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Abstract: Gold nanorods (GNRs) coated with silica shells are excellent photothermal agents with
high surface functionality and biocompatibility. Understanding the correlation of the coating process
with both structure and property of silica-coated GNRs is crucial to their optimizing preparation and
performance, as well as tailoring potential applications. Herein, we report a machine learning (ML)
prediction of coating silica on GNR with various preparation parameters. A total of 306 sets of silica-
coated GNRs altogether were prepared via a sol–gel method, and their structures were characterized
to extract a dataset available for eight ML algorithms. Among these algorithms, the eXtreme gradient
boosting (XGboost) classification model affords the highest prediction accuracy of over 91%. The
derived feature importance scores and relevant decision trees are employed to address the optimal
process to prepare well-structured silica-coated GNRs. The high-throughput predictions have been
adopted to identify optimal process parameters for the successful preparation of dumbbell-structured
silica-coated GNRs, which possess a superior performance to a conventional cylindrical core–shell
counterpart. The dumbbell silica-coated GNRs demonstrate an efficient enhanced photothermal
performance in vivo and in vitro, validated by both experiments and time domain finite difference
calculations. This study epitomizes the potential of ML algorithms combined with experiments in
predicting, optimizing, and accelerating the preparation of core–shell inorganic materials and can be
extended to other nanomaterial research.

Keywords: silica-coated gold nanorods; machine learning; process optimization; high-throughput
prediction; photothermal tumor ablation

1. Introduction

Gold nanorods (GNRs) possess unique optical properties, such as tunable surface
plasmon resonance and intense photothermal effects [1–4], enabling GNRs to be promising
inorganic materials in biomedical applications including bioimaging [5–7], photothermal
therapy [8–11], and drug delivery [12–14]. To improve the stability and biocompatibility
of GNRs without affecting their surface reaction, researchers coated GNRs with silica for
their high light transmittance [15]. Thanks to the refractive index sensitivity of GNRs,
the surface plasmon resonance peak position and intensity of GNRs can be modulated
by adjusting the silica shells [16]. Lim et al. found that a 20 nm silica shell shows the
highest photothermal effect [17]. The morphology of silica shell impacts the performance
of silica-coated GNRs significantly. The preparation of well-structured silica-coated GNRs
is dependent upon numerous process factors in an experimental protocol, and these pro-
cess factors pose an intricate challenge to a stable optimizing synthesis of well-structured
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silica-coated GNRs. Conventional investigation to prepare silica-coated GNRs can partially
delineate the influence among various processes. For instance, the study of three key
factors, cetyltrimethylammonium bromide (CTAB), GNRs, and tetraethyl orthosilicate
(TEOS), can reveal the concept of the existence of silicon precursor-dependent regions
and CTAB-dependent regions in the preparation of silica-coated GNRs. [18] However, the
morphology of the silica shell can also be controlled by adjusting pH, silica source type,
reagent concentration, coating time, reaction temperature, and other factors related to the
hydrolysis and condensation rate of the silica source [19]. Conventional experimental meth-
ods to study all these factors are too costly and time-consuming. Thus, it is quite desirable
to harness a low-cost and high-efficient method that can analyze all experimental variables.

Recently, machine learning (ML) has emerged as a powerful tool of materials develop-
ment for analyzing massive amounts of data, predicting physical and chemical properties
of materials effectively, and establishing a constructive process–structure–property relation-
ship [20–23]. Atwood et al. reported that XGBoost is a powerful ML model for predicting
the crystallization propensity of metal organic nanocapsules. A new structure of nanocap-
sule was successfully synthesized with the help of chemical feature scores and feature
importance derived from the XGBoost classifier [24]. Raccuglia et al. reported the applica-
tion of a support vector machine (SVM) algorithm to use the chemical space created by past
successful and unsuccessful experiments to reveal new hypotheses regarding the conditions
for successful product formation [25]. To the best of our knowledge, the preparation of
silica-coated GNRs guided by the ML algorithm has not yet been reported. Moreover, the
chemical insight gained from these reported ML models is still quite scant, e.g., the optimal
process parameters relevant to the reaction. It is worth introducing ML into silica-coated
GNR preparation to explore the process parameter design and predict the optimal process
and property of silica-coated GNRs.

This study establishes a mapping relationship from process parameters to preparation
outcomes to predict the optimal preparation of silica-coated GNRs. The XGBoost model is
evaluated along with seven other models, and it arguably outperforms other models to
attain the best prediction performance in all evaluation metrics. The XGBoost model also
offers an insight into the preparation process according to the derived feature importance
scores and decision trees and achieves a high throughput prediction on the basis of the
optimized process features for a randomly generated virtual experimental group. Through
statistical analysis of all successful groups among them, this study can obtain the best
reaction conditions for each process parameter. Furthermore, a unique form of dumbbell
silica-coated GNRs has been successfully prepared on the basis of those parameters sug-
gested by the ML model. Both in vitro and in vivo photothermal experiments and time
domain finite difference calculations show that the dumbbell silica-coated GNRs present
a more excellent optical property than that of a conventional cylindrical core–shell coun-
terpart, indicating the great potential of this dumbbell silica-coated GNR as an integrated
platform for tumor therapy. The method reported in this study can also be extended to
design and develop other composite nanostructure materials.

2. Materials and Methods
2.1. Materials

Gold(III) chloride trihydrate (HAuCl4·3H2O, ≥49% Au basis), cetyltrimethylam-
monium bromide (CTAB, ≥99%), sodium borohydride (NaBH4, ≥98%), silver nitrate
(AgNO3, ≥99.0%), ascorbic acid (AA, ≥99.0%) and sodium hydroxide (NaOH, ≥98%) were
purchased from Sigma Aldrich. Tetraethyl orthosilicate (TEOS, ≥99.0%) and Methanol
(≥99%) was products of Macklin. Hydrochloric acid (HCl, 35–37%) were purchased from
Acros Organics. Ethanol (≥99.7%) was purchased from Ghtech. Phosphate-Buffered
Saline (PBS) were procured from Gibco, Switzerland. Propidium Iodide (PI) and Calcein-
AM were purchased from Becton Dickinson Pharmingen, USA. Deionized water used
throughout all experiments was ultra-pure Milli-Q water with an electrical resistivity of
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18.25 MΩ·cm (25 ◦C). Carbon support films (300 eyes) for TEM purchased from Beijing
XXBR Technology Co., Ltd.

2.2. Preparation and Characterization

GNRs were synthesized with the seed-mediated growth method [26,27]. Firstly, the
seed solution was prepared by dissolving 0.364 g of CTAB into 9.17 mL of deionized water
and adding 0.25 mL of HAuCl4 (0.012 mM). Then, 0.58 mL of ice-cold NaBH4 (20 mM) was
quickly added into gold (III)-CTAB solution under vigorous stirring. After 2 min of stirring,
the solution was maintained at 27 ◦C for 2 h. In the second step, the growth solution was
prepared by dissolving 1.82 g of CTAB into 44 mL of deionized water with mild stirring,
followed by adding 3 mL of HAuCl4 (0.012 mM), 1.04 mL of AgNO3 (5 mM), 0.4 mL of HCl
(37%), and 1.64 mL of ascorbic acid (50 mM) into the stirred solution. Subsequently, the
yellow solution became colorless, and 50 µL of the prepared seed solution was added to
the growth solution with 10 s of gentle stirring. Finally, the solution was kept undisturbed
at 27 ◦C for GNR growth for 12 h. The resultant mixture was washed by centrifugation,
followed by removing the supernatant to remove the remaining reactants.

The silica coating process was performed using the previously-reported Stöber method
with slight modification [28,29]. An amount of 10 mL of GNRs colloidal solution was
washed and centrifuged twice and then dispersed into 15 mL of a specific concentration of
CTAB solution. Then, 0.1 mL of NaOH solution (0.1 M) was added to the GNR solution.
After gentle stirring for 20 min, 300 µL of TEOS alcohol solution (25 vol%) was added three
times with 30 min intervals under mild stirring. The mixture was aged for 12 h with stirring
and then the prepared silica-coated GNRs were centrifuged and washed with deionized
water two times.

Transmission electronic microscope (TEM) samples were prepared by dripping the
silica-coated GNR solution onto carbon-coated copper grids and drying the solvent. TEM
images and energy dispersive X-ray detector (EDX) spectra were recorded using an FEI Tec-
nai G2 Spirit instrument (FEI, The Netherlands) operating at 120 kV. High-resolution TEM
(HR-TEM), selected area electron diffraction (SAED), high-angle annular dark-field scan-
ning TEM (HAADF-STEM), EDX elemental mapping, and line scanning were recorded on
a Tecnai G2 F30 transmission electron microscope (FEI, The Netherlands) at an accelerating
voltage of 300 kV. An ultraviolet–visible–near infrared (UV–Vis–NIR) spectrophotometer
(UV-3600, SHIMADZU, Japan) was employed to collect the sample’s absorption spectra at
wavelengths from 400 nm to 1200 nm.

2.3. Experimental Parameter Preprocessing and Feature Engineering

Feature engineering aims to transform raw data into more suitable and representa-
tional forms for ML algorithms. According to the TEM images of silica-coated GNRs, they
were subsumed into two categories: successful coating and unsuccessful coating. Finally,
306 sets of data were collected and collated for ML. The input features of the constructed
dataset are listed in Table 1, including continuous and categorical variables. For the con-
tinuous variables, a data normalization procedure was performed to ensure the equal
contribution of each parameter based on the MinMax algorithm:

Xnorm =
X − Xmin

Xmax − Xmin
(1)

where Xnorm, X, Xmax, and Xmin are the normalized values, the true value of the variable,
and the maximum and minimum values of the dataset, respectively.

Categorical variables include ordinal categorical variables and non-ordinal categorical
variables. Ordinal categorical variables are a very common variable form of variable that
usually has multiple possible values with hierarchical relationships between the values. For
example, the stirring intensity during the aging process is coded as 0 without stirring, 1 and
2 with a slow and fast stirring, respectively. The non-ordinal categorical variable is mainly
related to the solvents of TEOS, which we adopted to denote the solvents for TEOS, ethanol,
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and isopropanol in this study. For the convenience of ML, they need to be numerically
processed. Target encoding was performed for non-ordinal categorical variables, which is a
coding method that derives numerical replacement category features from the target [30].

Table 1. The description of feature names.

Code Name Process Parameters

f0 The number of gold nanorods
f1 The concentration of cetyltrimethylammonium bromide (CTAB) in the solution
f2 The volume of tetraethyl orthosilicate (TEOS) in a single injection
f3 The concentration of the TEOS solution
f4 The solvent of the TEOS solution
f5 The concentration of the sodium hydroxide (NaOH) solution
f6 The rate of stirring mixtures in the solution
f7 The interval between drops of the TEOS solution
f8 The total volume of the solution
f9 The age of the solution

2.4. Machine Learning Models and Evaluation Metrics

Eight different ML algorithms were employed to train models for predicting the
preparation of silica-coated GNRs, i.e., logistic regression (LR), ref. [31] support vector
machine (SVM) [32], k-nearest neighbors (KNN) [32], decision tree (DT) [33], adaptive
boosting (ADA) [34], random forest (RF) [35], gradient boosting decision tree (GBDT) [36],
and eXtreme gradient boosting (XGBoost) [37]. All of those ML models were created using
python with the scikit-learn package and the xgboost package. In the hyperparameter
tuning process of the model, we performed a continuous grid search for a subset of
hyperparameters and employed 5-fold cross-validation to prevent overfitting. The search
space of the hyperparameters adjusted for each model and the resulting optimal parameters
are listed in Table S1.

To evaluate the model’s generalization ability, we introduced five evaluation metrics,
accuracy (ACC), receiver operating characteristic (ROC) curve, the area under ROC curve
(AUC), precision, recall, and F1-score. The properties of the successful coating were
classified as positive, whereas the properties of the unsuccessful coating were classified
as negative. AUC value can be used to intuitively assess the discriminatory ability of
a classifier. An AUC value of 1.0 indicates perfect discrimination between positive and
negative samples, while an AUC value of 0.5 indicates no discriminatory ability. The
recall was calculated by dividing the number of predicted true positive samples against
the total number of actual positive samples. The precision indicates how many of the
samples predicted to be positive are truly positive, while the recall indicates how many of
the positive cases in the sample were predicted correctly. F1-score is considered a kind of
reconciled average of the model accuracy and recall. The best model is usually the result
of a thorough examination of each evaluation metric. All data were relabeled using the
prediction results of the XGBoost model and the prediction results were modeled with
decision trees. An easy-to-analyze decision tree was generated by this method [38].

2.5. Time Domain Finite Difference Simulation

The whole GNR (16 × 53.5 nm2) with the refractive index provided by Johnson and
Christy was embedded in a 42 nm thick layer of silica with a refractive index of 1.5 to create
a cylindrical model. The corresponding dumbbell model was constructed with the same
GNR and its two ends were embedded inside a 42 nm thick silica sphere. The models were
placed in a background solution with a refractive index of 1.33. The total field scattered
field source was set as incident along the x-axis at a wavelength of 800 nm and polarized
along the longitudinal direction of the GNR. The grid step was set to 1 nm. The electric
field distribution and charge of the models were calculated numerically.
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2.6. In Vivo and In Vitro Photothermal Experiments

An in vitro photothermal experiment was performed to measure the photothermal
conversion efficiencies of both dumbbell and cylindrical silica-coated GNRs. Thermal
images of their solutions (1.5 mL) were captured with an infrared thermographer (Tis65
Fluke) every 30 s under an 808 nm laser irradiation in five switchable “laser on−laser
off” photothermal cycles (laser on: 300 s; laser off: cool to room temperature for 10 min).
Temperature change curves were figured out from the thermal images.

An animal experiment was conducted to evaluate the photothermal potency of dumb-
bell silica-coated gold nanorods in vivo, and animal models of transplanted tumors on
Balb/c nude mice were used in the experiment. All animal experimental procedures were
approved by the Experimental Animal Center of Sun Yat-sen University and followed
National Ministry of Health policies. Healthy Balb/c nude mice (4–6 weeks old, ~20 g)
were kept in a pathogen-free environment during the experiments. A total of 100 µL of
phosphate-buffered saline (PBS) and 4T1 murine breast cancer cells (5 × 106) were injected
subcutaneously into the thoracic side of Balb/c mice. After the xenografted tumor grew to
approximately 60 mm2 for about two weeks, mice were anesthetized by intraperitoneal
injection of 0.1% sodium pentobarbital (10 µL per g weight). The tumor of Balb/c mice was
injected with 100 µL of dumbbell silica-coated GNRs and then irradiated with an 808 nm
laser. The temperature thermal images of the tumor were recorded every 30 s with an
infrared thermographer.

The 4T1 cells in cell ablation assays derived from mouse breast cancer, a metastatic tu-
mor cell line, were inoculated on 96-well plates (8000/well) and cultured overnight at 37 ◦C
(5% CO2). Dumbbell silica-coated GNRs were lyophilized and then dispersed in a phos-
phate buffer solution (PBS) for cell experiments. Pure PBS or dumbbell silica-coated GNRs
(100 µg mL−1) were used to replace the original medium (1640 + 10% FBS + 1% P/S + 1% Gln),
and then cultured with cells for 2 h. Then, cells were irradiated with an 808 nm near-infrared
laser (0.5 W cm−2) for 10 min, and the medium was removed. The treated cells were washed
twice with PBS and stained with calcein-AM and propidium iodide (PI) for 15 min. The
cells were then fixed and imaged with a confocal laser scanning microscope (Leica SP8).

3. Results and Discussion
3.1. Machine Learning Predictions

Well-shaped silica shells are not easily formed on the surface of GNRs uniformly,
and many trial-and-error attempts are necessitated to ensure satisfactory preparation re-
peatability. In order to accelerate the preparation of silica-coated GNRs, ML algorithms
are employed to investigate the relationship between the process and reaction outcomes
of silica shells formed on GNRs. Ten features were extracted empirically from the ex-
perimental process (Table 1) and TEM images of the samples of silica-coated GNRs were
pre-processed for data. These features dominate the formation of silica shells on GNRs.
First, we performed a Pearson correlation analysis on these features (Figures 1a and S1).
The low correlation between these features suggests that there is no excessive information
redundancy between them. Therefore, the independent and informative ten features that
we extracted from the synthesis protocol are justified as suitable for the ML approach.
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Figure 1. (a) The heat map of Pearson’s correlation coefficient matrix is among the ten features
selected for the preparation of silica-coated GNRs. Feature names are listed in Table 1. (b) Prediction
accuracy (ACC) and AUC values of various ML models. SVM: support vector machine; ADA:
AdaBoost; RF: random forest; DT: decision tree; GBDT, gradient boosting decision tree; KNN, k-
nearest neighbors; LR, logistic regression; and XGBoost: eXtreme gradient boosting. (c) ROC curves
calculated with ADA, RF, GBDT, LR, and XGBoost models, respectively. (d) Importance scores of
descriptors derived from the XGBoost model.

We introduced eight ML algorithms to train the data and make predictions. All param-
eters were initialized and tuned to find the best parameters (Table S1). The discriminative
ability of the various classifiers was evaluated based on their performance on the test set.
Both the AUC and ACC values of the eight classifiers are compared in Figure 1b. The
results make clearly show that adaptive boosting, random forest, gradient boosting decision
tree, logistic regression, and XGBoost all have both AUC and ACC values greater than
0.8. To find an accurate and easily interpretable model for the sake of application, we used
the ROC curve (Figure 1c), precision, recall, and F1-score evaluation metrics (Table 2) to
further evaluate the above five models. Among them, the XGBoost and random forest
models achieved an accuracy of over 91%, and outstrip the other three models. Further-
more, XGBoost outperforms the random forest model on both the ROC curve and other
evaluation metrics. The results above indicate that the XGBoost classifier can achieve the
best performance in terms of AUC, ACC, precision, recall, and F1-score. XGBoost’s ability
to handle both numerical and categorical data, its ensemble learning approach, and its
regularization techniques are all factors that can contribute to its superior performance on
this task. Therefore, the XGBoost classifier was selected as the best prediction model for
this study.

Table 2. Evaluation metrics of five ML models.

AUC ACC Precision Recall F1 Score

ADA 0.892706 0.854736 0.59784 0.752517 0.665029
RF 0.933072 0.917686 0.774662 0.752517 0.763268

GBDT 0.921759 0.898529 0.727928 0.772071 0.748218
LR 0.89211 0.848096 0.593264 0.518264 0.551995

XGboost 0.943967 0.917935 0.812165 0.768881 0.786131
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3.2. Analysis and Optimization of the Preparation Process

The XGBoost model provides a built-in method to quantify the importance of features
in decision-making. The processing parameter features that affect the synthesis of silica-
coated GNRs are ranked in descending order of their relative importance fractions, as
presented in Figure 1d. Evidently, the concentration of CTAB (f1), the volume of TEOS
in a single injection (f2), and the number of GNRs (f0) are the top three dominant factors
influencing the preparation of silica-coated GNRs. Among them, the concentration of
CTAB is the most important factor because the surfactant CTAB is often attached to the
GNRs surface as an organic template. The hydrolyzed silicon source condenses on the
surface of CTAB molecules under alkaline conditions to form a silica shell. A suitable
CTAB concentration facilitates the synthesis of silica-coated GNRs, while a higher CTAB
concentration gives rise to the formation of silica spheres as a by-product. The amount of
TEOS affects the location of silica deposition on the GNRs surface. Because the deposition
of silica needs to overcome the energy barrier formed by CTAB, which is smaller at two
ends of the GNRs than on their lateral sides, the silicon source is preferentially deposited at
two ends of the GNRs [39]. The appropriate concentration of CTAB and TEOS, if controlled
accurately, will form silica-coated GNRs with a specific dumbbell-shaped structure. The
high concentration of TEOS makes condensed silica in the solution easier to overcome the
barrier of CTAB formation to achieve deposition on the sides [39]. The amount of GNRs
affects the thickness of the silica shell layer by influencing the amount of silicon source
attached per gold nanorod particle. A higher amount of GNRs makes each gold nanorod
particle absorb less silicon source and the thinner the shell formed on the gold nanorod
surface and vice versa [18]. The relative importance of these processing parameters for
the synthesis of silica-coated GNR materials is in accord with the intuition of experienced
researchers. However, quantifying them by manual or conventional analytical methods is
very challenging. XGBoost provides a simple and straightforward implementation.

Further, for other ranked features, aging time (f8), the solvent of TEOS (f9), and NaOH
concentration (f4) are other factors that can predict the preparation outcomes of silica-
coated GNRs (Figure 1d). From an experimental point of view, the aging time is closely
related to the growth kinetics of the silica shell layer. The reaction rate of the injected shell
precursor solution is fast in the initial stage (9 h) and decelerates abruptly after 12 h. The
synthesized silica-coated GNRs have the same shell thickness even when stored without
washing for 6 days [18]. The solvent of the TEOS solution affects the rate of hydrolysis
and coalescence of TEOS. The NaOH concentration is mainly used to adjust the pH of the
solution, and the rate of TEOS hydrolysis becomes larger with increasing pH, whereas the
coalescence rate of TEOS is not monotonic with pH [40]. In an acidic environment, the
coalescence rate of TEOS is slower [41]. The TEOS concentration (f3), reaction volume (f7),
and interval time (f6) in Figure 1d also affect the synthesis of silica-coated GNRs. The TEOS
concentration is the amount of TEOS mixed with the ethanol. Ethanol is used to improve
the solubility of hydrophobic TEOS in deionized water. TEOS is difficult to be hydrolyzed
for silica coating on GNR with just a bit of ethanol [39]. The interval between drops of
TEOS solution affects the concentration of hydrolyzed TEOS in the solution. Short intervals
allow hydrolyzed TEOS in solution to reach a homogeneous nucleation concentration
and generate nucleation-free silica spheres. A sufficiently long interval will prevent the
hydrolyzed TEOS in solution to reach the homogeneous nucleation concentration, and the
hydrolyzed silicon source in solution will undergo a heterogeneous nucleation reaction,
i.e., the formation of a silica layer on the surface of the GNRs [18]. As for the reaction
volume, it is associated with the effect of isometric scaling of the components, which
changes the interaction between the components.

The decision rule is another characteristic that makes XGBoost highly interpretable. To
gain more process insight, we derived a decision tree from the XGBoost model (Figure 2a).
The decision tree shows how the decision is made to classify the reaction outcomes based
on the input process parameters. The blue ovals display the decision nodes. The sketch
graphs of silica-coated GNRs suggest that GNRs can be successfully coated with silica,
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while the orange triangles represent those that cannot prepare silica-coated GNRs or fail
to decide whether they can. For the left branch of the decision tree, when the volume of
TEOS in a single injection is less than 275 µL and CTAB concentration is less than 5.5 mM,
the volume of TEOS in a single addition and the volume of GNRs should be adjusted to
determine the preparation outcomes. For the right branch, when the volume of TEOS in a
single injection is larger than 275 µL and CTAB concentration is less than 11.5 mM, as well
as the volume of the GNR solution being larger than 15 mL, the outcomes are determined
by sequentially adjusting the volume of GNRs and the concentration of CTAB. We can
extract the process assumptions from this decision tree, including some important criteria
guiding the preparation of silica-coated GNRs. As shown in Figure 2b, we can infer that
the volume of TEOS in a single injection is most crucial to the final reaction outcomes. If
TEOS volume in a single injection for successful synthesis of silica-coated gold is between
118.5 µL and 188.5 µL, then CTAB concentration and GNR volume in the reaction solution
should preferably not exceed 5.5 mM and 19.25 mL, respectively. If TEOS volume in a
single injection exceeds 275 µL, the concentration limit of CTAB can be less restrictive.
For instance, when the CTAB concentration is less than 6.5 mM, then GNR volume used
should be between 15 mL and 25 mL to obtain well-formed silica-coated GNRs. If the
CTAB concentration is relaxed to 11.5 mM, then a GNR greater than 25 mL should be used
to obtain silica-coated GNRs.
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Figure 2. (a) Decision trees derived from the XGBoost model were used to classify successful and
unsuccessful outcomes in silica-coated gold nanorod preparations. Ovals, triangles, and cylindricals
signify decision nodes, excised subtrees, and result bins, respectively. (b) Graphical representation of
the three process hypotheses extracted from the decision tree.

In order to obtain the optimal process parameters suggested by the XGBoost model,
we randomly generated virtual experimental groups in a four-dimensional parameter
space consisting of the first four significant features and input these virtual experimental
groups into the model to spawn high-throughput predictions. All the predicted virtual
experimental groups that could successfully synthesize silica-coated GNRs were screened
out and statistically analyzed in Figure 3. Figure 3a,f,k,p are the relevant kernel function
density estimation plots of four key process parameters of the successful groups. The
peak positions in these plots are the most densely distributed positions of the successful
groups, which can be regarded as the optimal values of the silica-coated GNR process
parameters. Therefore, the optimal values of CTAB concentration, TEOS volume in a single
injection, amount of GNR, and aging time are ascertained around 2 mM, 280 µL, 5 mL,
and 14 h, respectively. The scatter distributions of the successful group in the parameter
space consisting of pairwise features are presented in Figure 3b–d,g,h,l. They are associated
with the conditions of low CTAB concentration, high TEOS amount, low GNR amount,
and sufficient aging time, indicating that these conditions are in favor of the formation of
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silica-coated GNRs. The model can also render vivid heatmaps to visualize the probability
of successful preparation in Figure 3e,i,j,m–o, where each combination of values between
all pairwise features represents the probability of successful preparation of silica-coated
GNRs; the success rates shown in detail in Figure S2.
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Figure 3. Statistical analysis based on ML predictions. Kernel density estimates of the predicted
success group by the XGBoost model regarding (a) CTAB concentration, (f) TEOS volume in a
single injection, (k) GNR volume, and (p) aging time, respectively. The scatter distribution of the
predicting success group in the parameter space of the four foremost factors: (b) CTAB concentration
versus TEOS volume in a single injection, (c) CTAB concentration versus GNR volume, (d) CTAB
concentration versus aging time, (g) TEOS volume in a single injection versus GNR volume, (h) TEOS
volume in a single injection versus aging time, and (l) GNR volume versus aging time. The heatmap
of predictions from the trained model represented by the matrix formed by the four most important
features: (e) TEOS volume in a single injection versus CTAB concentration, (i) GNR volume versus
CTAB concentration, (j) GNR volume versus TEOS volume in a single injection, (m) aging time versus
CTAB concentration, (n) aging time versus TEOS volume in a single injection, and (o) aging time
versus GNR volume. All heatmaps share an identical color bar in values within the subgraph (o).
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3.3. Dumbbell Silica-Coated GNRs for Photothermal Applications

High-throughput screening under the guidance of ML prediction can accelerate the
preparation of silica-coated GNR materials. The resulting 35,079,400 combinations of silica-
coated GNR preparations were predicted based on the input range of each feature (Table S2).
Six of these experimental combinations with the highest prediction success were selected
for experimental validation (Figure S3 and Table S3). Additionally, to better explain the
information in the prediction combinations, four additional experimental combinations
were supplemented for experimental validation in the prediction matrix consisting of the
two most important features (Table S3). TEM images of the silica-coated GNRs prepared by
the sol–gel method (Figure 4a–d) show that the silica has been successfully coated on GNR,
indicating that machine learning-guided silica coating is feasible and effective. The silica-
coated GNRs take on a dumbbell-shaped structure. HRTEM and SAED analysis (Figure 4e,f)
make clear that silica-coated GNRs consist of single-crystalline gold and amorphous silica.
The lattice spacing is 0.244 nm, corresponding to the (111) face of the gold crystal structure.
More than one gold nanorod is present in the selected range; therefore, multiple sets of
electron diffraction patterns exist. EDX line scan and elemental mapping analysis in the
dark field (Figure 4g,h) offer the profiles of the distribution of O, Si, and Au elements in
different regions (Figure 4i–l).

Nanomaterials 2023, 13, 1024 11 of 16 
 

 

were selected for experimental validation (Figure S3 and Table S3). Additionally, to better 
explain the information in the prediction combinations, four additional experimental 
combinations were supplemented for experimental validation in the prediction matrix 
consisting of the two most important features (Table S3). TEM images of the silica-coated 
GNRs prepared by the sol–gel method (Figure 4a–d) show that the silica has been success-
fully coated on GNR, indicating that machine learning-guided silica coating is feasible 
and effective. The silica-coated GNRs take on a dumbbell-shaped structure. HRTEM and 
SAED analysis (Figure 4e,f) make clear that silica-coated GNRs consist of single-crystal-
line gold and amorphous silica. The lattice spacing is 0.244 nm, corresponding to the (111) 
face of the gold crystal structure. More than one gold nanorod is present in the selected 
range; therefore, multiple sets of electron diffraction patterns exist. EDX line scan and el-
emental mapping analysis in the dark field (Figure 4g,h) offer the profiles of the distribu-
tion of O, Si, and Au elements in different regions (Figure 4i–l).  

 
Figure 4. Typical TEM images of silica-coated GNRs prepared under the guidance of ML predic-
tions. The process parameters are (a) 1 mM CTAB and 300 μL TEOS single injection volume, (b) 1 
mM CTAB and 250 μL TEOS single injection volume, (c) 1 mM CTAB and 200 μL TEOS single in-
jection volume, and (d) 1 mM CTAB and 150 μL TEOS single injection volume, respectively. (e) 
High-resolution TEM images of silica-coated GNRs. (f) Selected area electron diffraction pattern of 
silica-coated GNRs. (g) EDX line scanning profiles analyzed across the end spherical region as 
viewed along the line in the inset of the HAADF-STEM image. (h) STEM images before EDX map-
ping of the silica-coated GNRs. (i) The corresponding elemental mixed mapping images of elements 
Au (j), Si (k), and O (l). 

We employed cylindrical silica-coated GNRs as a control group to evaluate the pho-
tothermal performance of dumbbell silica-coated GNRs, both of which have longitudinal 
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Figure 4. Typical TEM images of silica-coated GNRs prepared under the guidance of ML predictions.
The process parameters are (a) 1 mM CTAB and 300 µL TEOS single injection volume, (b) 1 mM CTAB
and 250 µL TEOS single injection volume, (c) 1 mM CTAB and 200 µL TEOS single injection volume,
and (d) 1 mM CTAB and 150 µL TEOS single injection volume, respectively. (e) High-resolution TEM
images of silica-coated GNRs. (f) Selected area electron diffraction pattern of silica-coated GNRs.
(g) EDX line scanning profiles analyzed across the end spherical region as viewed along the line in
the inset of the HAADF-STEM image. (h) STEM images before EDX mapping of the silica-coated
GNRs. (i) The corresponding elemental mixed mapping images of elements Au (j), Si (k), and O (l).

We employed cylindrical silica-coated GNRs as a control group to evaluate the pho-
tothermal performance of dumbbell silica-coated GNRs, both of which have longitudinal
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plasmon resonance absorption peaks at 907 nm (Figure 5a). A total of 1.5 mL of silica-coated
GNR solution was placed in a quartz cuvette. The thermal images were captured every
30 s upon continuous irradiation with an 808 nm laser (Figures 5b and S4). The results
show that the dumbbell silica-coated GNRs could be heated up to 69.7 ◦C, which is higher
than the 66.7 ◦C of its cylindrical counterpart after a duration of 5 min. At this point, we
turned off the laser and let the solution cool off naturally for 10 min before turning it on
again. After five cycles of repetition, both types of silica-coated GNRs could still reach high
temperatures, indicating that they have good thermal stability. In order to theoretically
interpret why dumbbell silica-coated GNRs possess an enhanced photothermal perfor-
mance, we conducted an electromagnetic simulation of silica-coated GNRs with a time
domain finite difference algorithm. We first calculated the electric field enhancements
and charge distributions when light is horizontally incident on both silica-coated GNRs,
and then figured out the difference of both charge and electric field enhancements be-
tween dumbbell and cylindrical silica-coated GNRs. Figure 5c displays the electric field
enhancements along the x-axis when the incident excitation wavelength is 808 nm with a
fixed y position at 158 nm and z position at 0 nm. The calculation reveals that the electric
field enhancement of the dumbbell silica-coated GNR is more intensive than that of its
cylindrical silica-coated counterpart. The electric field enhancements of both types of
silica-coated GNRs (Figure 5d,e) are strongly distributed at two ends of the GNR with
a dumbbell shape (Figures 5f and S4), which is consistent with the dumbbell silica shell
outside the GNR. Dumbbell-shaped silica shells also facilitate drug molecules, such as ICG
accumulated at two-end shells to make the most use of local electric field enhancement.
Figure 5g shows that the electric fields are significantly stronger at two ends and sides of the
dumbbell silica-coated GNR than that of its cylindrical counterpart. Figure 5h,i display the
charge distribution of the dumbbell-shaped silica-coated GNR and the difference in charge
distribution of two kinds of silica-coated GNRs, respectively. It is well-known that an
enhanced surface plasmon resonance (SPR) absorption gives rise to a larger electric field on
metal nanoparticle surfaces, and contributes to the photothermal behavior of GNRs [42,43].

To evaluate the in vivo photothermal performance of silica-coated GNRs, we adminis-
trated dumbbell-shaped silica-coated GNRs into 4T1 breast tumor mice by subcutaneous
injection and irradiated the tumor site with a laser beam. The temperature of the tumor
site can elevate up to 60 ◦C within 5 min (Figure 5j and Figure S6) under an 808 nm laser
irradiation, and a temperature of 60 ◦C is sufficient to kill the tumor cells [44,45]. Figure 5k
shows calcein-AM and PI confocal fluorescence images of dead and living cancer cells.
Breast cancer cells (4T1) were cocultured with a dumbbell silica-coated GNR solution for 2 h
and stained after 10 min of 808 nm laser (0.5 W cm−2) irradiation. Dumbbell silica-coated
GNRs were covalently conjugated with folic acid–polyethylene glycol (FA-PEG) molecules.
Due to the high expression level of FA receptors in 4T1 cancer cells, the target FA-PEG
molecules loaded on dumbbell silica-coated GNRs can promote their complex uptake by
tumor cells. The dumbbell silica-coated GNRs absorbed in or on the surface of cancer
cells can cause photothermal damage to cancer cells when they are exposed to an 808 nm
laser. Live cells labeled with calcein-AM showed green color, while dead cells labeled with
PI showed red fluorescence. Cell imaging revealed that cancer cells, under either laser
irradiation alone or simply dumbbell silica-coated GNRs without laser irradiation, could
survive in the medium. Almost all cancer cells were killed by the combination of laser
irradiation with dumbbell silica-coated GNRs. These results clearly demonstrate that the
photothermal impact of dumbbell silica-coated GNRs can kill cancer cells even at a low
excitation power. In brief, dumbbell silica-coated GNRs exhibit superior photothermal
performance and a good prospect for tumor ablation therapeutics. Systematic preclinical
investigations on dumbbell silica-coated GNRs are necessarily carried out further.
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Figure 5. (a) Absorption spectra of two types of silica-coated GNRs. (b) Photothermal stability assay
curve of dumbbell-type and cylindrical silica-coated GNRs in vitro. (c) Electric field enhancement
around two types of silica-coated GNRs. Structure diagram of dumbbell (d) and cylindrical silica-
coated GNRs (e). (f) Electric field distribution of dumbbell silica-coated GNRs. (g) Difference between
the electric field of dumbbell and cylindrical silica-coated GNRs. (h) Charge distribution diagram
of dumbbell silica-coated GNRs. (i) Difference between the charge of dumbbell and cylindrical
silica-coated GNRs. (j) Photothermal images of dumbbell-type silica-coated GNRs into 4T1 breast
cancer tumor mice. (Laser: 808 nm.) (k) Staining of the incubated 4T1 cells by calcein-AM (green)
and PI (red) with different ingredients and radiation conditions. The excitation light density was set
as 0.5 W cm−2 for in vitro cellular studies.

4. Conclusions

We report the preparation of well-shaped silica-coated gold nanorods (GNRs) assisted
by machine learning (ML) prediction and identify a unique dumbbell structure with
excellent optical properties and promising photothermal potential for applications. A total
of 306 sets of silica-coated GNRs prepared under different conditions were characterized
and adopted as training datasets for ML modeling with eight algorithms. Among them,
the XGBoost algorithm outstrips others with the best prediction accuracy of over 0.91.
According to ML-derived feature importance and decision trees, the current study proffers
a comprehensive interpretation of the process conditions for fabricating silica-coated GNRs.
Cetyltrimethylammonium bromide (CTAB), tetraethyl orthosilicate (TEOS) concentrations,
and GNR amounts are the three most important features that affect the final preparation of
silica-coated GNRs. The decision trees derived from XGBoost were employed to optimize
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the preparation process of silica-coated GNRs. Using high-throughput predictions, a
statistical analysis of the virtual success group was attempted to determine the optimal
conditions, and then the unique dumbbell-shaped silica-coated GNRs were successfully
prepared under the guidance of the XGBoost model. In vitro and in vivo experimental tests
indicate that the photothermal performance of dumbbell-shaped silica-coated GNRs are
superior to that of the conventional cylindrical silica-coated GNRs, which was also proved
via the time domain finite difference simulation. Pursuant to the simulation, the local
electric field enhancement of dumbbell silica-coated GNRs is more intensive than that of
its cylindrical counterpart, leading to enhanced surface plasmon resonance absorption on
GNRs with a stronger photothermal effect for a better tumor-ablating therapy application.
The method reported in this study can also be extended to design and develop other
composite nanostructure materials.
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www.mdpi.com/article/10.3390/nano13061024/s1, Figure S1: The heat map of Pearson’s correlation
coefficient matrix among the features selected for the preparation of silica-coated GNRs; Figure S2:
The heatmap of predictions from the trained model represented by the matrix formed by the four
most important features: (a) TEOS volume in a single injection versus CTAB concentration, (b) GNR
volume versus TEOS volume in a single injection, (c) aging time versus GNR volume, (d) GNR
volume versus CTAB concentration, (e) aging time versus CTAB concentration, and (f) aging time
versus TEOS volume in a single injection; Figure S3: TEM images of the validation experiments.
(a–f) are the TEM images of the experimental groups corresponding to the IDs in Table S3, respectively;
Figure S4: The temperature rising curve of photothermal images of dumbbell silica-coated GNRs;
Figure S5: Electric field enhancement and charge distribution in cylindrical silica-coated GNRs;
Figure S6: In vivo photothermal temperature rising curve in the tumor site of mice; Table S1: Optimal
hyperparameters obtained through 5-fold GridSearchCV procedures; Table S2: Parameter space for
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throughput prediction and combined effects.
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