aptamer solution (200 µM, 2 µL) was thawed and then reduced with 10 µL of 100 µM TCEP
solution for 1 h at room temperature to reduce the 5′-disulfide bone. Subsequently, the
reduction-treated aptamer was diluted to 300 nM with PBS, and the rGO/AuNPs-modified
electrode was immersed in the aptamer solution for 2 h at room temperature. Subsequently,
the electrode was immersed in the MCH solution (20 mM) at 4 ◦C for 12 h to remove
nonspecifically adsorbed DNA and produce a self-assembly well-aligned monolayer (SAM)
of thiol modified aptamer. Then, the electrode was rinsed thoroughly with deionized water
to remove residual MCH and stored in PBS at 4 ◦C for future use.

2.6. Electrochemical Measurements

A three-electrode system consisting of a nanomaterial-modified gold wire as the
working electrode, a 0.6 mm diameter platinum electrode as the counter electrode, and
a commercial Ag/AgCl (3 M KCl) electrode as the reference electrode was used in all
electrochemical experiments. CC experiments used to calculate the electroactive areas of
the working electrodes were carried out in 5 mM K3Fe(CN)6 solution containing 0.1 M
KCl as the supporting electrolyte, with a pulse width of 1 V and a pulse period of 1 s. The
other CC experiment, conducted in 10 mM Tris–HCl buffer (pH = 7.4) in the absence and
presence of 50 µM RuHex, with a pulse width of 0.5 V and a pulse period of 0.5 s, was
used to measure aptamer surface density. EIS measurements were performed in a 5 mM
K3Fe(CN)6/K4Fe(CN)6 mixture containing 0.1 M KCl as the supporting electrolyte, with
a frequency range from 105 Hz to 0.1 Hz and a sinusoidal voltage perturbation of 5 mV.
SWV measurements were carried out to obtain the response of the aptasensor to different
concentrations of DOX. The SWV curves were performed in the PBS solution (PH = 7.4)
with a potential range of −0.5 V to 0 V, a potential step width of 1 mV, a pulse amplitude of
50 mV, and a frequency of 300 Hz. It was worth noting that the DOX and aptasensor were
allowed to incubate for 20 min before SWV measurement to allow the sufficient binding of
DOX and aptamer. All the above experiments were carried out at room temperature.

3. Results
3.1. Characterization of rGO/AuNPs Nanomaterials and Constructed rGO/AuNPs/Apt Interface

The working electrodes were modified with rGO/AuNPs nanomaterials for the sensi-
tive and fast detection of DOX. The schematic diagram of the modification of the working
electrode was shown in Scheme 1.

The rGO/AuNPs were electrodeposited together on the electrode by CV. During the
negative voltage scan, some oxygen-containing groups of GO in contact with the electrode
were irreversibly reduced. The resultant rGO was less soluble, and thus directly attached
to the electrode surface. At the same time, AuCl4− was also reduced to obtain AuNPs.
After electrodeposition, the rGO/AuNPs composite was formed on the electrode surface,
and its SEM images are shown in Figure 1. Figure 1a shows the overall morphology of the
electrochemically deposited nanomaterials. In the figure, the rGO/AuNPs nanocomposite
shows a rough porous-like structure, which greatly increased the specific surface area of
the electrode. Figure 1b,c shows the enlarged morphology of rGO/AuNPs; the outer layer
of rGO was muslin-like, and the AuNPs, appearing spherical, attached to the wrinkled
structure formed by the underlying rGO. The SEM image of the bare gold electrode is
shown in Figure S1a,b. The surface of the electrode was flat and smooth, without any
material attached to it. The unique morphology of rGO/AuNPs can immobilize more
aptamers and accelerate electron transfer, thus amplifying the current signal. The energy
dispersive X-Ray spectrometer (EDS) of the rGO/AuNPs-modified electrode is provided in
Figure S1c.
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Figure 1. (a) The overall morphology of the electrochemically deposited rGO/AuNPs; (b,c) The
magnified morphology of the outermost rGO/AuNPs.

CC experiments performed in 5 mM K3Fe(CN)6 solution containing 0.1 M KCl were
used to evaluate the electroactive area change of the electrodes after rGO/AuNP modifica-
tion. The experimental results are shown in Figure 2a. The area of the electrodes can be
calculated using the Cottrell integrated equation:

Q = 2nFACD1/2t1/2π−1/2 (1)

where Q is the charge (C), n is the number of electrons transferred, F is the Faraday constant
(96,485 C eq−1), A is the electrode area (cm2), C is the molar concentration of the active
species (mol cm−3), D is the diffusion coefficient (7.6 × 10−6 cm2 s−1 for 5 mM K3Fe(CN)6
solution [53]), and t is time (s). There is a linear relation between Q and t1/2. According to
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the slope of the plot of Q vs. t1/2, we found that the electroactive areas of bare electrodes
and rGO/AuNP modified electrodes were 0.049 cm2 and 0.065 cm2, respectively.
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Figure 2. (a) CC responses of the bare electrode and rGO/AuNP modified electrode in 5 mM
K3Fe(CN)6 solution containing 0.1 M KCl; (b) the Nyquist plot and (c) Bode plot of the bare electrode
and rGO/AuNP modified electrode in 5 mM K3Fe(CN)6/K4Fe(CN)6 mixture; (d) CC responses of
the aptasensor in the absence and presence of 50 µM RuHex.

EIS was used to study the impedance changes during the stepwise modification
of the electrode surface. The EIS responses of bare, rGO/AuNPs-modified electrodes,
rGO/AuNPs/Apt, and the rGO/AuNPs/Apt/MCH interface in the 5 mM K3Fe(CN)6/
K4Fe(CN)6 mixture are shown in Figure 2b,c. The Nyquist plot in Figure 2b consists of a
semicircle at the high frequency and a linear section at the low frequency. The semicircle in
the high frequency region represents the charge transfer impedance (Rct) of the electrode.
The Rct of the bare electrode and the rGO/AuNPs-modified electrode were 599.15 Ω
and 58.24 Ω, respectively, indicating that the modification of nanomaterials enhanced
the transfer of electrons between the electrode surface and electrolyte solution, thereby
increasing the sensitivity of the sensor. When the rGO/AuNPs-modified electrode was
successively incubated with DOX aptamer and MCH, the Rct increased to 415.93 Ω and
645.21 Ω, respectively, which was consistent with the principle, indicating that the sensor
was successfully fabricated. The Bode plot of the electrode impedance was shown in
Figure 2c. We focused on the impedance at 300 Hz, which was the frequency used at
SWV. The impedances of bare, rGO/AuNPs-modified electrodes, rGO/AuNPs/Apt and
the rGO/AuNPs/Apt/MCH interface were 444.2 Ω, 83.38 Ω, 131.50 Ω, and 374.83 Ω,
respectively, which were consistent with the changing trends of Rct, indicating the successful
fabrication of the sensor from the other aspects.
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3.2. Determination of Aptamer Surface Density

According to the previously reported literature [54,55], the CC measurements were
performed using RuHex acting as a redox marker to determine the aptamer surface density.
The general principle is as follows: the negatively charged DNA phosphate skeleton and
the positively charged RuHex have electrostatic attraction, and the density of the aptamer
can be calculated according to the amount of charge required for the reduction of RuHex
absorbed on the electrode surface, with the following equation:

Γapt = (QabNA/nFA)(z/m) (2)

where Γapt is the aptamer surface density (molecules cm−2), Qab is the charge required
for the reduction of RuHex adsorbed on the electrode surface (C), NA is the Avogadro’s
number, n is the number of electrons transferred, F is the Faraday constant (96,485 C eq−1),
A is the electroactive area of the electrode (cm2), z is the charge of RuHex (z = 3), and m
is the number of bases of the aptamer (m = 28). According to the difference between the
intercept of the linearly fitted plot in the presence and absence of RuHex (Figure 2d), which
refers to the Qab, the aptamer surface density of the rGO/AuNPs-modified electrode was
2.37 × 1013 molecules cm−2.

3.3. Electrochemical Properties of the Aptasensor

The properties and stepwise modification of the working electrode were tested through
SWV in PBS. Bare and rGO/AuNPs-modified electrodes had no response in the voltage
range of −0.5 V to 0 V (Figure 3a). This was because MB had not been fixed to the electrode.
After the aptamer was immobilized to the electrode, we observed a significant SWV
response near −0.25 V, which was caused by the oxidation of MB modified on the aptamer
(Figure 3b). At this time, despite having a high peak current, the current baseline was also
very high. However, when the aptasensor was incubated with MCH afterwards, the peak
SWV current of the sensor was reduced and the current baseline was also reduced with it.
This may be due to the formation of a well-aligned SAM of the thiol-modified aptamers.
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responses of electrodes incubated with Dox aptamer, MCH, and 0.8µM DOX, respectively.

The detection principle of the sensor was shown in Scheme 1. When DOX was not
binding to the aptamer, the aptamer was in a “stretched” state and the MB at the end of
the aptamer was far away from the electrode surface. When the aptamer was bound to
DOX, the conformation of the aptamer changed to form a “folded” state, so that the MB
was close to the electrode surface, increasing the rates of electrons transferred from the MB
to the electrode. When we used SWV to detect the DOX, we could obtain an increased peak
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current. As shown in Figure 3b, after combining with DOX the peak currents of the SWV
response increased from 20.02 µA to 24.97 µA, in accordance with our detection principle.

3.4. Analytical Results of the DOX Aptasensor

We measured the SWV response of the aptasensor to standard DOX samples at differ-
ent concentrations in PBS (PH = 7.4) to evaluate the detection performance of the aptasensor.
The binding event of the aptamer to the target does not involve the transfer of electrons,
which means that the current changes we detected arose exclusively from changes in elec-
tron transfer rates from MB immobilized at the end of the aptamer to the electrode. As
shown in Figure 4a, the peak current of the SWV response rose with increasing DOX concen-
tration, consistent with our detection principle. To eliminate the differences between sensor
batches, we normalized the SWV peak current and obtained the relationship between the
normalized current and the DOX concentration. As shown in Figure 4b, the normalized
SWV peak current (Inorm) and log concentration of DOX (CDOX) showed good linearity
over the range of 0.3 µM to 6 µM for DOX, and the linear response can be described as
Inorm = 1.298 + 0.385 Lg CDOX (µM). The correlation coefficient was 0.996, and the limit
of detection was 1 µM. We fitted the sensor’s signal gain to the Langmuir isotherm and
calculated the apparent dissociation constant to be 2.55 uM. A list of recently developed
electrochemical sensors for DOX detection is presented in Table 1. Our sensor had a more
balanced performance, and its detection range basically covered the therapeutic range of
drugs in human blood [56].
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3.5. Evaluation of Repeatability, Selectivity and Stability of the Aptasensor

Reproducibility is an essential evaluation indicator of sensor performance. We eval-
uated the reproducibility of the aptasensor by measuring the SWV response of three
independent sensors in solutions containing DOX. The responses of the aptasensors in
1 µM and 2 µM DOX are shown in Figure 5a. Their normalized peak currents were 1.290,
1.289, and 1.292 for 1 µM DOX, and 1.423, 1.430, and 1.446 for 2 µM DOX, respectively.
Based on the above experimental results, the coefficients of variation were calculated to be
0.11% and 0.81%, respectively, indicating the excellent repeatability of the aptasensor.
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Table 1. Comparison of our work with the recently published electrochemical method for the
determination of DOX.

Electrode Linear Range (nM) Detection Limit (nM) Reference

CPE/CoFe2O4/MWCNTs 0.05–1150 0.01 [57]

Gold electrode/aptamer 31–125 28 [58]

Microfluidic chip/aptamer 0.01–10 10 [59]

GCE/PR/GO/Fe3O4/K 60–950 8 [31]

GCE/GQD 18–3600 16 [60]

Gold electrode/AuNPs/antibody 0.0084–0.294 0.00153 [61]

BBD 5–50 1.63 [62]

Gold wire/rGO/AuNPs/aptamer 300–6000 100 This work

CPE: carbon paste electrode; MWCNTs: multiwalled carbon nanotubes; GCE: glassy carbon electrode; PR:
polyrhodanine; GO: graphene oxide; K: kombucha solvent; GQD: graphene quantum dot; BBD: boron-doped
diamond electrode.
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Selectivity is another important characteristic of the aptasensor. We measured the
SWV response of the sensor to 50 µM of TET, DTIC, CPL, and 4 µM of DOX, respectively,
to evaluate the selectivity of the sensor. The results are shown in Figure 5b. The normalized
current responses of the sensor to the interferents were 3.37%, −10.96%, and −11.48%,
respectively, which were much smaller than 49.55% of DOX, indicating the excellent
selectivity of the aptasensor.

In addition, we also investigated the stability of this aptasensor. The sensor was
soaked in PBS (PH = 7.4) and stored in a refrigerator at 4 ◦C. We measured the aptasensor’s
SWV response in PBS solution (PH = 7.4) weekly. The results are shown in Figure 5c. After
three weeks, compared with the first week, the sensor’s SWV peak current decreased to
80.32% of the original.

3.6. Real Sample Analysis

Normal human serum samples were used to evaluate the performance of the aptasen-
sor in real samples. The serum was diluted 10 times with PBS (PH = 7.4), and the DOX
sample at a determined concentration was added. The spiked human serum samples
were measured using the proposed aptasensors. As is shown in Table 2, the recoveries
of the sensors in human serum samples ranged from 94.8% to 109.0%, indicating that the
aptasensor has the potential for clinical application.
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Table 2. Results of aptasensor determination of DOX in spiked human serum samples.

Sample Added (µM) Detected (µM) Recovery (%)

Human serum 0.5 0.474 94.8
1 1.071 107.1
2 2.180 109.0

4. Conclusions

In this work, we fabricated an rGO/AuNPs-modified aptamer sensor for the electro-
chemical detection of DOX. Compared with previous research, this work has the following
highlights: (1) rGO/AuNPs were successfully modified on the working electrode by one-
step electrochemical deposition. They enlarged the surface area and decreased the electron
transfer impedance of the electrode, thus improving the sensitivity of the sensor. (2) The
signal of the sensor came from the conformational change of DOX binding to the aptamer,
so it can reduce the interference caused by the non-specific adsorption of other substances.
(3) No other reagents needed to be added during the assay, which makes the operation
simple and convenient. We believe that this new aptamer sensor can provide a timely,
convenient, simple, and sensitive platform for the detection of DOX.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano13071223/s1, Figure S1: (a,b) Scanning electron microscope (SEM) images of bare
electrode at different scales; (c) the energy dispersive X-Ray spectrometer (EDS) of the rGO/AuNPs-
modified electrode.
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