#
Signatures of Electric Field and Layer Separation Effects on the Spin-Valley Physics of MoSe_{2}/WSe_{2} Heterobilayers: From Energy Bands to Dipolar Excitons

^{*}

## Abstract

**:**

## 1. Introduction

## 2. General Features of MoSe${}_{2}$/WSe${}_{2}$ High-Symmetry Stackings

**k.p**framework [76,86,87,88,89,90], in which additional symmetry-breaking terms can be easily incorporated. Specifically for the K point, the irreps of the energy bands are given in Table 2. As the ${K}_{4}$ and ${K}_{5}$ irreps are complex, the irreps at −K can be found by taking the complex conjugate ${K}_{4}\to {K}_{5}={K}_{4}^{*}$, ${K}_{5}\to {K}_{4}={K}_{5}^{*}$. The top valence band at the $\mathsf{\Gamma}$ point (2-fold degenerate) belongs to the (real) irrep ${\mathsf{\Gamma}}_{4}$ of the ${C}_{3v}$ group, and the lower conduction bands at the Q point both belong to the (real) irrep ${Q}_{2}$ of the ${C}_{1}$ group. To clarify our notation, we identify the irreps by their reciprocal space point, i.e., K${}_{i}$ irreps belong to the K point, ${\mathsf{\Gamma}}_{i}$ irreps for the $\mathsf{\Gamma}$ point, and Q${}_{i}$ irreps for the Q point. We also emphasize that the irreps are obtained using the full wave function calculated within DFT, as implemented in WIEN2k [81]. All the irreps and symmetry groups discussed here follow the character tables of Ref. [91].

## 3. Spin-Valley Physics at the Band Edges

#### 3.1. Pristine Heterostructures

#### 3.2. Electric Field Dependence

#### 3.3. Interlayer Distance Variation

## 4. Low-Energy Dipolar Excitons

#### 4.1. Symmetry-Based Selection Rules

#### 4.2. Effective g-Factors

#### 4.3. Electric Field Dependence

**k.p**formalism, allowing the investigation of spin-dependent physics beyond the parabolic approximation [73,75].

#### 4.4. Interlayer Distance Variation

## 5. Concluding Remarks

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A. Computational Details

## References

- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS
_{2}: A New Direct-Gap Semiconductor. Phys. Rev. Lett.**2010**, 105, 136805. [Google Scholar] [CrossRef] [PubMed][Green Version] - Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS
_{2}. Nano Lett.**2010**, 10, 1271. [Google Scholar] [CrossRef] [PubMed] - Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS
_{2}. Phys. Rev. B**2011**, 83, 245213. [Google Scholar] [CrossRef][Green Version] - Kumar, A.; Ahluwalia, P. Electronic structure of transition metal dichalcogenides monolayers 1H-MX
_{2}(M= Mo, W; X= S, Se, Te) from ab-initio theory: New direct band gap semiconductors. Eur. Phys. J. B**2012**, 85, 186. [Google Scholar] [CrossRef] - Xiao, D.; Liu, G.B.; Feng, W.; Xu, X.; Yao, W. Coupled Spin and Valley Physics in Monolayers of MoS
_{2}and Other Group-VI Dichalcogenides. Phys. Rev. Lett.**2012**, 108, 196802. [Google Scholar] [CrossRef][Green Version] - Mak, K.F.; He, K.; Shan, J.; Heinz, T.F. Control of valley polarization in monolayer MoS
_{2}by optical helicity. Nat. Nanotechnol.**2012**, 7, 494. [Google Scholar] [CrossRef] - Mak, K.F.; McGill, K.L.; Park, J.; McEuen, P.L. The valley Hall effect in MoS
_{2}transistors. Science**2014**, 344, 1489. [Google Scholar] [CrossRef][Green Version] - Qiu, D.Y.; da Jornada, F.H.; Louie, S.G. Optical Spectrum of MoS
_{2}: Many-Body Effects and Diversity of Exciton States. Phys. Rev. Lett.**2013**, 111, 216805. [Google Scholar] [CrossRef][Green Version] - Xu, X.; Yao, W.; Xiao, D.; Heinz, T.F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys.
**2014**, 10, 343. [Google Scholar] [CrossRef] - Chernikov, A.; Berkelbach, T.C.; Hill, H.M.; Rigosi, A.; Li, Y.; Aslan, O.B.; Reichman, D.R.; Hybertsen, M.S.; Heinz, T.F. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS
_{2}. Phys. Rev. Lett.**2014**, 113, 076802. [Google Scholar] [CrossRef][Green Version] - Stier, A.V.; McCreary, K.M.; Jonker, B.T.; Kono, J.; Crooker, S.A. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS
_{2}and MoS_{2}to 65 Tesla. Nat. Commun.**2016**, 7, 10643. [Google Scholar] [CrossRef][Green Version] - Schaibley, J.R.; Yu, H.; Clark, G.; Rivera, P.; Ross, J.S.; Seyler, K.L.; Yao, W.; Xu, X. Valleytronics in 2D materials. Nat. Rev. Mater.
**2016**, 1, 16055. [Google Scholar] [CrossRef] - Raja, A.; Chaves, A.; Yu, J.; Arefe, G.; Hill, H.M.; Rigosi, A.F.; Berkelbach, T.C.; Nagler, P.; Schüller, C.; Korn, T.; et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun.
**2017**, 8, 15251. [Google Scholar] [CrossRef] [PubMed][Green Version] - Wang, G.; Chernikov, A.; Glazov, M.M.; Heinz, T.F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys.
**2018**, 90, 021001. [Google Scholar] [CrossRef][Green Version] - Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature
**2013**, 499, 419. [Google Scholar] [CrossRef][Green Version] - Song, J.C.W.; Gabor, N.M. Electron quantum metamaterials in van der Waals heterostructures. Nat. Nanotechnol.
**2018**, 13, 986. [Google Scholar] [CrossRef][Green Version] - Sierra, J.F.; Fabian, J.; Kawakami, R.K.; Roche, S.; Valenzuela, S.O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol.
**2021**, 16, 856. [Google Scholar] [CrossRef] - Ciarrocchi, A.; Tagarelli, F.; Avsar, A.; Kis, A. Excitonic devices with van der Waals heterostructures: Valleytronics meets twistronics. Nat. Rev. Mater.
**2022**, 7, 449. [Google Scholar] [CrossRef] - Tran, K.; Moody, G.; Wu, F.; Lu, X.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D.A.; Quan, J.; Singh, A.; et al. Evidence for moiré excitons in van der Waals heterostructures. Nature
**2019**, 567, 71. [Google Scholar] [CrossRef] [PubMed][Green Version] - Seyler, K.L.; Rivera, P.; Yu, H.; Wilson, N.P.; Ray, E.L.; Mandrus, D.G.; Yan, J.; Yao, W.; Xu, X. Signatures of moiré-trapped valley excitons in MoSe
_{2}/WSe_{2}heterobilayers. Nature**2019**, 567, 66. [Google Scholar] [CrossRef][Green Version] - Leisgang, N.; Shree, S.; Paradisanos, I.; Sponfeldner, L.; Robert, C.; Lagarde, D.; Balocchi, A.; Watanabe, K.; Taniguchi, T.; Marie, X.; et al. Giant Stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol.
**2020**, 15, 901. [Google Scholar] [CrossRef] [PubMed] - Lin, K.Q.; Faria Junior, P.E.; Bauer, J.M.; Peng, B.; Monserrat, B.; Gmitra, M.; Fabian, J.; Bange, S.; Lupton, J.M. Twist-angle engineering of excitonic quantum interference and optical nonlinearities in stacked 2D semiconductors. Nat. Commun.
**2021**, 12, 1553. [Google Scholar] [CrossRef] - Gmitra, M.; Fabian, J. Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics. Phys. Rev. B
**2015**, 92, 155403. [Google Scholar] [CrossRef][Green Version] - Gmitra, M.; Kochan, D.; Högl, P.; Fabian, J. Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides. Phys. Rev. B
**2016**, 93, 155104. [Google Scholar] [CrossRef][Green Version] - Avsar, A.; Unuchek, D.; Liu, J.; Sanchez, O.L.; Watanabe, K.; Taniguchi, T.; Özyilmaz, B.; Kis, A. Optospintronics in Graphene via Proximity Coupling. ACS Nano
**2017**, 11, 11678. [Google Scholar] [CrossRef] [PubMed] - Luo, Y.K.; Xu, J.; Zhu, T.; Wu, G.; McCormick, E.J.; Zhan, W.; Neupane, M.R.; Kawakami, R.K. Opto-Valleytronic Spin Injection in Monolayer MoS
_{2}/Few-Layer Graphene Hybrid Spin Valves. Nano Lett.**2017**, 17, 3877. [Google Scholar] [CrossRef][Green Version] - Faria Junior, P.E.; Naimer, T.; McCreary, K.M.; Jonker, B.T.; Finley, J.J.; Crooker, S.; Fabian, J.; Stier, A.V. Proximity-enhanced valley Zeeman splitting at the WS
_{2}/graphene interface. arXiv**2023**, arXiv:2301.12234. [Google Scholar] - Cadiz, F.; Courtade, E.; Robert, C.; Wang, G.; Shen, Y.; Cai, H.; Taniguchi, T.; Watanabe, K.; Carrere, H.; Lagarde, D.; et al. Excitonic Linewidth Approaching the Homogeneous Limit in MoS
_{2}-Based van der Waals Heterostructures. Phys. Rev. X**2017**, 7, 021026. [Google Scholar] [CrossRef][Green Version] - Goryca, M.; Li, J.; Stier, A.V.; Taniguchi, T.; Watanabe, K.; Courtade, E.; Shree, S.; Robert, C.; Urbaszek, B.; Marie, X.; et al. Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields. Nat. Commun.
**2019**, 10, 4172. [Google Scholar] [CrossRef][Green Version] - Yankowitz, M.; Ma, Q.; Jarillo-Herrero, P.; LeRoy, B.J. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys.
**2019**, 1, 112. [Google Scholar] [CrossRef] - Zollner, K.; Faria Junior, P.E.; Fabian, J. Proximity exchange effects in MoSe
_{2}and WSe_{2}heterostructures with CrI_{3}: Twist angle, layer, and gate dependence. Phys. Rev. B**2019**, 100, 085128. [Google Scholar] [CrossRef][Green Version] - Zollner, K.; Faria Junior, P.E.; Fabian, J. Strong manipulation of the valley splitting upon twisting and gating in MoSe
_{2}/CrI_{3}and WSe_{2}/CrI_{3}van der Waals heterostructures. Phys. Rev. B**2023**, 107, 035112. [Google Scholar] [CrossRef] - Zhong, D.; Seyler, K.L.; Linpeng, X.; Cheng, R.; Sivadas, N.; Huang, B.; Schmidgall, E.; Taniguchi, T.; Watanabe, K.; McGuire, M.A.; et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv.
**2017**, 3, e1603113. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ciorciaro, L.; Kroner, M.; Watanabe, K.; Taniguchi, T.; Imamoglu, A. Observation of magnetic proximity effect using resonant optical spectroscopy of an electrically tunable MoSe
_{2}/CrBr_{3}heterostructure. Phys. Rev. Lett.**2020**, 124, 197401. [Google Scholar] [CrossRef] [PubMed] - Choi, J.; Lane, C.; Zhu, J.X.; Crooker, S.A. Asymmetrict magnetic proximity interactions in MoSe
_{2}/CrBr_{3}van der Waals heterostructures. Nat. Mater.**2022**, 22, 305–310. [Google Scholar] [CrossRef] [PubMed] - Chaves, A.; Azadani, J.G.; Özçelik, V.O.; Grassi, R.; Low, T. Electrical control of excitons in van der Waals heterostructures with type-II band alignment. Phys. Rev. B
**2018**, 98, 121302. [Google Scholar] [CrossRef][Green Version] - Gillen, R.; Maultzsch, J. Interlayer excitons in MoSe
_{2}/WSe_{2}heterostructures from first principles. Phys. Rev. B**2018**, 97, 165306. [Google Scholar] [CrossRef][Green Version] - Torun, E.; Miranda, H.P.C.; Molina-Sánchez, A.; Wirtz, L. Interlayer and intralayer excitons in MoS
_{2}/WS_{2}and MoSe_{2}/WSe_{2}heterobilayers. Phys. Rev. B**2018**, 97, 245427. [Google Scholar] [CrossRef][Green Version] - Rivera, P.; Schaibley, J.R.; Jones, A.M.; Ross, J.S.; Wu, S.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N.J.; et al. Observation of long-lived interlayer excitons in monolayer MoSe
_{2}–WSe_{2}heterostructures. Nat. Commun.**2015**, 6, 6242. [Google Scholar] [CrossRef][Green Version] - Miller, B.; Steinhoff, A.; Pano, B.; Klein, J.; Jahnke, F.; Holleitner, A.; Wurstbauer, U. Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures. Nano Lett.
**2017**, 17, 5229. [Google Scholar] [CrossRef][Green Version] - Nagler, P.; Plechinger, G.; Ballottin, M.V.; Mitioglu, A.; Meier, S.; Paradiso, N.; Strunk, C.; Chernikov, A.; Christianen, P.C.M.; Schüller, C.; et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater.
**2017**, 4, 025112. [Google Scholar] [CrossRef][Green Version] - Ciarrocchi, A.; Unuchek, D.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics
**2019**, 13, 131. [Google Scholar] [CrossRef] - Baek, H.; Brotons-Gisbert, M.; Koong, Z.X.; Campbell, A.; Rambach, M.; Watanabe, K.; Taniguchi, T.; Gerardot, B.D. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv.
**2020**, 6, eaba8526. [Google Scholar] [CrossRef] [PubMed] - Shanks, D.N.; Mahdikhanysarvejahany, F.; Muccianti, C.; Alfrey, A.; Koehler, M.R.; Mandrus, D.G.; Taniguchi, T.; Watanabe, K.; Yu, H.; LeRoy, B.J.; et al. Nanoscale Trapping of Interlayer Excitons in a 2D Semiconductor Heterostructure. Nano Lett.
**2021**, 21, 5641. [Google Scholar] [CrossRef] [PubMed] - Barré, E.; Karni, O.; Liu, E.; O’Beirne, A.L.; Chen, X.; Ribeiro, H.B.; Yu, L.; Kim, B.; Watanabe, K.; Taniguchi, T.; et al. Optical absorption of interlayer excitons in transition-metal dichalcogenide heterostructures. Science
**2022**, 376, 406. [Google Scholar] [CrossRef] - Shanks, D.N.; Mahdikhanysarvejahany, F.; Stanfill, T.G.; Koehler, M.R.; Mandrus, D.G.; Taniguchi, T.; Watanabe, K.; LeRoy, B.J.; Schaibley, J.R. Interlayer Exciton Diode and Transistor. Nano Lett.
**2022**, 22, 6599. [Google Scholar] [CrossRef] [PubMed] - Nagler, P.; Ballottin, M.V.; Mitioglu, A.A.; Mooshammer, F.; Paradiso, N.; Strunk, C.; Huber, R.; Chernikov, A.; Christianen, P.C.M.; Schüller, C.; et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun.
**2017**, 8, 1551. [Google Scholar] [CrossRef][Green Version] - Mahdikhanysarvejahany, F.; Shanks, D.N.; Muccianti, C.; Badada, B.H.; Idi, I.; Alfrey, A.; Raglow, S.; Koehler, M.R.; Mandrus, D.G.; Taniguchi, T.; et al. Temperature dependent moiré trapping of interlayer excitons in MoSe
_{2}-WSe_{2}heterostructures. Npj 2D Mater. Appl.**2021**, 5, 67. [Google Scholar] [CrossRef] - Holler, J.; Selig, M.; Kempf, M.; Zipfel, J.; Nagler, P.; Katzer, M.; Katsch, F.; Ballottin, M.V.; Mitioglu, A.A.; Chernikov, A.; et al. Interlayer exciton valley polarization dynamics in large magnetic fields. Phys. Rev. B
**2022**, 105, 085303. [Google Scholar] [CrossRef] - Smirnov, D.S.; Holler, J.; Kempf, M.; Zipfel, J.; Nagler, P.; Ballottin, M.V.; Mitioglu, A.A.; Chernikov, A.; Christianen, P.C.M.; Schüller, C.; et al. Valley-magnetophonon resonance for interlayer excitons. 2D Mater.
**2022**, 9, 045016. [Google Scholar] [CrossRef] - Li, Z.; Tabataba-Vakili, F.; Zhao, S.; Rupp, A.; Bilgin, I.; Herdegen, Z.; März, B.; Watanabe, K.; Taniguchi, T.; Schleder, G.R.; et al. Lattice reconstruction in MoSe
_{2}-WSe_{2}heterobilayers synthesized by chemical vapor deposition. arXiv**2022**, arXiv:2212.07686. [Google Scholar] - Choi, J.; Florian, M.; Steinhoff, A.; Erben, D.; Tran, K.; Kim, D.S.; Sun, L.; Quan, J.; Claassen, R.; Majumder, S.; et al. Twist Angle-Dependent Interlayer Exciton Lifetimes in van der Waals Heterostructures. Phys. Rev. Lett.
**2021**, 126, 047401. [Google Scholar] [CrossRef] - Förg, M.; Baimuratov, A.S.; Kruchinin, S.Y.; Vovk, I.A.; Scherzer, J.; Förste, J.; Funk, V.; Watanabe, K.; Taniguchi, T.; Högele, A. Moiré excitons in MoSe
_{2}-WSe_{2}heterobilayers and heterotrilayers. Nat. Commun.**2021**, 12, 1656. [Google Scholar] [CrossRef] [PubMed] - Enaldiev, V.V.; Zólyomi, V.; Yelgel, C.; Magorrian, S.J.; Fal’ko, V.I. Stacking Domains and Dislocation Networks in Marginally Twisted Bilayers of Transition Metal Dichalcogenides. Phys. Rev. Lett.
**2020**, 124, 206101. [Google Scholar] [CrossRef] - Holler, J.; Meier, S.; Kempf, M.; Nagler, P.; Watanabe, K.; Taniguchi, T.; Korn, T.; Schüller, C. Low-frequency Raman scattering in WSe
_{2}-MoSe_{2}heterobilayers: Evidence for atomic reconstruction. Appl. Phys. Lett.**2020**, 117, 013104. [Google Scholar] [CrossRef] - Parzefall, P.; Holler, J.; Scheuck, M.; Beer, A.; Lin, K.Q.; Peng, B.; Monserrat, B.; Nagler, P.; Kempf, M.; Korn, T.; et al. Moiré phonons in twisted MoSe
_{2}–WSe_{2}heterobilayers and their correlation with interlayer excitons. 2D Mater.**2021**, 8, 035030. [Google Scholar] [CrossRef] - Zhao, S.; Huang, X.; Li, Z.; Rupp, A.; Göser, J.; Vovk, I.A.; Kruchinin, S.Y.; Watanabe, K.; Taniguchi, T.; Bilgin, I.; et al. Excitons in mesoscopically reconstructed moiré hetersotructures. arXiv
**2022**, arXiv:2202.11139. [Google Scholar] - Hanbicki, A.T.; Chuang, H.J.; Rosenberger, M.R.; Hellberg, C.S.; Sivaram, S.V.; McCreary, K.M.; Mazin, I.I.; Jonker, B.T. Double Indirect Interlayer Exciton in a MoSe
_{2}/WSe_{2}van der Waals Heterostructure. ACS Nano**2018**, 12, 4719. [Google Scholar] [CrossRef][Green Version] - Sigl, L.; Sigger, F.; Kronowetter, F.; Kiemle, J.; Klein, J.; Watanabe, K.; Taniguchi, T.; Finley, J.J.; Wurstbauer, U.; Holleitner, A.W. Signatures of a degenerate many-body state of interlayer excitons in a van der Waals heterostack. Phys. Rev. Res.
**2020**, 2, 042044. [Google Scholar] [CrossRef] - Wang, T.; Miao, S.; Li, Z.; Meng, Y.; Lu, Z.; Lian, Z.; Blei, M.; Taniguchi, T.; Watanabe, K.; Tongay, S.; et al. Giant Valley-Zeeman Splitting from Spin-Singlet and Spin-Triplet Interlayer Excitons in WSe
_{2}/MoSe_{2}Heterostructure. Nano Lett.**2020**, 20, 694. [Google Scholar] [CrossRef][Green Version] - Delhomme, A.; Vaclavkova, D.; Slobodeniuk, A.; Orlita, M.; Potemski, M.; Basko, D.M.; Watanabe, K.; Taniguchi, T.; Mauro, D.; Barreteau, C.; et al. Flipping exciton angular momentum with chiral phonons in MoSe
_{2}/WSe_{2}heterobilayers. 2D Mater.**2020**, 7, 041002. [Google Scholar] [CrossRef] - Ramasubramaniam, A.; Naveh, D.; Towe, E. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B
**2011**, 84, 205325. [Google Scholar] [CrossRef] - Plankl, M.; Faria Junior, P.E.; Mooshammer, F.; Siday, T.; Zizlsperger, M.; Sandner, F.; Schiegl, F.; Maier, S.; Huber, M.A.; Gmitra, M.; et al. Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures. Nat. Photonics
**2021**, 15, 594. [Google Scholar] [CrossRef] - Woźniak, T.; Faria Junior, P.E.; Seifert, G.; Chaves, A.; Kunstmann, J. Exciton g factors of van der Waals heterostructures from first-principles calculations. Phys. Rev. B
**2020**, 101, 235408. [Google Scholar] [CrossRef] - Deilmann, T.; Krüger, P.; Rohlfing, M. Ab Initio Studies of Exciton g Factors: Monolayer Transition Metal Dichalcogenides in Magnetic Fields. Phys. Rev. Lett.
**2020**, 124, 226402. [Google Scholar] [CrossRef] - Förste, J.; Tepliakov, N.V.; Kruchinin, S.Y.; Lindlau, J.; Funk, V.; Förg, M.; Watanabe, K.; Taniguchi, T.; Baimuratov, A.S.; Högele, A. Exciton g-factors in monolayer and bilayer WSe
_{2}from experiment and theory. Nat. Commun.**2020**, 11, 4539. [Google Scholar] [CrossRef] - Xuan, F.; Quek, S.Y. Valley Zeeman effect and Landau levels in two-dimensional transition metal dichalcogenides. Phys. Rev. Res.
**2020**, 2, 033256. [Google Scholar] [CrossRef] - Yu, H.; Wang, Y.; Tong, Q.; Xu, X.; Yao, W. Anomalous Light Cones and Valley Optical Selection Rules of Interlayer Excitons in Twisted Heterobilayers. Phys. Rev. Lett.
**2015**, 115, 187002. [Google Scholar] [CrossRef][Green Version] - Yu, H.; Liu, G.B.; Tang, J.; Xu, X.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv.
**2017**, 3, e1701696. [Google Scholar] [CrossRef][Green Version] - Nieken, R.; Roche, A.; Mahdikhanysarvejahany, F.; Taniguchi, T.; Watanabe, K.; Koehler, M.R.; Mandrus, D.G.; Schaibley, J.; LeRoy, B.J. Direct STM measurements of R-type and H-type twisted MoSe
_{2}/WSe_{2}. APL Mater.**2022**, 10, 031107. [Google Scholar] [CrossRef] - Wu, F.; Lovorn, T.; MacDonald, A.H. Topological Exciton Bands in Moiré Heterojunctions. Phys. Rev. Lett.
**2017**, 118, 147401. [Google Scholar] [CrossRef] [PubMed][Green Version] - Yu, H.; Liu, G.B.; Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater.
**2018**, 5, 035021. [Google Scholar] [CrossRef][Green Version] - Wu, F.; Lovorn, T.; MacDonald, A.H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B
**2018**, 97, 035306. [Google Scholar] [CrossRef][Green Version] - Ruiz-Tijerina, D.A.; Soltero, I.; Mireles, F. Theory of moiré localized excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B
**2020**, 102, 195403. [Google Scholar] [CrossRef] - Erkensten, D.; Brem, S.; Malic, E. Exciton-exciton interaction in transition metal dichalcogenide monolayers and van der Waals heterostructures. Phys. Rev. B
**2021**, 103, 045426. [Google Scholar] [CrossRef] - Kormányos, A.; Burkard, G.; Gmitra, M.; Fabian, J.; Zólyomi, V.; Drummond, N.D.; Fal’ko, V. k· p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater.
**2015**, 2, 022001. [Google Scholar] [CrossRef] - Zollner, K.; Faria Junior, P.E.; Fabian, J. Strain-tunable orbital, spin-orbit, and optical properties of monolayer transition-metal dichalcogenides. Phys. Rev. B
**2019**, 100, 195126. [Google Scholar] [CrossRef][Green Version] - Nayak, P.K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J.U.; Ma, K.Y.; Jang, A.R.; Lim, H.; Kim, D.; Ryu, S.; et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano
**2017**, 11, 4041. [Google Scholar] [CrossRef] - Xu, K.; Xu, Y.; Zhang, H.; Peng, B.; Shao, H.; Ni, G.; Li, J.; Yao, M.; Lu, H.; Zhu, H.; et al. The role of Anderson’s rule in determining electronic, optical and transport properties of transition metal dichalcogenide heterostructures. Phys. Chem. Chem. Phys.
**2018**, 20, 30351. [Google Scholar] [CrossRef][Green Version] - Gillen, R. Interlayer Excitonic Spectra of Vertically Stacked MoSe
_{2}/WSe_{2}Heterobilayers. Phys. Status Solidi (b)**2021**, 258, 2000614. [Google Scholar] [CrossRef] - Blaha, P.; Schwarz, K.; Tran, F.; Laskowski, R.; Madsen, G.K.; Marks, L.D. WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys.
**2020**, 152, 074101. [Google Scholar] [CrossRef][Green Version] - Song, Y.; Dery, H. Transport Theory of Monolayer Transition-Metal Dichalcogenides through Symmetry. Phys. Rev. Lett.
**2013**, 111, 026601. [Google Scholar] [CrossRef][Green Version] - Dery, H.; Song, Y. Polarization analysis of excitons in monolayer and bilayer transition-metal dichalcogenides. Phys. Rev. B
**2015**, 92, 125431. [Google Scholar] [CrossRef][Green Version] - Gilardoni, C.M.; Hendriks, F.; van der Wal, C.H.; Guimarães, M.H.D. Symmetry and control of spin-scattering processes in two-dimensional transition metal dichalcogenides. Phys. Rev. B
**2021**, 103, 115410. [Google Scholar] [CrossRef] - Blundo, E.; Faria Junior, P.E.; Surrente, A.; Pettinari, G.; Prosnikov, M.A.; Olkowska-Pucko, K.; Zollner, K.; Woźniak, T.; Chaves, A.; Kazimierczuk, T.; et al. Strain-Induced Exciton Hybridization in WS
_{2}Monolayers Unveiled by Zeeman-Splitting Measurements. Phys. Rev. Lett.**2022**, 129, 067402. [Google Scholar] [CrossRef] - Dresselhaus, G. Spin-Orbit Coupling Effects in Zinc Blende Structures. Phys. Rev.
**1955**, 100, 580. [Google Scholar] [CrossRef] - Kane, E.O. Physics of III-V Compounds; Semiconductors and Semimetals; Academic Press: New York, NY, USA, 1966; Volume 1. [Google Scholar] [CrossRef]
- Kane, E.O. Band structure of indium antimonide. J. Phys. Chem. Solids
**1957**, 1, 249. [Google Scholar] [CrossRef] - Dresselhaus, M.S.; Dresselhaus, G.; Jorio, A. Group Theory: Application to the Physics of Condensed Matter; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Lew Yan Voon, L.C.; Willatzen, M. The k.p Method: Electronic Properties of Semiconductors; Springer: Berlin, Germany, 2009. [Google Scholar]
- Koster, G.F.; Dimmock, J.O.; Wheeler, R.G.; Statz, H. Properties of the Thirty-Two Point Groups; MIT Press: Cambridge, MA, USA, 1963; Volume 24. [Google Scholar]
- Xuan, F.; Quek, S.Y. Valley-filling instability and critical magnetic field for interaction-enhanced Zeeman response in doped WSe
_{2}monolayers. Npj Comput. Mater.**2021**, 7, 198. [Google Scholar] [CrossRef] - Heißenbüttel, M.C.; Deilmann, T.; Krüger, P.; Rohlfing, M. Valley-Dependent Interlayer Excitons in Magnetic WSe
_{2}/CrI_{3}. Nano Lett.**2021**, 21, 5173–5178. [Google Scholar] [CrossRef] - Covre, F.S.; Faria Junior, P.E.; Gordo, V.O.; de Brito, C.S.; Zhumagulov, Y.V.; Teodoro, M.D.; Couto, O.D.D.; Misoguti, L.; Pratavieira, S.; Andrade, M.B.; et al. Revealing the impact of strain in the optical properties of bubbles in monolayer MoSe
_{2}. Nanoscale**2022**, 14, 5758. [Google Scholar] [CrossRef] [PubMed] - Faria Junior, P.E.; Zollner, K.; Woźniak, T.; Kurpas, M.; Gmitra, M.; Fabian, J. First-principles insights into the spin-valley physics of strained transition metal dichalcogenides monolayers. New J. Phys.
**2022**, 24, 083004. [Google Scholar] [CrossRef] - Raiber, S.; Faria Junior, P.E.; Falter, D.; Feldl, S.; Marzena, P.; Watanabe, K.; Taniguchi, T.; Fabian, J.; Schüller, C. Ultrafast pseudospin quantum beats in multilayer WSe
_{2}and MoSe_{2}. Nat. Commun.**2022**, 13, 4997. [Google Scholar] [CrossRef] [PubMed] - Amit, T.; Hernangómez-Pérez, D.; Cohen, G.; Qiu, D.Y.; Refaely-Abramson, S. Tunable magneto-optical properties in MoS
_{2}via defect-induced exciton transitions. Phys. Rev. B**2022**, 106, L161407. [Google Scholar] [CrossRef] - Hötger, A.; Amit, T.; Klein, J.; Barthelmi, K.; Pelini, T.; Delhomme, A.; Rey, S.; Potemski, M.; Faugeras, C.; Cohen, G.; et al. Spin-defect characteristics of single sulfur vacancies in monolayer MoS
_{2}. arXiv**2022**, arXiv:2205.10286. [Google Scholar] - Gobato, Y.G.; de Brito, C.S.; Chaves, A.; Prosnikov, M.A.; Woźniak, T.; Guo, S.; Barcelos, I.D.; Milošević, M.V.; Withers, F.; Christianen, P.C.M. Distinctive g-Factor of Moiré-Confined Excitons in van der Waals Heterostructures. Nano Lett.
**2022**, 22, 8641. [Google Scholar] [CrossRef] - Lejaeghere, K.; Bihlmayer, G.; Björkman, T.; Blaha, P.; Blügel, S.; Blum, V.; Caliste, D.; Castelli, I.E.; Clark, S.J.; Corso, A.D.; et al. Reproducibility in density functional theory calculations of solids. Science
**2016**, 351, aad3000. [Google Scholar] [CrossRef][Green Version] - Gmitra, M.; Konschuh, S.; Ertler, C.; Ambrosch-Draxl, C.; Fabian, J. Band-structure topologies of graphene: Spin-orbit coupling effects from first principles. Phys. Rev. B
**2009**, 80, 235431. [Google Scholar] [CrossRef][Green Version] - Konschuh, S.; Gmitra, M.; Fabian, J. Tight-binding theory of the spin-orbit coupling in graphene. Phys. Rev. B
**2010**, 82, 245412. [Google Scholar] [CrossRef][Green Version] - Kurpas, M.; Gmitra, M.; Fabian, J. Spin-orbit coupling and spin relaxation in phosphorene: Intrinsic versus extrinsic effects. Phys. Rev. B
**2016**, 94, 155423. [Google Scholar] [CrossRef][Green Version] - Kurpas, M.; Faria Junior, P.E.; Gmitra, M.; Fabian, J. Spin-orbit coupling in elemental two-dimensional materials. Phys. Rev. B
**2019**, 100, 125422. [Google Scholar] [CrossRef][Green Version] - Faria Junior, P.E.; Kurpas, M.; Gmitra, M.; Fabian, J. k.p theory for phosphorene: Effective g-factors, Landau levels, and excitons. Phys. Rev. B
**2019**, 100, 115203. [Google Scholar] [CrossRef][Green Version] - Fülöp, B.; Márffy, A.; Zihlmann, S.; Gmitra, M.; Tóvári, E.; Szentpéteri, B.; Kedves, M.; Watanabe, K.; Taniguchi, T.; Fabian, J.; et al. Boosting proximity spin–orbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure. Npj 2D Mater. Appl.
**2021**, 5, 82. [Google Scholar] [CrossRef] - Oliva, R.; Woźniak, T.; Faria Junior, P.E.; Dybala, F.; Kopaczek, J.; Fabian, J.; Scharoch, P.; Kudrawiec, R. Strong Substrate Strain Effects in Multilayered WS
_{2}Revealed by High-Pressure Optical Measurements. ACS Appl. Mater. Interfaces**2022**, 14, 19857. [Google Scholar] [CrossRef] [PubMed] - Koo, Y.; Lee, H.; Ivanova, T.; Kefayati, A.; Perebeinos, V.; Khestanova, E.; Kravtsov, V.; Park, K.D. Tunable interlayer excitons and switchable interlayer trions via dynamic near-field cavity. Light. Sci. Appl.
**2023**, 12, 59. [Google Scholar] [CrossRef] [PubMed] - Kunstmann, J.; Mooshammer, F.; Nagler, P.; Chaves, A.; Stein, F.; Paradiso, N.; Plechinger, G.; Strunk, C.; Schüller, C.; Seifert, G.; et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys.
**2018**, 14, 801. [Google Scholar] [CrossRef][Green Version] - Robert, C.; Dery, H.; Ren, L.; Van Tuan, D.; Courtade, E.; Yang, M.; Urbaszek, B.; Lagarde, D.; Watanabe, K.; Taniguchi, T.; et al. Measurement of Conduction and Valence Bands g-Factors in a Transition Metal Dichalcogenide Monolayer. Phys. Rev. Lett.
**2021**, 126, 067403. [Google Scholar] [CrossRef] - Zinkiewicz, M.; Woźniak, T.; Kazimierczuk, T.; Kapuscinski, P.; Oreszczuk, K.; Grzeszczyk, M.; Bartoš, M.; Nogajewski, K.; Watanabe, K.; Taniguchi, T.; et al. Excitonic Complexes in n-Doped WS
_{2}Monolayer. Nano Lett.**2021**, 21, 2519. [Google Scholar] [CrossRef] - Robert, C.; Amand, T.; Cadiz, F.; Lagarde, D.; Courtade, E.; Manca, M.; Taniguchi, T.; Watanabe, K.; Urbaszek, B.; Marie, X. Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers. Phys. Rev. B
**2017**, 96, 155423. [Google Scholar] [CrossRef][Green Version] - Molas, M.R.; Slobodeniuk, A.O.; Kazimierczuk, T.; Nogajewski, K.; Bartos, M.; Kapuściński, P.; Oreszczuk, K.; Watanabe, K.; Taniguchi, T.; Faugeras, C.; et al. Probing and Manipulating Valley Coherence of Dark Excitons in Monolayer WSe
_{2}. Phys. Rev. Lett.**2019**, 123, 096803. [Google Scholar] [CrossRef][Green Version] - Zinkiewicz, M.; Slobodeniuk, A.; Kazimierczuk, T.; Kapuściński, P.; Oreszczuk, K.; Grzeszczyk, M.; Bartos, M.; Nogajewski, K.; Watanabe, K.; Taniguchi, T.; et al. Neutral and charged dark excitons in monolayer WS
_{2}. Nanoscale**2020**, 12, 18153. [Google Scholar] [CrossRef] - Inui, T.; Tanabe, Y.; Onodera, Y. Group Theory and Its Applications in Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 78. [Google Scholar]
- Joe, A.Y.; Jauregui, L.A.; Pistunova, K.; Mier Valdivia, A.M.; Lu, Z.; Wild, D.S.; Scuri, G.; De Greve, K.; Gelly, R.J.; Zhou, Y.; et al. Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Phys. Rev. B
**2021**, 103, L161411. [Google Scholar] [CrossRef] - Qian, C.; Troue, M.; Figueiredo, J.; Soubelet, P.; Villafañe, V.; Beierlein, J.; Klembt, S.; Stier, A.V.; Höfling, S.; Holleitner, A.W.; et al. Lasing of Moiré Trapped MoSe
_{2}/WSe_{2}Interlayer Excitons Coupled to a Nanocavity. arXiv**2023**, arXiv:2302.07046. [Google Scholar] - Roch, J.G.; Leisgang, N.; Froehlicher, G.; Makk, P.; Watanabe, K.; Taniguchi, T.; Schönenberger, C.; Warburton, R.J. Quantum-Confined Stark Effect in a MoS
_{2}. Nano Lett.**2018**, 18, 1070. [Google Scholar] [CrossRef] [PubMed][Green Version] - Chakraborty, C.; Mukherjee, A.; Qiu, L.; Vamivakas, A.N. Electrically tunable valley polarization and valley coherence in monolayer WSe
_{2}. Opt. Mater. Express**2019**, 9, 1479. [Google Scholar] [CrossRef] - Altaiary, M.M.; Liu, E.; Liang, C.T.; Hsiao, F.C.; van Baren, J.; Taniguchi, T.; Watanabe, K.; Gabor, N.M.; Chang, Y.C.; Lui, C.H. Electrically Switchable Intervalley Excitons with Strong Two-Phonon Scattering in Bilayer WSe
_{2}. Nano Lett.**2022**, 22, 1829. [Google Scholar] [CrossRef] - Huang, Z.; Zhao, Y.; Bo, T.; Chu, Y.; Tian, J.; Liu, L.; Yuan, Y.; Wu, F.; Zhao, J.; Xian, L.; et al. Spatially indirect intervalley excitons in bilayer WSe
_{2}. Phys. Rev. B**2022**, 105, L041409. [Google Scholar] [CrossRef] - Glazov, M.M.; Amand, T.; Marie, X.; Lagarde, D.; Bouet, L.; Urbaszek, B. Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys. Rev. B
**2014**, 89, 201302. [Google Scholar] [CrossRef][Green Version] - Glazov, M.M.; Ivchenko, E.L.; Wang, G.; Amand, T.; Marie, X.; Urbaszek, B.; Liu, B. Spin and valley dynamics of excitons in transition metal dichalcogenide monolayers. Phys. Status Solidi (b)
**2015**, 252, 2349. [Google Scholar] [CrossRef][Green Version] - Feng, S.; Campbell, A.; Brotons-Gisbert, M.; Baek, H.; Watanabe, K.; Taniguchi, T.; Urbaszek, B.; Gerber, I.C.; Gerardot, B.D. Highly Tunable Ground and Excited State Excitonic Dipoles in Multilayer 2H-MoSe
_{2}. arXiv**2022**, arXiv:2212.14338. [Google Scholar] - Deilmann, T.; Thygesen, K.S. Interlayer Excitons with Large Optical Amplitudes in Layered van der Waals Materials. Nano Lett.
**2018**, 18, 2984. [Google Scholar] [CrossRef][Green Version] - McDonnell, L.P.; Viner, J.J.; Rivera, P.; Cammarata, A.; Sen, H.S.; Xu, X.; Smith, D.C. Experimental realisation of Dual Periodicity Moiré Superlattice in a MoSe
_{2}/WSe_{2}Heterobilayer. arXiv**2020**, arXiv:2009.07676. [Google Scholar] - Volmer, F.; Ersfeld, M.; Faria Junior, P.E.; Waldecker, L.; Parashar, B.; Rathmann, L.; Dubey, S.; Cojocariu, I.; Feyer, V.; Watanabe, K.; et al. Twist angle dependent interlayer transfer of valley polarization from excitons to free charge carriers in WSe
_{2}/MoSe_{2}heterobilayers. arXiv**2022**, arXiv:2211.17210. [Google Scholar] - Li, W.; Devenica, L.M.; Zhang, J.; Zhang, Y.; Lu, X.; Watanabe, K.; Taniguchi, T.; Rubio, A.; Srivastava, A. Local Sensing of Correlated Electrons in Dual-moiré Heterostructures using Dipolar Excitons. arXiv
**2021**, arXiv:2111.09440. [Google Scholar] - Zhang, Y.; Xiao, C.; Ovchinnikov, D.; Zhu, J.; Wang, X.; Taniguchi, T.; Watanabe, K.; Yan, J.; Yao, W.; Xu, X. Every-other-layer Dipolar Excitons in a Spin-Valley locked Superlattice. arXiv
**2022**, arXiv:2212.14140. [Google Scholar] [CrossRef] - Alexeev, E.M.; Ruiz-Tijerina, D.A.; Danovich, M.; Hamer, M.J.; Terry, D.J.; Nayak, P.K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J.I.; et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature
**2019**, 567, 81. [Google Scholar] [CrossRef] [PubMed][Green Version] - Tang, Y.; Gu, J.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Mak, K.F.; Shan, J. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol.
**2020**, 16, 52. [Google Scholar] [CrossRef] - Bahn, S.R.; Jacobsen, K.W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng.
**2002**, 4, 56. [Google Scholar] [CrossRef][Green Version] - Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.
**1996**, 77, 3865. [Google Scholar] [CrossRef] [PubMed][Green Version] - Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.
**2010**, 132, 154104. [Google Scholar] [CrossRef] [PubMed][Green Version] - Singh, D.J.; Nordstrom, L. Planewaves, Pseudopotentials, and the LAPW Method; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Stahn, J.; Pietsch, U.; Blaha, P.; Schwarz, K. Electric-field-induced charge-density variations in covalently bonded binary compounds. Phys. Rev. B
**2001**, 63, 165205. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**(

**a–f**) calculated band structures, with the color-coded layer decomposition of the wave function for (

**a**) R${}_{\mathrm{h}}^{\mathrm{h}}$, (

**b**) R${}_{\mathrm{h}}^{\mathrm{M}}$, (

**c**) R${}_{\mathrm{h}}^{\mathrm{X}}$, (

**d**) H${}_{\mathrm{h}}^{\mathrm{h}}$, (

**e**) H${}_{\mathrm{h}}^{\mathrm{M}}$, and (

**f**) H${}_{\mathrm{h}}^{\mathrm{X}}$ stackings; the insets show the side-view of the crystal structures (solid lines connect the hollow position of the bottom layer to the atomic registry of the top layer); (

**g**) relevant low-energy bands and possible interlayer exciton transitions originating from the top valence bands at the $\mathsf{\Gamma}$ (v${}_{\mathsf{\Gamma}}$) and K points (v${}_{\mathrm{W}}$); the transitions involving the time-reversal partners (−K and −Q points) are not shown, for simplicity; (

**h**) schematic representation of the applied external electric field and the interlayer distance.

**Figure 2.**Spin-resolved band structures for the (

**a**) R${}_{\mathrm{h}}^{\mathrm{h}}$, (

**b**) R${}_{\mathrm{h}}^{\mathrm{M}}$, (

**c**) R${}_{\mathrm{h}}^{\mathrm{X}}$, (

**d**) H${}_{\mathrm{h}}^{\mathrm{h}}$, (

**e**) H${}_{\mathrm{h}}^{\mathrm{M}}$, and (

**f**) H${}_{\mathrm{h}}^{\mathrm{X}}$ stackings.

**Figure 3.**Energy dependence with respect to the electric field of the relevant low-energy bands (see Figure 1g) for all considered stackings: the top row, panels (

**a**–

**f**), indicates the color-coded layer decomposition of the K point bands (same color code as in Figure 1a–f); the bottom row, panels (

**g**–

**l**), indicates the color-coded spin decomposition of the K point bands (same color code as in Figure 2a–f); the insets in panels (

**g**–

**l**) show the energy difference between ${\mathrm{c}}_{\mathrm{Q}+}$ and ${\mathrm{c}}_{\mathrm{Q}-}$ bands, emphasizing an anti-crossing at larger electric fields.

**Figure 4.**Spin degree of freedom, ${S}_{z}$, of the low-energy bands as a function of the applied electric field for the studied stackings R${}_{\mathrm{h}}^{\mathrm{h}}$ (

**a**,

**g**,

**m**), R${}_{\mathrm{h}}^{\mathrm{M}}$ (

**b**,

**h**,

**n**), R${}_{\mathrm{h}}^{\mathrm{X}}$ (

**c**,

**i**,

**o**), H${}_{\mathrm{h}}^{\mathrm{h}}$ (

**d**,

**j**,

**p**), H${}_{\mathrm{h}}^{\mathrm{M}}$ (

**e**,

**k**,

**q**), and H${}_{\mathrm{h}}^{\mathrm{X}}$ (

**f**,

**l**,

**r**).

**Figure 7.**Same as Figure 3 but as a function of the interlayer distance variation.

**Figure 8.**Same as Figure 4 but as a function of the interlayer distance variation.

**Figure 9.**Same as Figure 5 but as a function of the interlayer distance variation.

**Figure 10.**Same as Figure 6 but as a function of the interlayer distance variation.

**Figure 11.**Calculated values of the electric dipole moments for (

**a**) R${}_{\mathrm{h}}^{\mathrm{h}}$, (

**b**) R${}_{\mathrm{h}}^{\mathrm{M}}$, (

**c**) R${}_{\mathrm{h}}^{\mathrm{X}}$, (

**d**) H${}_{\mathrm{h}}^{\mathrm{h}}$, (

**e**) H${}_{\mathrm{h}}^{\mathrm{M}}$, and (

**f**) H${}_{\mathrm{h}}^{\mathrm{X}}$ stackings. Calculated values of the polarizabilities for (

**g**) R${}_{\mathrm{h}}^{\mathrm{h}}$, (

**h**) R${}_{\mathrm{h}}^{\mathrm{M}}$, (

**i**) R${}_{\mathrm{h}}^{\mathrm{X}}$, (

**j**) H${}_{\mathrm{h}}^{\mathrm{h}}$, (

**k**) H${}_{\mathrm{h}}^{\mathrm{M}}$, and (

**l**) H${}_{\mathrm{h}}^{\mathrm{X}}$ stackings. The x-axis indicates the type of dipolar excitons (see Figure 1g. The values originating from ${\mathrm{c}}_{\mathrm{M}/\mathrm{Q}-}$ (${\mathrm{c}}_{\mathrm{M}/\mathrm{Q}+}$) are shown with colored (open) boxes.

**Figure 12.**Absolute value of the dipole matrix element for interlayer transitions at the K point as a function of the electric field for (

**a**) R${}_{\mathrm{h}}^{\mathrm{h}}$, (

**b**) R${}_{\mathrm{h}}^{\mathrm{M}}$, (

**c**) R${}_{\mathrm{h}}^{\mathrm{X}}$, (

**d**) H${}_{\mathrm{h}}^{\mathrm{h}}$, (

**e**) H${}_{\mathrm{h}}^{\mathrm{M}}$, and (

**f**) H${}_{\mathrm{h}}^{\mathrm{X}}$ stackings.

**Figure 13.**Calculated ratio ${\tau}_{\mathrm{rad}}\left({F}_{z}\right)/{\tau}_{\mathrm{rad}}\left(0\right)$ as a function of the electric field for (

**a**) R${}_{\mathrm{h}}^{\mathrm{h}}$, (

**b**) R${}_{\mathrm{h}}^{\mathrm{M}}$, (

**c**) R${}_{\mathrm{h}}^{\mathrm{X}}$, (

**d**) H${}_{\mathrm{h}}^{\mathrm{h}}$, (

**e**) H${}_{\mathrm{h}}^{\mathrm{M}}$, and (

**f**) H${}_{\mathrm{h}}^{\mathrm{X}}$ stackings. We use ${E}_{0}=1.35$ eV for all cases, and the calculated values of $\mu $ given in Figure 11. The contribution of $\alpha $ is neglected, as they nearly vanish for KK dipolar excitons.

**Figure 14.**Dipolar exciton g-factors as a function of the electric field for the R- and H-type systems studied for the cases (

**a**–

**f**) $\left|g\left(c\right)-g\left({\mathrm{v}}_{\mathrm{W}}\right)\right|$, (

**g**–

**l**) $\left|g\left(c\right)+g\left({\mathrm{v}}_{\mathrm{W}}\right)\right|$, (

**m**–

**r**) $\left|g\left(c\right)-g\left({\mathrm{v}}_{\mathsf{\Gamma}}\right)\right|$ and (

**s**–

**v**,

**x**,

**y**) $\left|g\left(c\right)+g\left({\mathrm{v}}_{\mathsf{\Gamma}}\right)\right|$.

**Figure 15.**Same as Figure 12 but as a function o the interlayer distance.

**Figure 16.**Same as Figure 14 but as a function of the interlayer distance.

R${}_{\mathbf{h}}^{\mathbf{h}}$ | R${}_{\mathbf{h}}^{\mathbf{M}}$ | R${}_{\mathbf{h}}^{\mathbf{X}}$ | H${}_{\mathbf{h}}^{\mathbf{h}}$ | H${}_{\mathbf{h}}^{\mathbf{M}}$ | H${}_{\mathbf{h}}^{\mathbf{X}}$ | |
---|---|---|---|---|---|---|

d (Å) | 3.7237 | 3.0803 | 3.0869 | 3.0923 | 3.6885 | 3.1833 |

Mo-W (Å) | 7.0612 | 6.6922 | 6.6985 | 6.7037 | 7.2775 | 6.5208 |

**Table 2.**Irreducible representations at the K point (${C}_{3}$ point group) for the relevant energy bands indicated in Figure 1g for all considered stackings.

R${}_{\mathbf{h}}^{\mathbf{h}}$ | R${}_{\mathbf{h}}^{\mathbf{M}}$ | R${}_{\mathbf{h}}^{\mathbf{X}}$ | H${}_{\mathbf{h}}^{\mathbf{h}}$ | H${}_{\mathbf{h}}^{\mathbf{M}}$ | H${}_{\mathbf{h}}^{\mathbf{X}}$ | |
---|---|---|---|---|---|---|

${\mathrm{c}}_{\mathrm{W}+}$ | ${K}_{5}$ | ${K}_{6}$ | ${K}_{4}$ | ${K}_{4}$ | ${K}_{6}$ | ${K}_{5}$ |

${\mathrm{c}}_{\mathrm{W}-}$ | ${K}_{4}$ | ${K}_{5}$ | ${K}_{6}$ | ${K}_{6}$ | ${K}_{5}$ | ${K}_{4}$ |

${\mathrm{c}}_{\mathrm{M}+}$ | ${K}_{4}$ | ${K}_{4}$ | ${K}_{4}$ | ${K}_{5}$ | ${K}_{5}$ | ${K}_{5}$ |

${\mathrm{c}}_{\mathrm{M}-}$ | ${K}_{5}$ | ${K}_{5}$ | ${K}_{5}$ | ${K}_{4}$ | ${K}_{4}$ | ${K}_{4}$ |

${\mathrm{v}}_{\mathrm{W}}$ | ${K}_{4}$ | ${K}_{5}$ | ${K}_{6}$ | ${K}_{6}$ | ${K}_{5}$ | ${K}_{4}$ |

${\mathrm{v}}_{\mathrm{M}}$ | ${K}_{4}$ | ${K}_{4}$ | ${K}_{4}$ | ${K}_{5}$ | ${K}_{5}$ | ${K}_{5}$ |

${\mathrm{v}}_{+}$ | ${K}_{6}$ | ${K}_{6}$ | ${K}_{5}$ | ${K}_{6}$ | ${K}_{4}$ | ${K}_{6}$ |

${\mathrm{v}}_{-}$ | ${K}_{6}$ | ${K}_{4}$ | ${K}_{6}$ | ${K}_{5}$ | ${K}_{6}$ | ${K}_{6}$ |

MoSe${}_{2}$ | WSe${}_{2}$ | |||
---|---|---|---|---|

${\mathit{S}}_{\mathit{z}}$ | ${\mathit{L}}_{\mathit{z}}$ | ${\mathit{S}}_{\mathit{z}}$ | ${\mathit{L}}_{\mathit{z}}$ | |

${\mathrm{c}}_{+}$ | $-0.99$ | $1.53$ | $0.99$ | $2.98$ |

${\mathrm{c}}_{-}$ | $1.00$ | $1.81$ | $-0.89$ | $1.88$ |

${\mathrm{v}}_{+}$ | $1.00$ | $3.94$ | $1.00$ | $5.02$ |

${\mathrm{v}}_{-}$ | $-0.99$ | $3.67$ | $-0.98$ | $4.07$ |

${\mathrm{v}}_{\mathsf{\Gamma}}$ | $0.96$ | $0.06$ | $0.87$ | $0.19$ |

${\mathrm{c}}_{\mathrm{Q}+}$ | $-1.00$ | $-0.09$ | $-0.99$ | $0.32$ |

${\mathrm{c}}_{\mathrm{Q}-}$ | $1.00$ | $-0.16$ | $0.96$ | $0.05$ |

**Table 4.**Calculated values of ${S}_{z}$ and ${L}_{z}$ for the relevant energy bands in R- and H- type stackings.

R${}_{\mathbf{h}}^{\mathbf{h}}$ | R${}_{\mathbf{h}}^{\mathbf{M}}$ | R${}_{\mathbf{h}}^{\mathbf{X}}$ | H${}_{\mathbf{h}}^{\mathbf{h}}$ | H${}_{\mathbf{h}}^{\mathbf{M}}$ | H${}_{\mathbf{h}}^{\mathbf{X}}$ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

${\mathit{S}}_{\mathit{z}}$ | ${\mathit{L}}_{\mathit{z}}$ | ${\mathit{S}}_{\mathit{z}}$ | ${\mathit{L}}_{\mathit{z}}$ | ${\mathit{S}}_{\mathit{z}}$ | ${\mathit{L}}_{\mathit{z}}$ | ${\mathit{S}}_{\mathit{z}}$ | ${\mathit{L}}_{\mathit{z}}$ | ${\mathit{S}}_{\mathit{z}}$ | ${\mathit{L}}_{\mathit{z}}$ | ${\mathit{S}}_{\mathit{z}}$ | ${\mathit{L}}_{\mathit{z}}$ | |

${\mathrm{c}}_{\mathrm{W}+}$ | $0.97$ | $2.98$ | $0.97$ | $3.02$ | $0.97$ | $2.97$ | $0.97$ | $2.92$ | $0.97$ | $2.98$ | $0.97$ | $3.02$ |

${\mathrm{c}}_{\mathrm{W}-}$ | $-0.88$ | $1.88$ | $-0.87$ | $1.93$ | $-0.88$ | $1.88$ | $-0.85$ | $1.86$ | $-0.89$ | $1.89$ | $-0.88$ | $1.90$ |

${\mathrm{c}}_{\mathrm{M}+}$ | $-0.98$ | $1.53$ | $-0.98$ | $1.55$ | $-0.98$ | $1.54$ | $0.98$ | $-1.54$ | $0.98$ | $-1.52$ | $0.98$ | $-1.56$ |

${\mathrm{c}}_{\mathrm{M}-}$ | $1.00$ | $1.81$ | $0.99$ | $1.84$ | $1.00$ | $1.81$ | $-1.00$ | $-1.80$ | $-1.00$ | $-1.80$ | $-1.00$ | $-1.81$ |

${\mathrm{v}}_{\mathrm{W}}$ | $1.00$ | $5.02$ | $1.00$ | $4.99$ | $1.00$ | $4.98$ | $1.00$ | $4.79$ | $1.00$ | $5.01$ | $1.00$ | $5.02$ |

${\mathrm{v}}_{\mathrm{M}}$ | $1.00$ | $3.94$ | $0.99$ | $3.94$ | $1.00$ | $3.91$ | $-1.00$ | $-3.25$ | $-1.00$ | $-3.93$ | $-1.00$ | $-3.95$ |

${\mathrm{v}}_{+}$ | $-0.98$ | $4.04$ | $-0.99$ | $3.63$ | $-0.98$ | $4.01$ | $0.99$ | $-3.45$ | $-0.98$ | $4.08$ | $0.24$ | $-0.67$ |

${\mathrm{v}}_{-}$ | $-0.99$ | $3.70$ | $-0.96$ | $4.02$ | $-0.99$ | $3.62$ | $-0.98$ | $3.41$ | $0.99$ | $-3.66$ | $-0.22$ | $1.06$ |

${\mathrm{v}}_{\mathsf{\Gamma}}$ | $0.92$ | $0.09$ | $0.95$ | $0.04$ | $0.95$ | $0.05$ | $0.95$ | $0.05$ | $0.93$ | $0.08$ | $0.95$ | $0.05$ |

${\mathrm{c}}_{\mathrm{Q}+}$ | $-0.93$ | $0.11$ | $-0.91$ | $0.23$ | $-0.87$ | $0.14$ | $-0.80$ | $0.22$ | $-0.59$ | $0.12$ | $-0.69$ | $0.23$ |

${\mathrm{c}}_{\mathrm{Q}-}$ | $0.95$ | $0.06$ | $0.92$ | $0.19$ | $0.92$ | $0.09$ | $0.79$ | $0.22$ | $0.60$ | $0.17$ | $0.68$ | $0.23$ |

**Table 5.**Symmetry-based selection rules for the direct interlayer excitons at the K point in the ${C}_{3}$ symmetry group.

${\mathbf{v}}_{\mathbf{W}}\left(\mathbf{K}\right)\to {\mathbf{c}}_{\mathbf{M}-}\left(\mathbf{K}\right)$ | ${\mathbf{v}}_{\mathbf{W}}\left(\mathbf{K}\right)\to {\mathbf{c}}_{\mathbf{M}+}\left(\mathbf{K}\right)$ | |
---|---|---|

R${}_{\mathrm{h}}^{\mathrm{h}}$ | ${K}_{4}^{*}\otimes {K}_{5}={K}_{3}\Rightarrow {\sigma}_{+}$ | ${K}_{4}^{*}\otimes {K}_{4}={K}_{1}\Rightarrow z$ |

R${}_{\mathrm{h}}^{\mathrm{M}}$ | ${K}_{5}^{*}\otimes {K}_{5}={K}_{1}\Rightarrow z$ | ${K}_{5}^{*}\otimes {K}_{4}={K}_{2}\Rightarrow {\sigma}_{-}$ |

R${}_{\mathrm{h}}^{\mathrm{X}}$ | ${K}_{6}^{*}\otimes {K}_{5}={K}_{2}\Rightarrow {\sigma}_{-}$ | ${K}_{6}^{*}\otimes {K}_{4}={K}_{3}\Rightarrow {\sigma}_{+}$ |

H${}_{\mathrm{h}}^{\mathrm{h}}$ | ${K}_{6}^{*}\otimes {K}_{4}={K}_{3}\Rightarrow {\sigma}_{+}$ | ${K}_{6}^{*}\otimes {K}_{5}={K}_{2}\Rightarrow {\sigma}_{-}$ |

H${}_{\mathrm{h}}^{\mathrm{M}}$ | ${K}_{5}^{*}\otimes {K}_{4}={K}_{2}\Rightarrow {\sigma}_{-}$ | ${K}_{5}^{*}\otimes {K}_{5}={K}_{1}\Rightarrow z$ |

H${}_{\mathrm{h}}^{\mathrm{X}}$ | ${K}_{4}^{*}\otimes {K}_{4}={K}_{1}\Rightarrow z$ | ${K}_{4}^{*}\otimes {K}_{5}={K}_{3}\Rightarrow {\sigma}_{+}$ |

**Table 6.**Direct product of valence bands at the −K point and conduction bands at the K point in the ${C}_{3}$ symmetry group.

${\mathbf{v}}_{\mathbf{W}}(-\mathbf{K})\to {\mathbf{c}}_{\mathbf{M}-}\left(\mathbf{K}\right)$ | ${\mathbf{v}}_{\mathbf{W}}(-\mathbf{K})\to {\mathbf{c}}_{\mathbf{M}+}\left(\mathbf{K}\right)$ | |
---|---|---|

R${}_{\mathrm{h}}^{\mathrm{h}}$ | ${K}_{5}^{*}\otimes {K}_{5}={K}_{1}$ | ${K}_{5}^{*}\otimes {K}_{4}={K}_{2}$ |

R${}_{\mathrm{h}}^{\mathrm{M}}$ | ${K}_{4}^{*}\otimes {K}_{5}={K}_{3}$ | ${K}_{4}^{*}\otimes {K}_{4}={K}_{1}$ |

R${}_{\mathrm{h}}^{\mathrm{X}}$ | ${K}_{6}^{*}\otimes {K}_{5}={K}_{2}$ | ${K}_{6}^{*}\otimes {K}_{4}={K}_{3}$ |

H${}_{\mathrm{h}}^{\mathrm{h}}$ | ${K}_{6}^{*}\otimes {K}_{4}={K}_{3}$ | ${K}_{6}^{*}\otimes {K}_{5}={K}_{2}$ |

H${}_{\mathrm{h}}^{\mathrm{M}}$ | ${K}_{4}^{*}\otimes {K}_{4}={K}_{1}$ | ${K}_{4}^{*}\otimes {K}_{5}={K}_{3}$ |

H${}_{\mathrm{h}}^{\mathrm{X}}$ | ${K}_{5}^{*}\otimes {K}_{4}={K}_{2}$ | ${K}_{5}^{*}\otimes {K}_{5}={K}_{1}$ |

**Table 7.**Direct product of valence bands at the $\mathsf{\Gamma}$ point and conduction bands at the K point in the ${C}_{3}$ symmetry group.

R${}_{\mathbf{h}}^{\mathbf{h}}$, R${}_{\mathbf{h}}^{\mathbf{M}}$, R${}_{\mathbf{h}}^{\mathbf{X}}$ | H${}_{\mathbf{h}}^{\mathbf{h}}$, H${}_{\mathbf{h}}^{\mathbf{M}}$, H${}_{\mathbf{h}}^{\mathbf{X}}$ | |
---|---|---|

${\mathrm{v}}_{\mathsf{\Gamma}}\left({K}_{4}\right)\to {\mathrm{c}}_{\mathrm{M}-}\left(\mathrm{K}\right)$ | ${K}_{4}^{*}\otimes {K}_{5}={K}_{3}$ | ${K}_{4}^{*}\otimes {K}_{4}={K}_{1}$ |

${\mathrm{v}}_{\mathsf{\Gamma}}\left({K}_{5}\right)\to {\mathrm{c}}_{\mathrm{M}-}\left(\mathrm{K}\right)$ | ${K}_{5}^{*}\otimes {K}_{5}={K}_{1}$ | ${K}_{5}^{*}\otimes {K}_{4}={K}_{2}$ |

${\mathrm{v}}_{\mathsf{\Gamma}}\left({K}_{4}\right)\to {\mathrm{c}}_{\mathrm{M}+}\left(\mathrm{K}\right)$ | ${K}_{4}^{*}\otimes {K}_{4}={K}_{1}$ | ${K}_{4}^{*}\otimes {K}_{5}={K}_{3}$ |

${\mathrm{v}}_{\mathsf{\Gamma}}\left({K}_{5}\right)\to {\mathrm{c}}_{\mathrm{M}+}\left(\mathrm{K}\right)$ | ${K}_{5}^{*}\otimes {K}_{4}={K}_{2}$ | ${K}_{5}^{*}\otimes {K}_{5}={K}_{1}$ |

**Table 8.**Dipolar exciton g-factors involving the top valence band states (at $\mathsf{\Gamma}$, K, and −K points) to conduction bands of Mo at the K point (${\mathrm{c}}_{\mathrm{M}\pm}$) or to the conduction bands at the Q point (${\mathrm{c}}_{\mathrm{Q}\pm}$) at zero electric field and equilibrium interlayer distance. The g-factors with unambiguously determined signs are given in bold.

R${}_{\mathbf{h}}^{\mathbf{h}}$ | R${}_{\mathbf{h}}^{\mathbf{M}}$ | R${}_{\mathbf{h}}^{\mathbf{X}}$ | H${}_{\mathbf{h}}^{\mathbf{h}}$ | H${}_{\mathbf{h}}^{\mathbf{M}}$ | H${}_{\mathbf{h}}^{\mathbf{X}}$ | |
---|---|---|---|---|---|---|

${\mathrm{v}}_{\mathrm{W}}\left(\mathrm{K}\right)\to {\mathrm{c}}_{\mathrm{M}-}\left(\mathrm{K}\right)$ | $-\mathbf{6}.\mathbf{42}$ | $6.34$ | $+\mathbf{6}.\mathbf{34}$ | $-\mathbf{17}.\mathbf{18}$ | $+\mathbf{17}.\mathbf{62}$ | $17.66$ |

${\mathrm{v}}_{\mathrm{W}}\left(\mathrm{K}\right)\to {\mathrm{c}}_{\mathrm{M}+}\left(\mathrm{K}\right)$ | $10.93$ | $+\mathbf{10}.\mathbf{85}$ | $-\mathbf{10}.\mathbf{84}$ | $+\mathbf{12}.\mathbf{70}$ | $13.10$ | $-\mathbf{13}.\mathbf{18}$ |

${\mathrm{v}}_{\mathrm{W}}\left(\mathrm{K}\right)\to {\mathrm{c}}_{\mathrm{Q}-}\left(\mathrm{Q}\right)$ | $10.01$ | $9.78$ | $9.94$ | $9.56$ | $10.49$ | $10.22$ |

${\mathrm{v}}_{\mathrm{W}}\left(\mathrm{K}\right)\to {\mathrm{c}}_{\mathrm{Q}+}\left(\mathrm{Q}\right)$ | $13.67$ | $13.34$ | $13.42$ | $12.74$ | $12.94$ | $12.94$ |

${\mathrm{v}}_{\mathrm{W}}(-\mathrm{K})\to {\mathrm{c}}_{\mathrm{M}-}\left(\mathrm{K}\right)$ | $17.64$ | $17.63$ | $17.57$ | $5.99$ | $6.43$ | $6.41$ |

${\mathrm{v}}_{\mathrm{W}}(-\mathrm{K})\to {\mathrm{c}}_{\mathrm{M}+}\left(\mathrm{K}\right)$ | $13.13$ | $13.12$ | $13.07$ | $10.47$ | $10.94$ | $10.89$ |

${\mathrm{v}}_{\mathrm{W}}(-\mathrm{K})\to {\mathrm{c}}_{\mathrm{Q}-}\left(\mathrm{Q}\right)$ | $14.05$ | $14.19$ | $13.97$ | $13.61$ | $13.55$ | $13.85$ |

${\mathrm{v}}_{\mathrm{W}}(-\mathrm{K})\to {\mathrm{c}}_{\mathrm{Q}+}\left(\mathrm{Q}\right)$ | $10.39$ | $10.63$ | $10.49$ | $10.43$ | $11.10$ | $11.12$ |

${\mathrm{v}}_{{\mathsf{\Gamma}}_{1}}\to {\mathrm{c}}_{\mathrm{M}-}\left(\mathrm{K}\right)$ | $3.58$ | $3.67$ | $3.62$ | $7.58$ | $7.62$ | $7.62$ |

${\mathrm{v}}_{{\mathsf{\Gamma}}_{1}}\to {\mathrm{c}}_{\mathrm{M}+}\left(\mathrm{K}\right)$ | $0.92$ | $0.85$ | $0.87$ | $3.10$ | $3.10$ | $3.14$ |

${\mathrm{v}}_{{\mathsf{\Gamma}}_{1}}\to {\mathrm{c}}_{\mathrm{Q}-}\left(\mathrm{Q}\right)$ | $0.01$ | $0.23$ | $0.03$ | $0.03$ | $0.49$ | $0.18$ |

${\mathrm{v}}_{{\mathsf{\Gamma}}_{1}}\to {\mathrm{c}}_{\mathrm{Q}+}\left(\mathrm{Q}\right)$ | $3.66$ | $3.33$ | $3.46$ | $3.14$ | $2.94$ | $2.90$ |

${\mathrm{v}}_{{\mathsf{\Gamma}}_{2}}\to {\mathrm{c}}_{\mathrm{M}-}\left(\mathrm{K}\right)$ | $7.63$ | $7.63$ | $7.60$ | $3.60$ | $3.58$ | $3.63$ |

${\mathrm{v}}_{{\mathsf{\Gamma}}_{2}}\to {\mathrm{c}}_{\mathrm{M}+}\left(\mathrm{K}\right)$ | $3.13$ | $3.12$ | $3.11$ | $0.88$ | $0.94$ | $0.85$ |

${\mathrm{v}}_{{\mathsf{\Gamma}}_{2}}\to {\mathrm{c}}_{\mathrm{Q}-}\left(\mathrm{Q}\right)$ | $4.04$ | $4.19$ | $4.01$ | $4.01$ | $3.55$ | $3.81$ |

${\mathrm{v}}_{{\mathsf{\Gamma}}_{2}}\to {\mathrm{c}}_{\mathrm{Q}+}\left(\mathrm{Q}\right)$ | $0.39$ | $0.63$ | $0.52$ | $0.83$ | $1.10$ | $1.08$ |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Faria Junior, P.E.; Fabian, J. Signatures of Electric Field and Layer Separation Effects on the Spin-Valley Physics of MoSe_{2}/WSe_{2} Heterobilayers: From Energy Bands to Dipolar Excitons. *Nanomaterials* **2023**, *13*, 1187.
https://doi.org/10.3390/nano13071187

**AMA Style**

Faria Junior PE, Fabian J. Signatures of Electric Field and Layer Separation Effects on the Spin-Valley Physics of MoSe_{2}/WSe_{2} Heterobilayers: From Energy Bands to Dipolar Excitons. *Nanomaterials*. 2023; 13(7):1187.
https://doi.org/10.3390/nano13071187

**Chicago/Turabian Style**

Faria Junior, Paulo E., and Jaroslav Fabian. 2023. "Signatures of Electric Field and Layer Separation Effects on the Spin-Valley Physics of MoSe_{2}/WSe_{2} Heterobilayers: From Energy Bands to Dipolar Excitons" *Nanomaterials* 13, no. 7: 1187.
https://doi.org/10.3390/nano13071187