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Abstract: We have investigated platinum catalysts containing iron as a modifier to obtain catalysts
with superior electrocatalytic activity toward glycerol electro-oxidation in an alkaline medium. The
electrocatalysts, supported on carbon Vulcan, were synthesized by the polyol method. The physico-
chemical characterization data showed that the metals were well distributed on the carbon support
and had small particle size (2 nm). The Pt:Fe metal ratio differed from the nominal composition,
indicating that reducing iron with platinum was difficult, even though some parameters of the
synthesis process were changed. Electrochemical analyses revealed that PtFe/C was more active
and stable than commercial Pt/C was, and analysis of the electrolysis by-products showed that iron
addition to Pt/C boosted the glycerol conversion and selectivity for glyceric acid formation.

Keywords: electrocatalysis; glycerol oxidation; Pt-based catalyst; alkaline medium

1. Introduction

Glycerol, a renewable, low-cost, and widely available compound, is a waste product
from the transesterification of vegetable oils for biodiesel production—10% m/m of the
products is glycerol [1–4]. Given that the rate of world biodiesel production is high,
new applications for glycerol as a platform molecule for the chemical industry must be
found [2–5]. The industrial demand for value-added products, including C3 compounds
such as glyceric acid, tartronic acid, glyceraldehyde, dihydroxyacetone, hydroxypyruvic
acid, and mesoxalic acid derived from glycerol oxidation, is high because these compounds
have numerous commercial applications. They are mainly used in the manufacture of
biodegradable polymers and as emulsifiers or raw materials for organic synthesis, so
they have high market values [4,5]. In addition, glyceric acid can be used to prepare
medicines to treat skin diseases, and it can be employed as an intermediate in serine amino
acid synthesis and as an anionic monomer for packaging material, not to mention other
medicinal applications [4–6].

Direct glycerol electro-oxidation to C3 compounds could become a clean electrosyn-
thesis route. The coupling of this reaction in a fuel cell device allows energy to be partially
recovered from the waste fuel, while value-added products are produced [4–8]. Recently,
electroreduction processes that produce hydrogen, ammonia, or carbon products have also
been investigated as promising ways to add economic value to the glycerol electro-oxidation
process [5,7].

On the laboratory scale, platinum-based nanocatalysts are still the most promising
anode material for glycerol electro-oxidation [9,10]. Conducting glycerol electro-oxidation
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in alkaline medium paves the way for reducing the amount of catalyst employed during
the process, as the electro-oxidation kinetics of alcohols are faster in an alkaline medium
compared to their speed in an acidic medium. Furthermore, non-noble metals are generally
more stable in an alkaline medium [7,11–13]. Additionally, the presence of a co-catalyst as a
second metal added to noble metals, e.g., Pt or Pd, favors bifunctional mechanisms. In these
mechanisms, the non-noble metal serves as a source of oxygenated molecules, facilitating
fuel oxidation, lowering the reaction overpotential, improving the reaction selectivity, and
reducing the energy costs [13–18].

Recently, several works have been published using the combination of noble metals (Pt
and Pd) with other less noble metals or non-noble such as Bi [19,20], Ru [21,22], Ag [23–25],
Ni [26,27] in order to lower the cost of catalysts. In this context, glycerol electro-oxidation
in the presence of iron as a co-catalyst has been much less frequently investigated.

Iron is the fourth most abundant element in the crust. Platinum and iron easily form
alloys with three well-known crystalline structures: one alloy (PtxFe) and two ordered
intermetallic alloys (PtFe and Pt3Fe) [28–31]. Synthesis processes under mild conditions,
i.e., without the need for extreme heating or addition of strong reducing agents, cannot pro-
vide the desired/nominal chemical composition [29,31,32]. Iron addition to noble metals
has been reported to afford more stable and active bimetallic catalysts [32–36]. For in-
stance, γ-Fe2O3-C addition to Pt/C and PtSn/C improves ethanol electro-oxidation [32,36].
In turn, ultrafine Pt-covered Fe2P is a robust electrocatalyst for methanol and ethanol
electro-oxidation [37]. A further example is a PtFe alloy supported on multiwalled carbon
nanotubes, which displays better activity, stability, and a better anti-CO poisoning ability
in methanol electro-oxidation than those of commercial Pt/C [38]. Moreover, a PtFe/C
nanocatalyst has proven to be 10 times more active than commercial Pt/C is during ethanol
electro-oxidation [39]. Palladium modified with iron has also been reported as an elec-
trocatalyst for the electro-oxidation of different alcohols [33–35]. For example, ethylene
glycol can be efficiently electro-oxidized in the presence of a durable composite consisting
of Fe2O3, graphitic carbon nitride, and Pd nanoparticles [40].

One of us investigated the differences in the selectivity of glycerol electro-oxidation
catalyzed by PdM/C (M = Fe or Mn) [35]. Ex situ (LC-MS) and in situ (FTIR spectroscopy)
methods showed that high-value-added products (glycolate, glycerate, and oxalate) were
formed with a good yield regardless of the co-catalyst (Fe or Mn). By using DFT calculations,
Jin et al. [41] studied how the crystalline structure of PtFex affects glycerol electro-oxidation
and found that a more ordered crystallite structure such as fct (tetragonal centered face) im-
proves the electrocatalytic activity and selectivity for tartronic acid formation as compared
to those of the fcc (face-centered cubic) structure. The same research group [42] performed
glycerol electrolysis in a basic medium to investigate the PtFex selectivity as a function of
the electrocatalyst crystalline structure and to verify greater selectivity for glyceric acid
formation.

The authors of recent publications have attempted to reduce or to eliminate the no-
ble metal content in catalysts by employing non-noble metals. Oliveira et al. [12] added
cobalt and iron to nickel and found that the glycerol electro-oxidation potential is too
high for application in power source devices, but they verified that applications for elec-
trosynthesis purposes may be interesting. Another publication showed that high-value-
added products can be obtained from glycerol in the presence of different compositions of
ZnFexCo2-xO4 spinel oxides [43]. Yung-Jung Hsu and co-workers demonstrate the practical
use of Au@NiSx yolk@shell nanostructures for efficient glycerol electro-oxidation (GEOR)
to produce tartronic acid, one of the highest value-added intermediates, concomitant with
hydrogen evolution reaction (hydrogen fuel) [44].

Here, we have prepared platinum nanoparticles with iron as co-catalyst for glycerol
electro-oxidation in an alkaline medium. We have also analyzed the value-added C3
products and the stability of this less expensive electrocatalyst. We know the importance of
conductive support in electrocatalyst preparation [45,46]. However, as the objective of the
work was to investigate the effect of Fe on Pt catalytic activity, we used Vulcan Carbon as



Nanomaterials 2023, 13, 1173 3 of 17

conductive support to prepare all the catalysts due to its low cost, easy acquisition, high
surface area, and high conductivity.

2. Materials and Methods
2.1. Electrocatalyst Synthesis

Pt/C, Fe/C, and Pt50Fe50/C containing 20% metal loading were prepared by the polyol
method [47–49]. Briefly, to prepare 200 mg of each electrocatalyst, 100.0 mL of ethylene
glycol (J. T. Baker, Mexico City, Mexico) was added to a three-necked flask (250 mL), the
pH was adjusted to 13 with NaOH (400 mg), and the flask was subjected to ultrasound
for 30 min. After NaOH was completely dissolved, 106.3 mg of H2PtCl6.6H2O (Sigma-
Aldrich, Saint Louis, MO, USA) was quantitatively transferred to the flask and subjected
to ultrasound stirring for over 30 min. To allow electrocatalyst nanoparticles to form, the
mixture was maintained under N2 flux and refluxed (130 ◦C) for 4.5 h. The heating was
turned off, the solution was allowed to reach room temperature, and 160.0 mg of thermally
activated carbon Vulcan (400 ◦C under N2 atmosphere) was added [50]. The resulting
carbon dispersion was placed in the ultrasound bath for 30 min. Finally, the system was
magnetically stirred for 24 h to enhance nanoparticle adsorption on Carbon Vulcan. Fe/C
and Pt50Fe50/C were synthesized in a similar way by using 145.0 mg of FeCl2.4H2O as
the iron precursor and 31.9 mg of FeCl2.4H2O (Sigma-Aldrich, Saint Louis, MO, USA)
and 80.0 mg of H2PtCl6.6H2O (Sigma-Aldrich, Saint Louis, MO, USA) as the iron and
platinum precursors, respectively. In addition, 200 mg of Pt50Fe50/C-hydrazine was also
synthesized as described above. Briefly, after the iron and platinum salts were dissolved, a
stoichiometric amount of hydrazine (N2H4) was added to the reaction flask to reduce all
the metal ions.

The suspensions were filtered through a hydrophobic membrane (0.2 µm PTFE mem-
brane, Millipore, Molsheim, France) and washed with 1.0 L of water (Milli-Q- Molsheim,
France) and two 10 mL aliquots of ethanol. The membranes containing the electrocatalysts
were dried in an oven at 80 ◦C for 4 h. After that, the electrocatalysts were removed from
the membrane and properly stored.

2.2. Physical Characterization

Metal loading in the electrocatalysts was analyzed using simultaneous DTA-TGA
equipment, TA Instruments (New Castle, USA), the model SDT 2960 at a constant heating
rate of 10 ◦C min−1 from 30 to 900 ◦C under air atmosphere flow (100 mL min−1). Around
5.0 mg of the sample was placed in a Pt-crucible.

The electrocatalyst composition was analyzed by energy dispersive X-ray spectroscopy
(EDX) from IXRF System Inc., model 500 Digital Process (Houston, TX, USA) using a
scanning electron microscope (SEM), model EVO 50 (Cambridge, UK).

Diffraction patterns were obtained on an X-ray diffractometer (D5005 from Siemens-
Munich, German) operating with Cu Kα radiation (λ = 1.5406 Å) generated at 40 kV and
40 mA. The following parameters were kept constant during the analyses: 2θ range = 30◦–90◦,
step = 0.01◦ s−1, and total analysis time = 100 min. XRD data were corrected by the back-
ground and refined by fitting the experimental angular range of interest to the pseudo-
Voigt1 function per crystalline peak with a computer refinement program (Profile Plus
Executable, Siemens AG, Munich, German). The crystallite size was estimated by using
Scherrer’s equation [51]. The electrocatalyst morphology was also investigated by Transmis-
sion Electron Microscopy (TEM) using an FEI TECNAI G2 F20 HRTEM (200 kV) microscope
(Fei Company, Hillsboro, Oregon).

2.3. Electrochemical Measurements

The electrode was prepared by the deposition of 5 µL of catalyst ink solution on a
previously polished glassy carbon electrode (0.07 cm2). The amount of catalyst (mcat) that
was used to prepare each ink is summarized in the Supplementary Information (Table S1).
The catalyst ink was obtained by suspending an ideal amount of catalyst (mcat) in 100 µL
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of diluted Nafion® solution (95 µL of isopropanol/5 µL of 5% Nafion®) and placing the ink
suspension in an ultrasonic bath for 30 min to achieve good dispersion and homogeneity.

The electrochemical profile of the electrocatalysts was obtained by cyclic voltam-
metry (CV) in an N2-purged 0.1 mol L−1 NaOH (Mallinckrodt) solution. The measure-
ments were conducted in a conventional electrochemical cell that included Hg/HgO/KOH
(0.1 mol L−1) and a platinum wire as the reference and counter electrode, respectively.
The activity tests were carried out by conducting CV at a scan rate of 10 mV s−1, and
chronoamperometry (CA) was accomplished in the presence of 0.5 mol L−1 glycerol and
0.1 mol L−1 NaOH at +0.7 V vs. RHE for 1.5 h. A stability test was performed by recording
cyclic voltammograms at 10 mVs−1 before and after 1000 CV cycles at 50 mV s−1 in support
electrolyte (Figure S1).

The electrochemically active surface area (ECSA) of the electrocatalysts was calculated
by the CO stripping technique in 0.1 mol L−1 NaOH solution; 0.30 V vs. RHE was applied
for 40 min. In the first 15 min, CO was bubbled into the solution and adsorbed onto the
electrocatalyst surface. Afterward, the system was purged with N2 to remove free CO
from the electrolyte solution. The cyclic voltammograms were recorded at a scan rate
of 10 mV s−1, and ECSA was obtained by integrating the CO voltammetric charge and
comparing it with the standard value of 420 µC cm−2, which corresponds to the charge
required to oxidize a CO monolayer on the platinum catalyst [52,53].

2.4. Electrolysis and By-Product Determination

Four-hour-long electrolysis experiments at +0.7 V vs. RHE (−0.4 V vs. Hg/HgO/KOH,
1.0 mol L−1) were performed in an electrochemical cell with separate compartments for
the cathode and the anode, separated by an anion exchange membrane Fumatech (35 µm
thickness). The anode was fabricated by depositing 50 µL of catalyst ink (prepared as
described above) over 2.0 cm2 (both sides of 1.0 cm × 1.0 cm) Toray® carbon paper.

The reaction products were analyzed by High-Performance Liquid Chromatography
(HPLC) on a Shimadzu apparatus equipped with a refractive index (RID) detector. The
products were separated on an Aminex HPX-87H column (Bio-Rad Laboratories, Her-
cules, USA) under isocratic conditions by using 3.33 mmol L−1 H2SO4 at a flow rate of
0.6 mL min−1 at 45 ◦C. Every hour, a 50 µL aliquot of electrolytic solution was injected into
the equipment to monitor the formation of by-products.

3. Results and Discussion
3.1. Electrocatalyst Physical Characterization

Figure 1 presents the thermogravimetric (TG) analysis of the electrocatalysts. Only
Pt/C achieved an experimental metal loading value that was equal to the nominal one
(20 % wt.). In Fe/C, the amount of iron was 25% higher than that in the nominal compo-
sition. The iron content increased probably because part of the iron was converted to its
oxide during the TG experiment carried out in an air atmosphere. We also observed that
co-reduced iron and platinum in the metal loading decreased significantly compared to
the nominal value, indicating that incomplete reduction occurred during the synthesis, or
that no metal nanoparticles adsorbed over the carbon support. To clarify this point, we
conducted atomic absorption analysis of the solution filtered during the synthesis that
employed hydrazine. This analysis indicated that about 70% of the iron remained in the
solution. This analysis corroborated the statement above; nevertheless, given that the
analytical equipment does not differentiate between Fe2+ and Fe0, the iron precursor may
not have been reduced, or the iron nanoparticles may not have been adsorbed. Considering
that hydrazine addition during the synthesis increased the amount of iron in the PtFe
electrocatalyst, we can infer that non-reduction might have been the main cause of the
lower iron content.
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Figure 1. Thermogravimetric analysis curves of the Fe/C, Pt/C, and PtxFey/C electrocatalysts under
compressed air atmosphere recorded at 10 ◦C min−1.

Table 1 summarizes the physical characterization of the electrocatalyst nanoparticles.
The EDX analysis of PtxFey/C evidenced that it was difficult to co-reduce iron with plat-
inum by using the polyol method. The amount of iron obtained at the end of the syntheses
was only 5%, rather than the targeted 50%. When we added hydrazine as a reducing agent
(PtxFey/C-hydrazine), the iron content in the composition increased to 25% (half of the
desired percentage). However, the use of hydrazine reduced the metal loading over the
carbon support to only 6%, as shown by TG analysis. To overcome this low metal loading
and iron content, we repeated the synthesis in the presence of hydrazine by changing
the parameters such as the pH, amount of hydrazine, reflux time, and temperature, but
the results did not improve. Our findings agreed with the literature reports about the
difficulty in achieving the nominal composition when dealing with platinum and iron
catalysts [28–31].

Table 1. Physical characteristic of the Pt and PtFe electrocatalysts.

Nominal
Composition

Experimental
Composition

(EDX)

TG
(%M)

d XRD
[nm]

TEM
[nm]

Fe/C Fe/C 25 - -
Pt/C Pt/C 20 1.4 1.82

Pt50Fe50/C Pt95Fe05/C 13 - 1.67
Pt50Fe50/C-
hydrazine Pt75Fe25/C 6 - 1.70

TG = metal loading, d XRD = crystallite size, and d TEM = particle size.

Figure 2 illustrates the XRD diffraction patterns and structural profiles of the electro-
catalysts. Fe/C did not display any characteristic peak of the cubic structure (space group
Im-3m), which should have appeared at 43.50◦, 63.20◦, and 79.85◦ (01-071-4650). Therefore,
the as-prepared nanoparticles were in an amorphous state. Pt/C exhibited the characteristic
peaks of the crystalline structure of face-centered cubic (fcc) platinum. The peaks were
related to the reflection planes (111), (200), (220), (311), and (222) (JCPDS # 00-004-0802). The
crystallite size remained about 1.4 nm, and the experimental lattice parameter (3.9256 Å)
resembled the experimental lattice parameter of pure platinum (3.921 Å).
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Figure 2. XRD patterns of the Pt and PtFe-based electrocatalysts.

Pt95Fe05/C and Pt75Fe25/C-hydrazine did not present the characteristic peaks of the
platinum or the iron structure because low metal loading over the carbon support did not
provide enough material for defined diffraction data to be obtained, even at a slow scan rate
(0.03◦ s−1). The other reasons for the absence of peaks could be the small crystallite size or
the attainment of an amorphous material [54]. For Pt95Fe05/C and Pt75Fe25/C-hydrazine,
we were able to identify a not well-defined peak at around 40◦, which overlapped with
the peak at around 46◦, both of which are related to the platinum structure. However, the
resolution was poor, which prevented the crystallite size or lattice parameter from being
calculated.

Figure 3 shows the TEM images and histograms of Pt/C, Pt95Fe05/C, and Pt75Fe25/C-
hydrazine. The nanostructures were randomly dispersed on the carbon support, and large
clusters did not emerge in the materials. The high-resolution TEM images evidenced good
crystallinity and a sphere-like shape for the platinum-based electrocatalysts. The particle
size remained at around 1.8 nm, and the EDX analysis from TEM characterization agreed
well with the results reported in Table 1.
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by the polyol method. Count: 400 particles.

3.2. Electrochemical Characterization

Figure 4a depicts the cyclic voltammogram of the platinum-based electrocatalysts
in the supporting electrolyte (NaOH 0.5 mol L−1), which were recorded from 0.05 to
1.0 V vs. RHE. Peaks in the region between 0.0 and +0.4 V are related to hydrogen ad-
sorption/desorption on the platinum surface [55]. At around +0.80 V (positive sweep)
and +0.70 V (negative sweep), the peaks correspond to platinum oxide formation and
reduction, respectively [36]. The addition of even small amounts of iron to platinum,
as in the case of Pt95Fe05/C, shifted the hydrogen adsorption/desorption and platinum
oxide formation/reduction peaks to less-positive values compared to that of bare plat-
inum. Furthermore, the presence of iron is evidenced in pseudo-capacitive double layer
region between 0.4 and 0.6 V vs. RHE by the presence of the Fe+2/Fe+3 redox couple.
Moreover, reversible peaks appeared near 0.6 V vs. RHE (forward scan) and 0.45 V vs.
RHE (backward scan), which are associated with iron ion oxidation and reduction and
iron oxide formation. Hydrazine addition enhanced the amount of iron in the electrocata-
lyst (Pt75Fe25/C-hydrazine), so the redox peaks became more evident. The characteristic
peaks of hydrogen adsorption/desorption on platinum sites became poorly defined and
the pseudo-capacitive area became wider as an effect of a greater amount of conductive
support (Vulcan Carbon) since this composition presented the smallest metal loading value
(only 6% wt.), as evidenced by TGA analysis.
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The formation of iron oxides at lower potentials is interesting for electrocatalysis: the
availability of oxygenated groups facilitates the electro-oxidation of carbonic species on
platinum, a consequence of the bifunctional mechanism, during which iron/iron oxide
provides oxygenated species for the oxidation process [36,56,57]. As shown in Figure 4b,
the electrocatalysts containing iron provided greater activity for glycerol electro-oxidation
in an alkaline medium, especially in the case of Pt75Fe25/C-hydrazine.

In the presence of 0.5 mol L−1 glycerol (Figure 4b), alcohol adsorption on the platinum
catalytic sites suppressed the hydrogen adsorption/desorption peaks (+0.05 to +0.4 V
vs. RHE). The onset potential for glycerol electro-oxidation was +0.4 vs. RHE for all the
investigated electrocatalysts, with very slight variations. An explanation for this is that at
high pH values, the supporting electrolyte furnishes OH- species for the alcohol molecule
electro-oxidation [10,11,58]. This is a very different situation from acid solutions, where
hydroxyl species (-OH) are obtained by water activation on the electrocatalyst surface, and
the catalyst site plays a key role in the adsorption and bond cleavage of the water molecules.
In a basic solution, the catalytic activity does not depend entirely on this process, so alcohol
electro-oxidation starts nearly at the same potential, irrespective of the electrocatalyst
composition [59,60].

Shifting toward more positive values, we observed that the oxidation peak was re-
activated in the negative scan. This behavior originates from platinum surface regeneration
due to the removal/oxidation at higher potentials of adsorbed carbonaceous species pro-
duced by direct glycerol electro-oxidation. In the reverse scan, glycerol was electro-oxidized
on the renewed surface in a typical alcohol electro-oxidation process [14,55,61,62].

The presence of iron boosted the platinum catalytic activity, as shown in Figure 4b. This
behavior depended on the amount of iron. As observed, just 5% wt. of iron (Pt95Fe05/C)
increased the peak current (at +0.87 V vs. RHE) by 35% compared to that of pure platinum.
When the iron content was higher, as in the case of Pt75Fe25/C-hydrazine, the effect was
even more significant: the peak current was three times higher compared to that of Pt/C
(Table 2).

Our research group has already studied how iron addition affects ethanol and glycerol
electro-oxidation. We found that the presence of iron improves the platinum catalytic activ-
ity during ethanol and glycerol electro-oxidation in acid and alkaline mediums [35,36,63].
Other authors have also described the use of iron as a co-catalyst and found similar results.
The authors claimed that the presence of even small amounts of iron improves the catalytic
activity of platinum or palladium, not to mention that iron is much less expensive than
commonly used noble metals are, such as ruthenium, palladium, and gold [64–66].
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Table 2. Electrochemical activity measurements for platinum-based electrocatalysts.

Composition Eonset
V vs. RHE

Anodic Peak
(mA mgPt−1)

@ +0.87 V vs. RHE

Catalytic Activity
(mA mgPt−1)

@ +0.70 V vs. RHE

ECSA
(m2 gPt−1)

Pt/C 0.40 65 30 240
Pt95Fe05/C 0.35 88 40 415
Pt75Fe25/C 0.35 192 75 390

Table 3 compares the peak current (If) obtained in the oxidation of glycerol by different
materials investigated in the literature. Even considering different experimental conditions,
such as concentration of glycerol, support electrolyte and scanning speed, we observed that
the PtFe catalyst presents results that are compatible with other compositions that have
been investigated. In these cases, the activity is better compared to those ones that use only
noble metals (Pt, Pd, and Au) as catalysts.

Table 3. Comparison of the catalytic activity and selectivity for glycerol oxidation in alkaline media.

Catalyst
Composition

Synthesis Method
Electrolyte Peak Current (If) Peak

Current Potential (Ef)
Condition

Electrolysis

Selectivity (%)
Gly Conversion

(%)

[REF]
Year

Pt75Fe25/C Polyol 0.5 M Gly + 0.1 M
NaOH

If = 192 mA mgPt
−1

(10 mV s−1) Ef = +0.87 V vs.
RHE

E = 0.7 V vs. RHE
(4 h)

Glycerate (79%)
Glycerol (5–10%)

This
Work

PdFe/C Pe-
chini/microwave

0.1 M Gly + 0.1 M
NaOH

If = 28 mA mgPd
−1

(50 mVs−1) Ef = 1.2 V vs.
RHE

E = 0.8 V vs. RHE Glycerate (2 mM) [35]
2014

PdFe/rGO
Reduction with
NaBH4

0.1 M Gly + 1 M
KOH

If = 1.1 A mgPd
−1

(50 mV s−1)Ef = 0.9 V vs.
RHE

E = 0.8 V vs. RHE
(2 h) Glycerate (45%) [67]

2021

NiFe/C
H2 flow at 300 ◦C

0.1 M Gly + 0.1 M
NaOH

I = 60 mA gM
−1 (50 mV s−1)

E = 1.6 V vs. RHE
E = 1.6 V vs. RHE
(8 h)

Formate (4%)
Glycerol (14%)

[12]
2014

NiFeCo/C H2 flow
at 300 ◦C

0.1 M Gly + 0.1 M
NaOH

I = 60 mA gM
−1 (50 mV s−1)

E = 1.6 V vs. RHE
E = 1.6 V vs. RHE
(8 h)

Formate (34%)
Glycerol (13%)

[12]
2014

Pt86Ru/C Pe-
chini/microwave

0.5 M Gly + 1.0 M
NaOH

If = 525 mA mgPt
−1

(10 mVs−1) Ef = 1.2 V vs.
RHE

E = 0.7 V vs. RHE
(4 h) DHA (8 mM) [68]

2017

Ru@Pt/CNTs
Reduction with
NaBH4

0.5 M Gly + 1 m
NaOH

If = 215 mA
mgPt

−1(10 mV s−1) Ef =
−0.46 V vs. Hg/HgO

E = −0.2 V vs.
Hg/HgO
(12 h)

Glycerate Glycerol
(40%)

[62]
2017

Ni@Pt/CNTs
Reduction with
NaBH4

0.5 M Gly + 1 m
NaOH

If = 275 mA mgPt
−1

(10 mV s−1) Ef = −0.49 V vs.
Hg/HgO

E = −0.2 V vs.
Hg/HgO
(6 h)

Glycerate Glycerol
(60%)

[62]
2017

PtAg Galvanic
replacement

1 M Gly + 0.1 M
KOH

If = 7.6 mA cm−2 (50 mV
s−1) Ef = 1.0 V vs. RHE

E = 0.7 V vs. RHE DHA (83%) [25]
2019

PtRh/GNS Polyol 0.5 ML Gly + 0.5 M
KOH

If = 4.5 mA cm−2

(50 mV s−1) Ef = −0.25 V vs.
SCE

E = 0.2 V vs. SCE Glycerate (50%) [26]
2018

PtNi2
0.1 M Gly + 1 M
KOH

If = 2 AmgPt
−1

(50 mV s−1)Ef = 0.85 V vs.
RHE

E = 0.8 V vs. RHE
(2h) Tartronate (60%) [69]

2022
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Table 3. Cont.

Catalyst
Composition

Synthesis Method
Electrolyte Peak Current (If) Peak

Current Potential (Ef)
Condition

Electrolysis

Selectivity (%)
Gly Conversion

(%)

[REF]
Year

Pt@Ag-NaCl
Hydrothermal

1 M Gly + 0.1 M
KO (If) 0.5 M Gly +
0.5 M KOH (Elect.)

If = 1.2 mA cm−2

(50 mV s−1)Ef = 1.0 V vs.
RHE

E = 0.5V vs. RHE DHA (75%) [70]
2020

Pt
95Bi05/TiN-HNWs

0.05 M Gly + 1.0 M
KOH (If)
1 M Gly + 1.0 M
KOH (Elect.)

If = 307 mA mgPt
−1

(20 mV s−1) Ef = 1.0 V vs.
RHE

E = 1.0 V vs. RHE
(8h)

Glycerate (37%)
Glycerol (87%)

[71]
2022

PtPd@Ag-NH3
Hydrothermal

1 M Gly + 0.1 M
KO (If) 0.5 M Gly +
0.5 M KOH (Elect.)

If = 9.2 mA cm−2

(50 mV s−1) Ef = 1.0 V vs.
RHE

E = 0.5 V vs. RHE DHA (70%) [70]
2020

Pt4Au6@Ag
Hydrothermal

1 M Gly + 0.1 M
KOH (If)
0.5 M Gly + 0.5 M
KOH (Elect.)

If = 2.8 mA cm−2

(50 mV s−1) Ef = 1.0 V vs.
RHE

E = 1.1 V vs. RHE DHA (77%) [72]
2019

We carried out chronoamperometry (CA) to investigate the electrochemical perfor-
mance of electrocatalysts during steady-state glycerol electro-oxidation. We chose the
applied potential (+0.7 V vs. ERH) on the basis of the glycerol cyclic voltammograms and
because it corresponds to a potential where all the electrocatalysts exhibited electrocatalytic
activity toward glycerol electro-oxidation (Figure 4b). Figure 5 shows that the j-t curves
were consistent with the cyclic voltammetry curves. The activity of the platinum-based elec-
trocatalysts decreases due to the poisoning of electrocatalytic sites by CO-like species and
other glycerol electro-oxidation intermediates, a typical behavior of the electro-oxidation of
small molecules on platinum-based catalysts [73].
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By analyzing iron addition to platinum in the steady-state studies, we observed that
small amounts (5% wt.) of this metal improved the catalytic activity compared to that of
bare platinum. This indicates that even a small amount of iron was enough to enhance the
reaction kinetics given that its presence helped to renew the platinum catalytic sites. When
the amount of iron was 25% wt., the platinum catalytic activity of increased significantly
and remained stable. As pointed out earlier, in an alkaline medium, platinum catalytic
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activity depends on the amount of iron. Proper amounts of iron can act directly on glycerol
electro-oxidation through a bifunctional and electronic effect [63].

Figure 6 presents the electrochemical surface area (ECSA) of the electrocatalysts ob-
tained by the CO stripping technique in 0.1 mol L−1 NaOH at 10 mV s−1 after the CO
monolayer was adsorbed. The onset of CO oxidation was at around +0.45 V vs. RHE for
Pt/C, and iron addition shifted the CO oxidation to less-positive potentials, 0.3 and 0.40 V
vs. RHE for Pt75Fe25/C and Pt95Fe05/C, respectively. Moreover, the CO oxidation peak was
broader for large potential ranges after iron was added in the electrocatalyst composition.
The greater the amount of iron there was, the broader the peak was. This behavior has been
reported before and is due to the presence of transition metals on the platinum surface.
These metals can modify the platinum electronic structure and contribute to the oxidation
of small molecules [16–18,74,75].
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Figure 6. (a) CO stripping voltammogram for the platinum-based electrocatalysts in alkaline medium;
(b) comparison of ECSA obtained by CO stripping and H2 adsorption/desorption experiments.

Figure 6b shows the ESCA measured from the CO stripping experiments and the H2
adsorption–desorption region. The data obtained from both methods agree, indicating that
both approaches can be used for estimating the electrochemical area.

As shown in Table 2, the ECSA of the PtFe-based electrocatalysts is much higher and
remained at around 400 m2 gPt

−1 compared to 240 m2 gPt
−1 for pure platinum. Although

the active area is not the only effect that must be evaluated regarding catalyst efficiency, it
can significantly contribute to catalytic activity. As seen from the results above, the proper
amount of iron and a higher ECSA provide an electrocatalyst with significant activity for
glycerol electro-oxidation.

3.3. Electrolysis Study

Figure 7 shows the glycerol electro-oxidation by-products and their respective percent-
ages obtained at 4 h of electrolysis (+0.7 V vs. ERH) in the presence of one of the prepared
electrocatalysts. In this analysis, we only compared the best iron-containing composition
(Pt75Fe25/C-hydrazine) with Pt/C and the commercial compositions PtRu/C and Pt/C
both from BASF. All the investigated compositions electro-oxidized between 5% and 10%
of the glycerol present in the solution. In all the cases, the major product was glyceric acid,
and the presence of iron or ruthenium in the electrocatalyst improved the selectivity for
this by-product, as presented in Figure 7.
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Pt75Fe25/C provided the best glycerol electro-oxidation as compared to those of the
other compositions, including the commercial ones, Pt/C and PtRu/C (BASF) (Figure 7b).
Another important feature concerned the effective cost of the electrocatalysts: for instance,
Pt75Fe25/C is much less expensive than Pt/C with Ru as a co-catalyst is. Moreover, iron
addition to platinum improved the glycerol electro-oxidation and selectivity for glyceric
acid formation.

Figure 8 illustrates the proposed mechanism for glycerol electro-oxidation based on
the literature [21,25,62,68]. Considering the products observed by liquid chromatography
analysis, the mechanism for PtFe/C follows the solid arrows represented by route II; under
the investigated experimental conditions, oxidation occurs via glyceraldehyde formation
and not through dihydroxyacetone formation (arrows with dashed lines). In fact, oxidation
occurs with the primary carbon to form glyceric acid as the major product. On the other
hand, DHA formation (route I) is only observed for Pt/C and PtRu/C. Electrolysis with
platinum and ruthenium as electrocatalysts applied to glycerol electro-oxidation also gave
glyceric acid as the major product [62] and a mixture of DHA, glyceric acid, and tartronic
acid [68], indicating that both routes I and II may occur simultaneously on Pt and PtRu
electrocatalysts.

The selectivity for the by-products of glycerol electro-oxidation in the basic medium
depends on the metal associated with platinum or palladium, the applied potential, and
the OH concentration, as shown in Table 3. Jin et al. [42] also investigated different
PtxFey/CeO2 compositions. They found that glyceric acid was the main product (75%)
of glycerol electro-oxidation, which is the same finding as that observed in our study.
Fashedemi et al. [34] evaluated FeCo@Fe@Pd/MWCNT-COOH core–shell catalysts in
a passive glycerol cell operated until it became inactive. These authors reported that
the presence of iron and cobalt contributes to complete glycerol electro-oxidation, with
mostly carbonate ions being formed. Zhou et al. [25] studied the PtAg composition in
electrolysis experiments at different potentials for 2 h and obtained dihydroxyacetone
as the main product. Furthermore, the authors showed that the KOH concentration, the
glycerol concentration, and the electrolysis time significantly affected the distribution of
the electro-oxidation by-products and the mechanism through which they were formed.



Nanomaterials 2023, 13, 1173 13 of 17Nanomaterials 2023, 13, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 8. Proposed mechanism for glycerol electro-oxidation vs. that of Pt75Fe25/C. 

The selectivity for the by-products of glycerol electro-oxidation in the basic medium 

depends on the metal associated with platinum or palladium, the applied potential, and 

the OH concentration, as shown in Table 3. Jin et al. [42] also investigated different 

PtxFey/CeO2 compositions. They found that glyceric acid was the main product (75%) of 

glycerol electro-oxidation, which is the same finding as that observed in our study. 

Fashedemi et al. [34] evaluated FeCo@Fe@Pd/MWCNT-COOH core–shell catalysts in a 

passive glycerol cell operated until it became inactive. These authors reported that the 

presence of iron and cobalt contributes to complete glycerol electro-oxidation, with mostly 

carbonate ions being formed. Zhou et al. [25] studied the PtAg composition in electrolysis 

experiments at different potentials for 2 h and obtained dihydroxyacetone as the main 

product. Furthermore, the authors showed that the KOH concentration, the glycerol con-

centration, and the electrolysis time significantly affected the distribution of the electro-

oxidation by-products and the mechanism through which they were formed. 

Zhou et al. [26] evaluated how nickel or ruthenium addition affects the platinum cat-

alytic activity and found that both metals favor C3-products and that selectivity depends 

on the applied potential. González-Cobos et al. [19] evaluated how bismuth addition af-

fects platinum and palladium catalysts and obtained glyceraldehyde as the main product 

after electrolysis for 4 h. 

4. Conclusions 

The results obtained herein show that addition of iron, an inexpensive metal, is a 

good alternative for improving the platinum catalytic activity without affecting the pro-

cess’ efficiency. The main findings of this investigation are:  

• The polyol method provides good metal distribution and small nanoparticles (<2 nm) 

in PtFe electrocatalysts. 

• Iron addition to platinum increases the active area and the catalytic activity for glyc-

erol and CO electro-oxidation. 

• Initially, glycerol electro-oxidation depends on the type of co-catalyst. PtFe favors the 

glyceraldehyde oxidation route, and glyceric acid is the main product.  

Figure 8. Proposed mechanism for glycerol electro-oxidation vs. that of Pt75Fe25/C.

Zhou et al. [26] evaluated how nickel or ruthenium addition affects the platinum
catalytic activity and found that both metals favor C3-products and that selectivity depends
on the applied potential. González-Cobos et al. [19] evaluated how bismuth addition affects
platinum and palladium catalysts and obtained glyceraldehyde as the main product after
electrolysis for 4 h.

4. Conclusions

The results obtained herein show that addition of iron, an inexpensive metal, is a
good alternative for improving the platinum catalytic activity without affecting the process’
efficiency. The main findings of this investigation are:

• The polyol method provides good metal distribution and small nanoparticles (<2 nm)
in PtFe electrocatalysts.

• Iron addition to platinum increases the active area and the catalytic activity for glycerol
and CO electro-oxidation.

• Initially, glycerol electro-oxidation depends on the type of co-catalyst. PtFe favors the
glyceraldehyde oxidation route, and glyceric acid is the main product.

• PtFe presents high selectivity for high-value-added C3-products.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13071173/s1. Figure S1: Stability test (A) and % voltammetric
stability (B). Cycles 1000, 50 mVs−1, supporting electrolyte NaOH 0.1 mol L−1. Table S1: Examples
of data for ink preparation of vitreous carbon electrodes, in an Eppendorf containing 100 mL of
isopropyl alcohol (95%)/Nafion (5%) solution.
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74. Şener, T.; Demirci, U.B.; Gül, Ö.F.; Ata, A. Pd–MnO2–Fe2O3/C as Electrocatalyst for the Formic Acid Electrooxidation. Int. J.
Hydrogen Energy 2015, 40, 6920–6926. [CrossRef]

75. Jiang, L.; Sun, G.; Sun, S.; Liu, J.; Tang, S.; Li, H.; Zhou, B.; Xin, Q. Structure and Chemical Composition of Supported Pt–Sn
Electrocatalysts for Ethanol Oxidation. Electrochim. Acta 2005, 50, 5384–5389. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jpowsour.2022.231836
http://doi.org/10.1016/j.apcatb.2019.01.009
http://doi.org/10.1016/j.ijhydene.2011.11.031
http://doi.org/10.1016/j.ijhydene.2015.03.145
http://doi.org/10.1016/j.electacta.2005.03.018

	Introduction 
	Materials and Methods 
	Electrocatalyst Synthesis 
	Physical Characterization 
	Electrochemical Measurements 
	Electrolysis and By-Product Determination 

	Results and Discussion 
	Electrocatalyst Physical Characterization 
	Electrochemical Characterization 
	Electrolysis Study 

	Conclusions 
	References

