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Abstract: The influence of stress jump conditions on a steady, fully developed two-layer magnetohy-
drodynamic electro-osmotic nanofluid in the microchannel, is investigated numerically. A nanofluid
is partially filled into the microchannel, while a porous medium, saturated with nanofluid, is im-
mersed into the other half of the microchannel. The Brinkmann-extended Darcy equation is used to
effectively explain the nanofluid flow in the porous region. In both regions, electric double layers are
examined, whereas at the interface, Ochoa-Tapia and Whitaker’s stress jump condition is considered.
The non-dimensional velocity, temperature, and volume fraction of the nanoparticle profiles are
examined, by varying physical parameters. Additionally, the Darcy number, as well as the coefficient
in the stress jump condition, are investigated for their profound effect on skin friction and Nusselt
number. It is concluded that, taking into account the change in shear stress at the interface has a
significant impact on fluid flow problems.

Keywords: microchannel; nanofluid; stress jump condition; porous medium; electric double layer (EDL)

1. Introduction

Two-layer flow in a microchannel is essential in practical applications like crude-oil
extraction, thermal insulation, solidification of castings, and several other geophysical
applications. Another example is the design of micro-electromechanical systems (MEMS).
In addition, fluid flow properties depict unusual behaviors in a microchannel compared to
a macro-scale channel. Consequently, it is of significant importance to scientifically study
the two-layer microchannel flow, particularly taking into account the possible effect of
EDL. Due to this reason, many research studies have been conducted on flows through
a microchannel, considering the electric double layer effects for Newtonian fluids [1–4],
and non-Newtonian fluids [5–10]. However, most of the works mentioned above are
connected to single-layer flow. The flow attributes of immiscible liquid are noticeable in
the biochemical and biological investigation processes [11]. A laminar fluid interface is
rendered when two or more immiscible liquids stream in microfluidic devices. In most
cases, the influences of the fluid interface are noteworthy and cannot be neglected in the
investigation of biological sample separation. Some research studies that have investigated
this correlation include the work Gao et al. [12], who obtained theoretical and experimental
results to investigate the two-fluid electro-osmotic flow in microchannels, but the Maxwell
stress balance condition at the interface was not taken in account. Later, Gao et al. [13]
modified the interface condition, by including the shear stress balances, that result in
a jump at the interface resulting from the specific surface charge density. Some more
exciting work [14–16] includes the investigation of two-layer microchannel flow along
with the electro-osmotic effect, and using the shear stress balance interface condition.
Recently, Niazi and Xu [17] used nanofluids to assess the electro-osmotic effect in two-layer
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microchannel flow. They used Buongiorno’s model [18] to construct a mathematical model,
and obtained the analytic solutions for their problem. Mainly, they concluded that the flow
behavior was altered dramatically in the presence of Brownian diffusion, thermophoresis
diffusion, and viscosity. H. Tahir et al. [19] used the optimal homotopy approach, to
analyze the performance of a hybridized two-phase ferromagnetic nanofluid of ferrite
nanoparticles, and their effects on heat transmission in the flow of the hybrid nanofluid.
Based on their investigation, it can be concluded that the thermophysical characteristics
and Curie temperature with two or more ferrites suspended in two or more base fluids,
can be enhanced. In-depth analysis by Hammad et al.[20], covers the numerous uses of
nanofluids, as well as the implications of variables such as nanoparticle type and size,
which may open up new prospects for commercial applications.

Porous media are also critical for exploring the applications described above. For
example, thickening alloys do not have a eutectic composition, resulting in the separation
of the frozen and liquid portions of the casting. In this instance, the partially frozen
areas can be thought of as a porous medium with varying permeability. While porous
media have been used for a wide range of commercial and geological purposes, there
are opportunities to investigate alternative uses, particularly for energy systems, such as
compact heat exchangers, heat pipes, electronic cooling, and solar collectors, by exploiting
porous media. For certain applications, it is not necessary to entirely fill the system with
the porous medium; partial filling is adequate. In comparison to a system that is totally
filled with porous media, partial filling reduces the pressure drop. In addition, partial
filling prevents contact between the porous material and the surface, reducing heat loss
from the porous material to the surface. Such a criterion is necessary in a system where the
primary objective is to improve the thermal coupling between the porous medium and fluid
flow, and reduce the system’s high thermal coupling with the surrounding environment.
For instance, the objective of Mohamad’s [21] solar air heater, was to increase the rate of
heat transfer from the porous medium, which is heated by solar radiation, to air, while
minimizing heat loss to the ambient environment. In addition, partial filling helps to
decrease the pressure drop. A partial filling of a channel with porous media drives the
flow to exit from the core area to the outer region, depending on the permeability of the
medium. This decreases the thickness of the boundary layer and therefore increases the
rate of heat transfer. The porous medium also alters the effective thermal conductivity and
heat capacity of the flow, and the solid matrix increases the rate of radiative heat transfer
in a gas-based system. Hence, increases in heat transfer occur through three mechanisms:
flow redistribution, thermal conductivity adjustment, and medium radiative property
modification. Beavers and Joseph [22] pioneered this type of study, by modeling flow in a
porous material using Darcy’s law. The effects of the interfacial layer on fluid mechanics and
heat transmission are discussed in further detail in [23,24]. These articles investigate non-
Darcian effects in flow in porous media, via the Brinkman–Forchheimer-extended Darcy
equation. In [24], the authors presented a precise solution for the flow field at the interface.
The fluid layer is located among a semi-infinite porous object and an impermeable outer
border, in their proposed model. Nield [25] demonstrated that velocity shear is continuous
across the porous part of the contact. This is not always the case for solid sections, as the
averaged velocity shears do not always coincide. Then, Kuznetsov [26], and Ochoa-Tapia
and Whitaker [27,28], developed the strategy for comparing the Brinkman-extended Darcy
law to Stokes’ equations, that need a discontinuity in the stress but retain continuity in the
fluid flow. They determined that solving at the interface utilizing the Ochoa-Tapia and
Whitaker conditions, resolves the over-determination problem demonstrated in Nield [25].

We intend to investigate fluid flow in a microchannel half filled with porous media,
in light of the practical implications of two-layer fluid flow in a microchannel. In the
region with a porous layer, the Brinkmann-extended Darcy’s law is used to mathematically
predict fluid flow, whereas Buongiorno’s model is used in the other zone. For this topic, we
used the stress jump boundary condition at the interface, which had been overlooked in
prior research, as well as the impacts of the electric double layer (EDL) and magnetic field.
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Utilizing the interface stress jump condition, it is possible to correct for the overestimation
of the physical parameters involved in the problem. The Darcy number and stress jump
condition variations are critical in analyzing heat and mass transport in this two-layer fluid
flow problem.

2. Problem Formulation

We analyze the flow of an electro-osmotic fluid within a microchannel divided into
two distinct regions (I and II). The elongated rectangular microchannel is horizontally
positioned, with a width W, that is adequately greater than its height H (W/H > 4; see
Dauenhauer and Majdalani [29]). The length of the microchannel, L, is believed to be
sufficient to prevent the apertures at the end from having an effect. H1 + H2 = H are
the height of the lower and upper layers, respectively. The interface among immiscible
fluids is planar, based on the aforementioned assumptions. The parallel flow proposition
can also be used to reduce the dimensions of the problem to two (2D). In Figure 1, the
Cartesian coordinate system (x, y, z) is used, with x along the streamwise direction, y is
parallel to the surfaces and normal to x, and z is perpendicular to the plates, parallel to each
other. The lower and top walls have zeta potentials, temperature and nanoparticle volumes
are represented as ζ̄1, Tw, Cw and ζ̄2, Tw, Cw. Region I receives nanofluid containing Al2O3
nanoparticles, whereas Region II has porous media saturated with TiO2. Table 1 lists the
physical parameters of the fluid and nanoparticles. The Buongiorno model is used to
simulate nanofluid flow in Region I. The Brinkmann-extended Darcy law is employed to
illustrate the flow of nanofluids in a porous layer region. The steady-state laminar flow
is considered to be one-dimensional, owing to the significant presence of an electric field.
due to the presence of an electric double layer (EDL) and the applied pressure.

Figure 1. A schematic of the geometry.

Table 1. Numeric values for the physical attributes of the fluid and nanoparticles.

Physical Characteristic H2O Al2O3 TiO2

cp (J · kg−1 ·K−1) 4179.0 765.0 686.2
ρ (kg ·m−3) 997.1 3970.0 4250.0

k (W ·m−1 ·K−1) 0.6130 40.0 8.9538
α× 10−7 (m2 · s−1) 1.47 131.70 30.70

β× 10−5 (K−1) 21.00 0.85 0.90

The governing equations are modeled after the Navier-Stokes equations, with the
driving force deriving from the electric and magnetic field, along with a pressure gradient.
The mathematical models representing the physical phenomena in both the regions are
as follows:
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Region I:

∇2ψ1 = −
ρe1

ε0εR1

, (1)

∇ ·V1 =0, (2)

(ρ1) f (V1 · ∇)V1 =−∇P + µ1∇2V1 + F1, (3)

(ρ1cp1) f (V1 · ∇)T1 =kn f 1∇2T1 + (ρ1cp1)s

[
DB1∇T1 · ∇C1

+
DT1

T0
∇T1 · ∇T1

]
+ µ1Φ1, (4)

(V1 · ∇)C1 =DB1∇
2C1 +

DT1

T0
∇2T1. (5)

Region II:

∇2ψ2 = − ρe2
ε0εR2

, (6)

∇ ·V2 =0, (7)

(ρ2) f

ε2 (V2 · ∇)V2 =−∇P +
µ2

ε
∇2V2 −

µ2

κ
V2 + F2, (8)

(ρ2cp2) f V2 · ∇T2 =kn f 2(∇ · ∇T2) + ε(ρ2cp2)s

[
DB2∇T2 · ∇C2

+
DT2

T0
∇T2 · ∇T2

]
+ Φ2, (9)

1
ε
(V2 · ∇)C2 =DB2∇

2C2 +
DT2

T0
∇2T2. (10)

Here, ψ1 and ψ2 represent the dimensional electrostatic potentials in the two regions, and
Φ1 and Φ2 are the viscous dissipation factor in two regions. The general forms of Φ1 and
Φ2 are as follows:

Φ1 =2
((

∂u1

∂x

)2

+

(
∂v1

∂y

)2

+

(
∂w1

∂z

)2)
+

(
∂v1

∂x
+

∂u1

∂y

)2

+

(
∂w1

∂y
+

∂v1

∂z

)2

+

(
∂u1

∂z
+

∂w1

∂x

)2

− 2
3

(
∂u1

∂x
+

∂v1

∂y
+

∂w1

∂z

)2

, (11)

Φ2 =
µ2

κ
V ·V + µe f f V · ∇2V (12)

2.1. Problem Statement and Assumptions

1. The direction of the flow is assumed to be along the x-axis.
2. The flow velocity in the z-direction is negligible, since the length of microchannel L is

much larger than its height H. Hence wi ≈ 0,
3. The velocity component in the y-direction is considered to be zero, i.e., vi = 0,
4. The flow is assumed to uni-directional along the x-axis but its properties changes with

respect to the z-axis, hence Vi = (ui(z), 0, 0),
5. The body force, Fi = æeiE + Ji × B, represents the sum of electro-osmosis and the

electromagnetic forces, where E = (Ex, Ey, 0) is the electric field, B = (0, 0, B0) is the
applied magnetic field, and Ji = σi(E + Vi × B) is the current density of the ion.

6. The inertial effects in the porous region of the microchannel (Region II) are negligible.
7. Region I of the channel is filled with nanofluid, while the channel’s Region II is filled

with the porous medium saturated with nanofluid, having uniform permeability only.
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8. Proceeding from the analysis presented in [26], the stress jump condition is utilized at
the interface. Simultaneously, the electric potential, temperature, nanoparticle concen-
tration, and flux at the interface are presumed to be continuous. Finally, the no-slip
condition is applied to the velocity boundaries, while the temperature and nanoparti-
cle concentration are assumed to have a constant distribution on the boundaries.

In light of the above assumptions, Equations (1)–(10) now take the form,
Region I: (−H1 ≤ z ≤ 0)

∂2ψ1

∂z2 =−
ρe1(z)
ε0εR1

(13)

µ1
∂2u1

∂z2 =
∂P
∂x
− Exρe1 − σ1B0(Ey − B0u1) (14)

u1
∂T1

∂x
+ w1

∂T1

∂z
=α1

∂2T1

∂z2 + τ1

[
DB1

∂T1

∂z
∂C1

∂z

+
DT1

T0

(
∂T1

∂z

)2]
+

µ1

(ρ1cp1) f

(
∂u1

∂z

)2

(15)

u1
∂C1

∂x
+ w1

∂C1

∂z
=DB1

∂2C1

∂z2 +
DT1

T0

∂2T1

∂z2 . (16)

Region II: (0 ≤ z ≤ H2)

∂2ψ2

∂z2 =−
ρe2(z)
ε0εR2

, (17)

µe f f
∂2u2

∂z2 =
∂P
∂x
− Exρe2 − σ2B0(Ey − B0u2)−

µ2

κ
u2, (18)

µe f f
∂T2

∂x
+ w2

∂T2

∂z
=α2

∂2T2

∂z2 + τ2

[
DB2

∂T2

∂z
∂C2

∂z

+
DT2

T0

(
∂T2

∂z

)2]
+

1
(ρ2cp2) f

µ2

κ
u2

2, (19)

u2
∂C2

∂x
+ w2

∂C2

∂z
=DB2

∂2C2

∂z2 +
DT2

T0

∂2T2

∂z2 . (20)

Here, αi = kn fi
/(ρicpi ) f is the thermal diffusivity, with i = 1, 2 representing Region I

and Region II, τ1 = (ρ1cp1)s/(ρ1cp1) f , τ2 = ε(ρ2cp2)s/(ρ2cp2) f is the heat capacity ratio
between the two regions of the microchannel, and µe f f = µ2/ε, where ε is the porosity.
The boundary conditions for the above stated governing equations in the two regions are
as follows:
when z = −H1:

ψ1 = ζ1, u1 = 0, T1 = Tw, C1 = Cw, (21)

when z = 0:

ψ1 = ψ2, u1 = u2, T1 = T2, C1 = C2, (22)

ε1
∂ψ1

∂z
= ε2

∂ψ2

∂z
, µe f f

∂u2

∂z
− µ1

∂u1

∂z
=

βµ1√
κ

u2, kn f1

∂T1

∂z
= kn f2

∂T2

∂z
, (23)

DT1

T0

∂T1

∂z
+ DB1

∂C1

∂z
=

DT2

T0

∂T2

∂z
+ DB2

∂C2

∂z
, (24)

when z = H2:
ψ2 = ζ2, u2 = 0, T2 = Tw, C2 = Cw. (25)

where β is the adjustable stress jump coefficient and κ is the permeability of the porous
medium. The Poisson–Boltzmann equation [29], simplifies the relationship between the
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electrostatic potential ψi, near the surface and the cumulative number of electrical charges
for each unit of volume ρei, at any point in the fluid.

∂2ψi

∂z2 =
2n0ẑe
ε0εRi

sinh
(

ẑeψi(z)
kBT̂

)
, (26)

When the electrical potential is sufficiently small in comparison to the thermal energy
of the ions, the Debye–Huckel linear approximation holds true, i.e., |kBT̂| � |ẑeψi(z)|,
Equation (26) is reduced to

∂2ψi

∂z2 −
(

2n0ẑ2e2

ε0εRi kBT̂

)
ψi = 0, i = 1, 2. (27)

2.2. Problem Non-Dimensionalization

To transform the governing equations to dimensionless forms, we introduce the
following similarity transformations:

η =
z̄
H

, Ψi =
ẑeψi

kBT̂
, ui =

ūi
Uai

, θi =
T̄i − T0

Tw − T0
, φi =

C̄i − C0

Cw − C0
, (28)

Substituting the non-dimensional variables defined in Equation (28), the fluid flow region
is changed to [−h1, h2], with h1 = H1/H, h2 = H2/H, and the governing equations now
take the form:
Region I (−h1 ≤ η ≤ 0):

Ψ′′1 − k2
1Ψ1 = 0, (29)

u′′1 − Ha2
1u1 + Se1 Ha1 + Γ1 + k2

1Ψ1 = 0, (30)

θ′′1 + NB1θ′1φ′1 + NT1(θ
′
1)

2 + Br1(u′1)
2 = 0, (31)

φ′′1 +
NT1

NB1
θ′′1 = 0. (32)

Region II (0 ≤ η ≤ h2):

Ψ′′2 − k2
2Ψ2 = 0, (33)

u′′2 +
1

γ2 (−Ha2
2u2 + Se2 Ha2 + Γ2 + k2

2Ψ2 −
1

Da
u2) = 0, (34)

θ′′2 + NB2θ′2φ′2 + NT2(θ
′
2)

2 +
Br2

Da
u2

2 = 0, (35)

φ′′2 +
NT2

NB2
θ′′2 = 0. (36)

The corresponding boundary conditions are reduced to,
when η = −h1:

Ψ1 = ζ1, u1 = 0, θ1 = 1, φ1 = 1, (37)

when η = 0:

Ψ1 = Ψ2, Ψ′1 = λεΨ′2, u1 =
λε

λµ
u2,

γ2λεu′2 − u′1 =
β√
Da

λε

λµ
u2, θ1 = θ2, θ′1 = λn f θ′2,

NB1(φ
′
1 − λDB φ′2) + NT1(θ

′
1 − λDT θ′2) = 0, φ1 = φ2 (38)

when η = h2:
Ψ2 = ζ2, u2 = 0, θ2 = 1, φ2 = 1. (39)
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where ζi = ẑe0ζ̄i/(kBT̂) is the zeta potential, ki the electro-osmotic parameter.

ki = ẑeH

√
2n0

ε0εRikBT̂
, Hai = B0H

√
σi
µi

, Sei =
Ey H
Uai

√
σi
µi

,

Γi = −
H2

µiUai

dP̄
dx̄

, Uai =
ε0εRiExkBT̂

µi ẑe
, Da =

κ

H2 , γ =

√
µe f f

µ2

NBi =
τiDBi(Cw − C0)

αi
, NTi =

τiDTi(Tw − T0)

αiT0
,

Bri =
µiU2

ai
kn f i(Tw − T0)

(40)

To measure the difference of physical properties, the following ratios are defined:

λε =
ε2

ε1
, λn f =

kn f 2

kn f 1
, λDB =

DB2

DB1
, λµ =

µ2

µ1

λσ =
σ2

σ1
, λDt =

DT2

DT1
, λα =

α2

α1
, λτ =

τ2

τ1
(41)

where the physical parameters of the two regions are related as follows:

Ua2 =
λε

λµ
Ua1, Se2 =

√
λµλσ

λε
Se1 , Br2 =

λ2
ε

λµλn f
Br1, Γ2 =

1
λε

Γ1,

k2 =
1√
λε

k1, NB2 =
λτλDB

λα
NB1, NT2 =

λτλDT

λα
NT1,

Ha2 =

√
λσ

λµ
Ha1 (42)

The required ratios are calculated using the values from Table 1. Such as
λn f = 1, λµ = 1, λα = 1, and λτ = 0.96, and other ratios are chosen as λσ = 1.2, λε = 1.2,
λDB = 1.2, λDT = 1.2, and λρ = 1.

2.3. Skin Friction Coefficient and Nusselt Number

For the heat and mass transfer analyses we calculated the skin friction coefficient and
Nusselt number as follows:

C f i =
τwi

1
2 ρiU2

ai
, Nui =

Hiqwi
kn f i(Tw − T0)

(43)

where i = 1, 2 denotes regions I and II, τwi denotes the shear stress, and qwi denotes the
heat flux, which can be calculated using

τwi = µi
∂ūi
∂z̄

∣∣∣∣
z̄=(−1)i Hi

, qwi = −kn f i
∂T̄i
∂z̄

∣∣∣∣
z̄=(−1)i Hi

. (44)

Substituting Equations (28) and (44) into Equation (43), we get

C f i =
2

Rei
u′i((−1)ihi), Nui = −

hi
H

θ′i((−1)ihi) (45)

where Rei = HρiUai
µi

is the Reynolds number. The relationship between two regions’
Reynolds numbers is defined by

Re2 =
λρλε

λ2
µ

Re1 (46)
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where λρ = ρ2/ρ1.

3. Problem Solution

Because Equations (29), (30), (33) and (34), are all second-order ODEs, they can be
solved for their exact solutions. The MATLAB built-in function dsolve is used to solve Equa-
tions (29), (30), (33), and (34), with respect to the boundary conditions Equations (37)–(39)
for Ψ1, u1, Ψ2, and u2. Because Equations (31), (32), (35), and (36) are nonlinear ODEs
and exact solutions are difficult to obtain; thus, numerical simulations based on FDM are
performed, as described in [30]. The nonlinearity of the equations is dealt with by Picard’s
method. The iterative procedure stops once the following criterion is met.

∑N
j=1 |Fi+1(η)− Fi(η)|

∑N
j=1 |Fi+1(η)|

≤ 10−8, i ≥ 1, (47)

where F represents the field variables ψ, u, θ, and φ, and N represents the number of grid
points. Here, 10−8 is the predefined tolerance error. To confirm our findings, we replicated
those of Niazi and Xu [17], by setting β = 0, Da = 1, and γ = 1. The comparisons for
the velocity and temperature profiles are shown in Figure 2, which validates the results of
the current problem. In this analysis, values of the parameters are selected based on the
properties of the nanofluid given in Table 1. These values can vary depending upon the
values of other parameters, to keep the system stable. For some values of parameters, such
as β and Se1, we have referred to the papers by Kuznetsov [26] and Niazi et al. [17].

η

θ(
η)

-0.33 -0.165 0 0.165 0.33 0.495 0.66
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

Br1= 1
Br1= 2
Br1= 3

Region I Region II

(a)

η

u(
η)

-0.33 -0.165 0 0.165 0.33 0.495 0.66
0

0.2

0.4

0.6

0.8

1

1.2

1.4

κ1=1
κ1=3
κ1=5
κ1=10

Region I Region II

(b)

Figure 2. Comparison of solutions for (a) Temperature profile θ(η) with the variation in Br1 and
(b) Velocity profile u(η) with the variation in κ1. Line: Niazi results [17]. Symbols: numerical results
when β = 0, Da = 1, γ = 1, ζ1 = ζ2 = κ1 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Γ1 = 1, Br1 = 0.1, and
NB1 = NT1 = 0.1.

Figure 3 illustrates the velocity profiles calculated for various different values of β and
Da. The interface is located at η = 0. According to the analysis in [26], we chose values
for β that range between −0.8 and +0.8, and a Darcy number of the order of 10−1 or less.
Figure 3a demonstrates that a change in stress can fundamentally alter the velocity profiles.
When the stress at the interface increases, the slope of the tangent to the velocity distribution
at η = 0 changes dramatically. By gradually increasing the coefficient β, which accounts
for the stress jump, the velocity is reduced noticeably. When β is negative, this apparent
impact is particularly strong. Additionally, when the stress jump coefficient is varied, there
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is no change in the velocity profile near the upper wall. The Darcy number’s effect on
the velocity profile is depicted in Figure 3b. The curve computed for Da = 10−2 contains
three segments. One portion is contained within the momentum boundary layer adjacent
to the boundary at η = −1, while the other portion is contained within the momentum
boundary layer adjacent to the interface at η = 0. As per the classical Darcy law, the fluid
velocity increases inbetween two boundary layers, but stays unchanged in the porous
layer. Additionally, as it enters the porous layer, the velocity decreases more rapidly in this
third section. Similarly, the curves corresponding to Da = 10−3 and Da = 10−4 are almost
identical; the difference is simply not visible due to the low velocity in the porous layer.
There is no point on the curve Da = 10−1 where the velocity is constant. This is because, as
the Darcy number increases, the width of the momentum boundary layers decreases.
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Figure 3. Velocity, u(η), for different values of stress jump coefficient (β) and Darcy number (Da),
when ζ1 = ζ2 = κ1 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Γ1 = 1, Br1 = 0.1, and NB1 = NT1 = 0.1.

The influences of the physical ratios on the flow characteristics are displayed in
Figure 4. It is observed in Figure 4a that, with the increase in the ratio of electric conductivity
(λε), the average velocity increases in Region I. At the same time, it decreases in Region II
with a porous medium. The fluid in Region I conducts electricity better than in Region II.
Further, in Figure 4b, an increase in the viscosity ratio (λµ) decreases the velocity throughout
the channel. In the case of a larger viscosity ratio, the velocity is smaller in Region I and
Region II. The reason for these phenomena, is that when the viscosity ratio λµ > 1, the
fluid viscosity in Region I is greater than that in Region II, resulting in a larger value of the
average velocity in Region I.



Nanomaterials 2023, 13, 1198 10 of 17

(a)

η

U
(η

)

-0.33 -0.165 0 0.165 0.33 0.495 0.66
0

0.02

0.04

0.06

0.08

0.1

0.12

λµ=1
λµ=3
λµ=5

Region I Region II

(b)

Figure 4. Velocity field, U(η), for different values of physical ratios λε and λµ, when β = 0.05,
Da = 0.01, γ = 1, ζ1 = ζ2 = κ1 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Γ1 = 1, Br1 = 0.1, and
NB1 = NT1 = 0.1.

The significant influence of stress jump condition coefficient and Darcy number on
the temperature profile was examined, and is shown in Figure 5. It can be observed that
the temperature decreases throughout the channel for larger values of β, as displayed in
Figure 5a. This figure demonstrates the significant effect of the stress jump on the non-
dimensional temperature profile. A peak in the θ(η) is observed for a considerably smaller
value of β = −0.8, and this curve flattens for a very large value of β. This illustrates that
the increase in the stress jump coefficient reduces the temperature throughout the channel.
While an adverse behavior in θ(η) is seen in the case of the Darcy number, as shown
in Figure 5b. For lower values of the Darcy number, the temperature profile decreases
significantly in the two regions. It is also observed that the temperature profile is indeed
more significant in Region II than in Region I, which in turn depicts that the heat transfer
rate is higher in the porous layer. Figure 6 shows the variation in the temperature profile
for distinct values of the Brinkman number and viscosity ratio. An increase in Brinkman
number Br1, tends to increase the temperature profile, as in Figure 6a. A higher value of Br1,
slows the conduction of heat produced and hence the temperature rise is more considerable.
The viscosity ratio shows an opposite trend on θ(η) as compared to the Brinkman number,
as given in Figure 6b. As the value of the viscosity ratio, λµ, increases, the temperature
profile decreases throughout the channel. Physically, as the value of λµ increases, so does
the amount of molecular conduction in the second region. As a result, the temperature of
Region II decreases, which results in a decrease in the temperature throughout the channel,
as illustrated in Figure 6b. However, when the viscosity ratio, λµ, is minor (λµ ≤ 1), the
position of the maximal value for θ(η) shifts towards Region II. For larger values of λµ, the
position shifts towards Region I. This shift occurs because the fluid interface must satisfy
the boundary condition for continuous thermal flux.
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Figure 5. Temperature, θ(η), for different values of stress jump coefficient (β) and Darcy number
(Da), when ζ1 = ζ2 = κ1 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Γ1 = 1, Br1 = 0.1, and NB1 = NT1 = 0.1.
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Figure 6. Temperature, θ(η), for different values of physical ratios λn f and λµ, when β = 0.05,
Da = 0.01, γ = 1, ζ1 = ζ2 = κ1 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Γ1 = 1, Br1 = 0.1, and
NB1 = NT1 = 0.1.

Figure 7 illustrates the evolution of the nanoparticle volume fraction φ(η) as the stress
jump coefficient (β) and Darcy number (Da) increase. As shown in Figure 7a, the volume
fraction of nanoparticles decreases rapidly as β decreases, particularly for negative values
of β. Nevertheless, an adverse behavior is seen in the φ(η) profile for the case of the Darcy
number, as given in Figure 7b. The increase in Darcy number causes a significant decrease
in the nanoparticle profile. In contrast, smaller values of the Darcy number have a minimal
impact on the φ(η) and give almost a flat curve for Da = 10−3 and Da = 10−4. The impacts
of the physical ratios and Brinkman number on the nanoparticle volume fraction, are shown
in Figure 8. It is observed that the influence of Br1 and λµ on φ(η), show opposite trends.
Figure 7a shows that the φ(η) decreases as the Brinkman number increases, due to the
increased fluid viscosity; while increasing the value of λµ accelerates the movement of
nanoparticles toward the upper wall, this results in a decrease in the nanoparticle volume
fraction, as illustrated in Figure 8b.
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Figure 7. Concentration of nanoparticles, φ(η), for different values of adjustable coefficient in
stress jump condition (β) and Darcy number (Da), when ζ1 = ζ2 = κ1 = 1, H1 = 1, H2 = 2,
Ha1 = Se1 = Γ1 = 1, Br1 = 0.1, and NB1 = NT1 = 0.1.
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Figure 8. Concentration of nanoparticles, φ(η), for different values of physical ratios λn f and λµ,
when β = 0.05, Da = 0.01, γ = 1, ζ1 = ζ2 = κ1 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Γ1 = 1, Br1 = 0.1,
and NB1 = NT1 = 0.1.

The variations in skin friction coefficient, C f i, with κ1, β, and Da are presented in
Figures 9 and 10, respectively. Since it has hitherto been observed that the β and Da
produce a significant effect on the velocity profile, given in Figure 3, this pattern also holds
true for the fluctuation of C f i, but the orientation on the upper wall is the inverse of the
direction on the lower wall. When β < 0, the local skin friction (C f 1) rises, for increasing
values of κ1, and this increase becomes increasingly evident for larger values of κ1. On the
other hand, for β ≥ 0, there is a slight increase in skin friction (C f 1) for larger values of
κ1 but for smaller values of κ1 this increase is negligible. At the upper wall, variation in
the β parameter has no effect on the skin friction coefficient (C f 2) when the electro-osmotic
parameter is changed. Figure 10 illustrates the increase in the skin friction coefficient on
the lower wall and the decrease on the upper wall, as κ1 increases. This is because the
coordinates are set in such a way that at the interface between the two layers, the signs on
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the top and bottom walls are reversed. An increase in the Darcy number increases the C f 1
significantly, but for smaller values of the Darcy number, this increase is not prominent.
While at the upper wall, the decrease in C f 2 is evident for the increasing values of Darcy
number. The influence of Nusselt number (Nui) with β and Da, for several values of κ1, are
shown in Figures 11 and 12, respectively. As can be seen from these figures, increasing the
value of κ1 decreases the Nusselt number on the top wall, while increasing it on the bottom
wall. Physically, the increase in κ1 reduces the EDL effect, which leads to the enhancement
of the fluid motion. Thus, it causes more heat conduction than heat convection, causing the
decrease in the Nusselt number at the upper wall. On the other hand, for larger values of β
and Da, the effect on Nui is more evident, both at the upper and lower wall. As a result,
calculations that do not take the increase in stress into account, may suffer a significant loss
of accuracy.
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Figure 9. Local skin friction coefficient for different values of adjustable coefficient in stress jump
condition (β), when Da = 0.01, ζ1 = ζ2 = κ1 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Γ1 = 1, Br1 = 0.1,
and NB1 = NT1 = 0.1.
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Figure 10. Local skin friction coefficient for different values of Darcy number (Da), when β = 0.05,
ζ1 = ζ2 = κ1 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Γ1 = 1, Br1 = 0.1, and NB1 = NT1 = 0.1.



Nanomaterials 2023, 13, 1198 14 of 17

κ1

N
u 1

0 2 4 6 8 10
-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

β= −0.8
β= −0.4
β= 0
β= 0.4
β= 0.8

(a)

κ1

N
u 2

0 2 4 6 8 10
0

0.007

0.014

0.021

0.028

0.035

0.042

0.049

β= −0.8
β= −0.4
β= 0
β= 0.4
β= 0.8

(b)

Figure 11. Nusselt number for different values of adjustable coefficient in stress jump condition
(β), when Da = 0.01, ζ1 = ζ2 = κ1 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Γ1 = 1, Br1 = 0.1, and
NB1 = NT1 = 0.1.

(a) (b)

Figure 12. Nusselt number for different values of Darcy number (Da), when β = 0.05, ζ1 = ζ2 =

κ1 = 1, H1 = 1, H2 = 2, Ha1 = Se1 = Γ1 = 1, Br1 = 0.1, and NB1 = NT1 = 0.1.

4. Conclusions

In the EDL effect, physical analysis was performed on two-layer nanofluids in a
microchannel partially filled with porous medium. The mathematical model for the two-
layer nanofluid flow is developed using Buongiorno’s model. At the interface, Ochoa-Tapia
and Whitaker’s proposed jump boundary condition is used, to map the Brinkman-extended
Darcy equation to the Stokes’ equation. The finite difference method is employed to solve
and investigate the nonlinear system of differential equations. Exact solutions are obtained
for the electrostatic potential and velocity. Different from the work of Niazi and Xu [17], we
have considered a partially filled microchannel with a porous medium and used the stress
jump condition at the interface. Two momentum boundary layers are formed in the porous
region, to ensure uniform permeability of the porous medium, as illustrated graphically.
One of these boundary layers forms immediately adjacent to the impermeable boundary,
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while the other forms immediately adjacent to the interface. The fluid velocity is constant
between these momentum boundary layers. For this reason, the Darcy number and stress
jump coefficient show significant variations with velocity, temperature, and nanoparticle
concentration. In addition, increasing the physical ratio, i.e., viscosity, decreases the velocity
and temperature profiles. Simultaneously, an adverse trend is observed in the volume
fraction profile of the nanoparticles. Additionally, the effect of the Darcy number and
stress jump coefficient on the skin friction, and the Nusselt number on the upper and
lower microchannel walls, are visible. As a result, it is concluded that the stress jump
boundary condition is critical for solving fluid flow problems in a wide variety of practical
applications.
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Nomenclature
The following abbreviations are used in this manuscript:

C1, C2 volumetric fractions of nanoparticles;
C f 1, C f 2 local skin friction coefficients;
DB1 , DB2 Brownian diffusion coefficients;
DT1 , DT2 thermophoretic diffusion coefficients;
P pressure, Pa;
T1, T2 non-dimensional nanofluid temperatures in two regions, K;
V1, V2 non-dimensional velocities of the fluid, m/s;
Br1, Br2 Brinkman numbers;
B0 magnetic field in z-direction;
Da Darcy number;
(cp) f , (cp)s fluid and nanoparticle specific heats;
e charge of a proton;
C0 reference volume fraction for nanoparticles;
Cw volume fraction for nanoparticles on the microchannel walls;
Es non-dimensional external electric field parameter;
Ex, Ey electric field in x− and y−directions, respectively;
F1, F2 body forces caused by uniform electromagnetic field;
H channel height;
H1, H2 channel height of two regions ;
h1, h2 non-dimensional heights of two regions;
Ha1, Ha2 Hartman numbers;
kB Boltzmann constant;
k f 1, k f 2 fluid’s thermal conductivity in two regions;
kn f the ratio of the fluid’s thermal conductivities;
L microchannel length;
n0 bulk ionic concentration;
NB1, NB2 Brownian motion parameters;
NT1, NT2 thermophoresis parameters;
Nu1, Nu2 local Nusselt numbers;
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P non-dimensional pressure gradient;
qw1, qw2 heat flux on the channel walls;
Re1, Re2 Reynolds numbers;
Se1, Se2 lateral direction electric field strengths;
Ua1, Ua2 average velocities of the fluid;
u1, u2 velocity of fluid in two regions;
W microchannel’s width;
x, y, z Cartesian coordinates;
ẑ ion valency.
Greek Letters
α1, α2 thermal diffusivity of the nanofluid, m2s−1;
ε porosity of the porous region;
ε0 permittivity of vacuum, mkgs;
εR1 , εR2 medium’s dielectric constants;
ε, medium’s dielectric constant ratio;
κ permeability of the porous region;
γ constant coefficient;
β the adjustable stress jump coefficient;
ψ1, ψ2 dimensional electrostatic potential, V;
(ρn)s nanoparticles density, kgm−3;
(ρn) f nanofluid’s density, kgm−3;
ρe1

, ρe2
densities of charges, Cm−3;

η non-dimensional spatial variable;
Γ1, Γ2 non-dimensional pressure gradient parameters;
k1, k2 electro-osmotic parameters;
λN the ratio of the any physical quantity N, where N ∈ ε, n f , µ, σ, DB, DT , α, τ, ρ;
µ1, µ2 fluid’s dynamic viscosity in two regions;
µe f f the ratio of viscosity to porosity in Region II;
θ0 dimensionless reference temperature;
θ1, θ2 temperature distributions (non-dimensional);
Ψ1, Ψ2 non-dimensional nano-particle volume fractions;
ρ̄e1, ρ̄e2 densities of the charges;
τw1, τw2 shear stresses on channel’s opposite walls;
ψ1, ψ2 non-dimensional nano-particle volume fractions;
ζ̄1, ζ̄2 zeta potentials (dimensional).
ζ1, ζ2 zeta potentials (non-dimensional);
Φ1, Φ2 viscous dissipation factors;
Subscripts Indices
1, 2 indices for regions I and II;
s, f subscript notations for solids and fluids;
w indicate the quantities on walls of the channel.
Abbreviations
EDL electric double layer;
FDM finite difference method.
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