Developing Mg-Gd-Dy-Ag-Zn-Zr Alloy with High Strength via Nano-Precipitation
Abstract
:1. Introduction
2. Experimental Methods
3. Results
3.1. Mechanical Properties
3.2. Initial Microstructure
3.3. Microstructure Evolution after Ageing
4. Discussion
5. Conclusions
- (a)
- The as-cast alloy is mainly composed of α-Mg equiaxed grains, semi-continuous Mg5(Dy,Gd) phase, and nano-spacing SFs at GBs. The microstructure of the as-extruded alloy is characterized by the formation of fine DRXed grains, the dynamic formation of basal plane nano-spacing SFs within grains, and the original 14H-LPSO phase distributed in the matrix.
- (b)
- The YS increments caused by nano-precipitates are 277 MPa in the ET6 alloy, which mainly comes from the β′ nano-precipitates with (1-210) habit planes and γ″ nano-precipitates with (0001) habit planes. The YS increments caused by DRXed grains is about 78 MPa in the ET6 alloy, which also contributes to the high strength.
- (c)
- The addition of multiple elements (“large” atoms: Gd, Dy; “small” atoms: Zn, Ag) results in multiple aging precipitation sequences in the alloy, promoting the formation of basal-prismatic nano-precipitates network structure in the studied peak-aged alloys. The network structure consists of β′ nano-precipitates with (1-210) habit planes, γ″ nano-precipitates with (0001) habit planes, basal plane SFs, and 14H-LPSO phase.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Zhang, J.; Wang, J.; Li, Z.; Xie, J.; Liu, S.; Guan, K.; Wu, R. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. Int. J. Miner. Metall. Mater. 2021, 28, 30. [Google Scholar] [CrossRef]
- Duan, Y.; Gao, Q.; Zhang, Z.; Zhou, J.; Li, Y.; Kou, Z.; Lan, S.; Tang, S. Chemical Ordering induced Strengthening in Lightweight Mg Alloys. Nanomaterials 2022, 12, 3488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, J.; Xie, J.; Liu, S.; He, Y.; Guan, K.; Wu, R. Developing a low-alloyed fine-grained Mg alloy with high strength-ductility based on dislocation evolution and grain boundary segregation. Scr. Mater. 2022, 209, 114414. [Google Scholar] [CrossRef]
- Nie, J. Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A 2012, 43, 3891. [Google Scholar] [CrossRef][Green Version]
- Zhang, J.; Liu, S.; Wu, R.; Hou, L.; Zhang, M. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems. J. Magnes. Alloys 2018, 6, 277. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Wu, R.; Feng, Y.; Liu, S.; Wang, X.; Jiao, Y.; Yang, Q.; Meng, J. Development of high mechanical properties and moderate thermal conductivity cast Mg alloy with multiple RE via heat treatment. J. Mater. Sci. Technol. 2018, 34, 1076–1084. [Google Scholar] [CrossRef]
- Zhou, H.; Cheng, G.; Ma, X.; Xu, W.; Mathaudhu, S.; Wang, Q.; Zhu, Y. Effect of Ag on interfacial segregation in Mg-Gd-Y-(Ag)-Zr alloy. Acta Mater. 2015, 95, 20–29. [Google Scholar] [CrossRef]
- Gao, X.; Nie, J. Enhanced precipitation-hardening in Mg-Gd alloys containing Ag and Zn. Scr. Mater. 2008, 58, 619–622. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.; Wu, R.; Liu, S.; Song, B.; Jiao, Y.; Yang, Q.; Hou, L.G. Improving age hardening response and mechanical properties of a new Mg-RE alloy via simple pre-cold rolling. J. Alloys Compd. 2019, 777, 1375–1385. [Google Scholar] [CrossRef]
- Sun, J.; Li, B.J.; Yuan, J.; Li, X.K.; Xu, B.; Yang, Z.; Han, J.; Jiang, J.; Wu, G.S.; Ma, A. Developing a high-performance Mg-5.7Gd-1.9Ag wrought alloy via hot rolling and aging. Mater. Sci. Eng. A 2021, 803, 140707. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Zhang, Z.; Yang, Q.; Guan, K.; He, Y.; Wang, R.; Zhang, H.; Qiu, X.; Wu, R.Z. New insights on the different corrosion mechanisms of Mg alloys with solute-enriched stacking faults or long period stacking ordered phase. Corros. Sci. 2022, 198, 110163. [Google Scholar] [CrossRef]
- Humphreys, J.; Rohrer, G.S.; Rollett, A. Recrystallization and Related Annealing Phenomena; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Xie, J.; Zhang, Z.; Liu, S.J.; Zhang, J.H.; Wang, J.; He, Y.Y.; Lu, L.W.; Jiao, Y.L.; Wu, R.Z. Designing new low alloyed Mg-RE alloys with high strength and ductility via high-speed extrusion. Int. J. Miner. Metall. Mater. 2023, 30, 82–91. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Q.; Li, B.; Guan, K.; Wang, N.; Jiang, B.; Sun, C.; Zhang, D.; Li, X.; Cao, Z.; et al. Improvement on both strength and ductility of Mg-Sm-Zn-Zr casting alloy via Yb addition. J. Alloys Compd. 2019, 805, 811–821. [Google Scholar] [CrossRef]
- Pan, H.C.; Qin, G.; Huang, Y.; Ren, Y.; Sha, X.; Han, X.; Liu, Z.; Li, C.; Wu, X.; Chen, H.; et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Acta Mater. 2018, 149, 350–363. [Google Scholar] [CrossRef][Green Version]
- Kim, J.K.; Ko, W.; Sandlöbes, S.; Heidelmann, M.; Grabowski, B.; Raabe, D. The role of metastable LPSO building block clusters in phase transformations of an Mg-Y-Zn alloy. Acta Mater. 2016, 112, 171–183. [Google Scholar] [CrossRef]
- Trang, T.; Zhang, J.; Kim, J.; Zargaran, A.; Hwang, J.; Suh, B.; Kim, N. Designing a magnesium alloy with high strength and high formability. Nat. Commun. 2018, 9, 2522. [Google Scholar] [CrossRef][Green Version]
- Ma, Z.; Li, G.; Peng, Q.; Peng, X.; Chen, D.; Zhang, H.; Yang, Y.; Wei, G.; Xi, W. Microstructural evolution and enhanced mechanical properties of Mg-Gd-Y-Zn-Zr alloy via centrifugal casting, ring-rolling and aging. J. Magnes. Alloys 2022, 10, 119–128. [Google Scholar] [CrossRef]
- Li, R.; Li, H.; Pan, H.; Xie, D.; Zhang, J.; Fang, D.; Dai, Y.; Zhao, D.; Zhang, H. Achieving exceptionally high strength in binary Mg-13Gd alloy by strong texture and substantial precipitates. Scr. Mater. 2021, 193, 142. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Rong, W.; Wu, Y.; Peng, L.; Nie, J.; Birbilis, N. On the precipitation in an Ag-containing Mg-Gd-Zr alloy. Metall. Mater. Trans. A 2018, 49, 673–694. [Google Scholar] [CrossRef]
- Xu, C.; Nakata, T.; Qiao, X.; Zheng, M.; Wu, K.; Kamado, S. Ageing behavior of extruded Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr (wt.%) alloy containing LPSO phase and γ′ precipitates. Sci. Rep. 2017, 7, 43391. [Google Scholar] [CrossRef][Green Version]
- Williams, D.; Carter, C. Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed.; Springer Science: New York, NY, USA, 2009. [Google Scholar]
- Hutchinson, C.R.; Nie, J.F.; Gorsse, S. Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 alloy. Metall. Mater. Trans. A 2005, 36, 2093–2105. [Google Scholar] [CrossRef]
- Cahn, J.W. Nucleation on dislocations. Acta Metall. 1957, 5, 169–172. [Google Scholar] [CrossRef]
- Yong, Q. Theory of nucleation dislocations. J. Mater. Sci. Technol. 1990, 6, 239–243. [Google Scholar]
- He, S.; Zeng, X.; Peng, L.; Gao, X.; Nie, J.; Ding, W. Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal ageing at 250 °C. J. Alloys Compd. 2006, 421, 309–313. [Google Scholar] [CrossRef]
- Wang, B.; Liu, C.; Gao, Y.; Jiang, S.; Chen, Z.; Luo, Z. Microstructure evolution and mechanical properties of Mg-Gd-Y-Ag-Zr alloy fabricated by multidirectional forging and ageing treatment. Mater. Sci. Eng. A 2017, 702, 22–28. [Google Scholar] [CrossRef]
- Yamasaki, M.; Sasaki, M.; Nishijima, M.; Hiraga, K.; Kawamura, Y. Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg-Zn-Gd alloys during isothermal aging at high temperature. Acta Mater. 2007, 55, 6798–6805. [Google Scholar] [CrossRef]
- Xu, C.; Nakata, T.; Fan, G.H.; Li, X.W.; Tang, G.Z.; Kamado, S. Enhancing strength and creep resistance of Mg-Gd-Y-Zn-Zr alloy by substituting Mn for Zr. J. Magnes. Alloys 2019, 7, 388–399. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, X.; Pan, H.; Che, C.; Zhang, X.; Zhang, D.; Nie, C.; Meng, J.; Qin, G. Role of Yb in enhancing the heat resistance of cast Mg-Sm-Zn alloy. Mater. Sci. Eng. A 2022, 841, 143009. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, C.M.; Wan, Y.C.; Yang, P.W.; Shu, X. Microstructures and mechanical properties of Mg-10Gd-6Y-2Zn-0.6Zr (wt.%) alloy. J. Alloys Compd. 2011, 509, 8832–8839. [Google Scholar] [CrossRef]
- He, S.; Zeng, X.; Peng, L.; Gao, X.; Nie, J.; Ding, W. Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy. J. Alloys Compd. 2007, 427, 316–323. [Google Scholar] [CrossRef]
Alloy | Actual Composition (wt.%) | |||||
---|---|---|---|---|---|---|
Mg | Gd | Dy | Ag | Zn | Zr | |
EQ142X alloy | Balance | 9.35 ± 0.13 | 4.15 ± 0.05 | 1.45 ± 0.03 | 1.21 ± 0.03 | 0.48 ± 0.02 |
Samples | Processing Technology |
---|---|
As-cast | Pouring at 730 °C |
T4 | Solution treated at 500 °C for 8.5 h and then quenched by hot water |
T6 | Peak-aged condition of T4 alloy aged at 200 °C |
As-extruded | The T4 alloy was extruded by employing an extrusion ratio of 18:1 at 350 °C with a die-exit speed of 9 mm s−1 |
ET6 | Peak-aged condition of as-extruded alloy aged at 200 °C |
Alloys | YS (MPa) | UTS (MPa) | Elongation (%) | Hardness (HV) |
---|---|---|---|---|
As-cast | 204 ± 3 | 255 ± 2 | 5.7 ± 0.8 | - |
T4 | 197 ± 3 | 270 ± 3 | 9.7 ± 1.2 | 93 ± 5 |
T6 | 312 ± 4 | 356 ± 2 | 4.5 ± 0.5 | 136 ± 5 |
As-extruded | 352 ± 4 | 403 ± 3 | 7.9 ± 0.6 | 103 ± 4 |
ET6 | 396 ± 4 | 451 ± 5 | 6.4 ± 0.8 | 144 ± 5 |
Samples | Grain Boundary Strengthening (MPa) | Dislocations Strengthening (MPa) | Orowan Strengthening (MPa) | Solution Strengthening (MPa) | YS Predicted Result (MPa) | YS Experimental Results (MPa) |
---|---|---|---|---|---|---|
T6 | 28 | - | 229 | 42 | 310 | 312 |
ET6 | 78 | 15 | 277 | 24 | 405 | 396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Zhang, J.; Liu, S.; You, Z.; Zhang, Z.; Zhao, T.; Zhang, X.; Wu, R. Developing Mg-Gd-Dy-Ag-Zn-Zr Alloy with High Strength via Nano-Precipitation. Nanomaterials 2023, 13, 1219. https://doi.org/10.3390/nano13071219
Xie J, Zhang J, Liu S, You Z, Zhang Z, Zhao T, Zhang X, Wu R. Developing Mg-Gd-Dy-Ag-Zn-Zr Alloy with High Strength via Nano-Precipitation. Nanomaterials. 2023; 13(7):1219. https://doi.org/10.3390/nano13071219
Chicago/Turabian StyleXie, Jinshu, Jinghuai Zhang, Shujuan Liu, Zihao You, Zhi Zhang, Tengfei Zhao, Xiaobo Zhang, and Ruizhi Wu. 2023. "Developing Mg-Gd-Dy-Ag-Zn-Zr Alloy with High Strength via Nano-Precipitation" Nanomaterials 13, no. 7: 1219. https://doi.org/10.3390/nano13071219