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Abstract: Roll-to-roll gravure (R2Rg) has become highly affiliated with printed electronics in the past
few years due to its high yield of printed thin-film transistor (TFT) in active matrix devices, and
to its low cost. For printing TFTs with multilayer structures, achieving a high-precision in overlay
printing registration accuracy (OPRA) is a key challenge to attain the high degree of TFT integration
through R2Rg. To address this challenge efficiently, a digital twin paradigm was first introduced
in the R2Rg system with an aim to optimize the OPRA by developing a predictive model based on
typical input variables such as web tension, nip force, and printing speed in the R2Rg system. In our
introductory-level digital twin, errors in the OPRA were collected with the variable parameters of
web tensions, nip forces, and printing speeds from several R2Rg printing processes. Subsequently,
statistical features were extracted from the input data followed by the training of a deep learning
long-short term memory (LSTM) model for predicting machine directional error (MD) in the OPRA.
As a result of training the LSTM model in our digital twin, its attained accuracy of prediction was
77%. Based on this result, we studied the relationship between the nip forces and printing speeds
to predict the MD error in the OPRA. The results indicated a correlation between the MD error in
the OPRA and the printing speed, as the MD error amplitude in the OPRA tended to decline at the
higher printing speed.

Keywords: roll-to-roll gravure printing; digital twins; thin film transistors; overlay printing registra-
tion accuracy; predictive modeling

1. Introduction

Printed electronics have a monumental impact considering their suitability for several
applications where conformity and cost are critical in markets [1–4]. Roll-to-roll gravure
(R2Rg) is a promising approach for mass production of inexpensive and large-area flexible
electronic devices [5] such as radio frequency identification tags [6], organic solar cells [7],
thin-film transistors (TFTs) in active matrix-based sensor devices [8–11], and low level-
integrated logic gate-based devices [12]. However, the operating frequency and level
of integration still need to be improved in these devices. Thus, printed TFTs must be
miniaturized to ensure high-speed operations and millions of TFTs need to be integrated in
a small area which cannot be achieved easily using R2Rg. This difficulty is caused mainly
by the limitations in overlay printing registration accuracy (OPRA) of the R2Rg printing
system [13–17]. To realize inexpensive, flexible, and large-scale printed electronic devices
such as simple logic gates for wireless smart labels, digital signage, and simple processors
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for smart packaging applications, R2Rg printed TFTs are a key device; thus, well controlled
registration accuracy for printing gate electrodes and the dielectric layer and drain-source
electrode should be provided [18,19]. Through well-controlled OPRA, thousands of TFTs
can be integrated into a small area to allow designed functions. Therefore, well-aligned
TFTs with minimal overlay printing registration error play a significant role in achieving
reliable printed devices [12].

Researchers have previously conducted several studies to optimize the OPRA in R2R
printing. Choi et al. proposed a nonlinear feedback controller to modulate web tension
and optimize the OPRA [20,21]. They used a modified genetic algorithm to determine
optimal gain values. Lee et al. developed the mathematical models for a novel scheme that
can provide a rapid response in the register control of flexible substrates [22]. The results
indicated successful control of the register error achieving results of under 20 µm. Kang
and Kim investigated the distortion in the OPRA using a finite element (FE) and proposed
an active correction algorithm for a R2R reverse-offset [12]. The study reported convergence
of the OPRA to 2.4 µm and 1.9 µm in the machine direction (MD) and transverse direction
(TD), respectively. Gafurov et al. evaluated the register error factors in R2R screen printing,
which included several process parameters, and proposed a combined active–passive error
compensation strategy [23]. The study reported 0 ± 9 µm and 0 ± 10 µm for MD and
TD, respectively. Kang et al. also proposed a mathematical model that eliminates the
upstream disturbances in MD and TD registers by defining them in terms of strain in
both downstream and upstream directions with a time lag [24,25]. These studies have
developed systematic approaches to optimize the OPRA, focusing on novel algorithms for
it. However, implementing these algorithms may have limitations due to dependence on
developing mechanical components or sensor technology. In Industry 4.0, manufacturing
paradigms are expanding to include smart objects [26] which have brought significant
attention to the concept of a digital twin [27]. The digital twin (DT) represents a system’s
virtual copies that can interact reciprocally with their physical counterparts. DT has shown
great potential to replicate and analyze production systems in real time [28,29]. Hence,
we explore the DT for optimizing the OPRA in the R2Rg printing process using typical
parameters of web tensions, nip forces, and printing speeds. This study is the first step
toward implementing the DT in the R2Rg printing process to elucidate a way of optimizing
the OPRA (Figure 1). Figure 1 shows a concept map for the DT application to simulate the
OPRA in the R2Rg printing system. This application aims at resolving the problems of the
OPRA in the R2Rg printing process to enable the printing of multilayers for fabricating
TFTs and the generation of dynamic contexts to allow us to test for various scenarios using
virtual copies rather than the physical system. We synchronized an internet-of-things
(IoT)-based DT with the R2Rg system. Based on this synchronization, the DT could keep
track of the physical system behavior. It could track past events (i.e., analyze data from
completed printing sessions), constantly monitor the present system status in real time,
and provide the feedback to support decision-making by predicting future possibilities
which allowed us to learn the adjustments necessary to improve our system (Figure 1).
Although our goal focused on developing the tools needed for building our DT to predict
output characteristics of R2Rg printed-TFTs via optimizing the OPRA in the future, in this
work, we also present an introductory model to show how we can predict the OPRA based
on the acquired parameters in the web tensions, the nip forces, and printing speeds while
running the R2Rg printing system (Supplementary Table S1). This model can optimize the
printing parameters to increase the yield of the printed TFT-based devices as we correlated
the OPRA with the three basic printing parameters such as the web tensions, the nip forces,
and the printing speeds.
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Figure 1. The conceptual map of introductory digital twin in roll-to-roll gravure (R2Rg)-based
manufacturing system: (a) a schematic diagram of R2Rg system with all tension and nip force
modules including tensions T1 to T6 and nip forces (NIP1_M, NIP1_F, NIP2_M, and NIP2_F); (b) a
picture of the installed camera system used to measure and compensate the misalignments of the
printed markers; (c) a block diagram for the OPRA control system; and (d) a camera system to monitor
misalignments in printed markers between first (camera 1) and second (camera2) printing units.
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2. The Overlay Printing Registration Accuracy (OPRA) Prediction in R2R
Gravure Printing
2.1. R2R Gravure Printing Process Parameters

Several printing process parameters and web handling modules can influence the
OPRA. Well-known typical parameters are the web tensions, the nip forces, and the printing
speeds of the R2Rg system [20]. Figure 1a shows the schematic diagram of the two-unit-
R2R printing system installed at Sungkyunkwan University and indicates the various
parameters of the web tensions at the unwinder, first and second printing units, and the
out-feeder, as well as the nip forces at the first and second printing units.

Figure 1b–d illustrates the control system of the OPRA and shows the camera system
installed in the R2Rg system to ensure the overlay printing registration. The first camera
detects the printed mark on the film from the 1st printing unit, and the second camera
monitors the marker on the pattern roller installed in the 2nd unit. Based on the images
from the 1st and 2nd cameras, the computer calculates the misalignment between printed
markers at the 1st unit as reference and markers on the pattern roller at the 2nd unit
just before printing. Subsequently, the PC system corrects the position of the pattern
roller on the 2nd unit to compensate for the misalignment. The 3rd camera monitors the
misalignment between the two markers that occur even after correction—this being the
residual error in the machine. As shown in Figure 1c, if the printing status measured
by cameras (1) and (2) and monitored by camera (3) indicates misalignments along the
MD, then feedback is provided to the actuator to control the speed of the second gravure
cylinder to meet the OPRA in the MD. The labels (1, 2, and 3) in Figure 1b–d refer to the 1st,
2nd and 3rd cameras, respectively.

2.2. The Prediction Model

We analyzed the various tensions, nip forces, and printing speeds with the OPRA so
as to develop the DT and hence to predict the MD error. Additionally, considering the
continuous nature of the printing process, we formulated our problem as a time series
forecasting model as shown in the prediction model flowchart in Figure 2. In this model,
we extracted statistical features from the tension and nip force input data, such as mean,
standard deviation, minimum, and maximum values over one second, followed by splitting
the dataset into sequences to capture the system’s behavior over time. Subsequently, we
trained the forecasting model to predict MD error. Here, we used Long Short-Term Memory
(LSTM), a state-of-the-art time series forecasting method, as shown in Figure 3. LSTM is a
type of recurrent neural network (RNN) architecture that Hochreiter et al. [30] developed to
model sequential data accurately and learn the long-term dependency of information. The
LSTM is successfully used in several fields including speech recognition [31–33], natural
language processing [34], and stock market forecasting [35]. The LSTM contains several
hidden layers with special units called memory blocks. These memory blocks store the
temporal network state using self-connected memory cells. The multiplicative units in
memory blocks control the flow of information and are called gates, including the input
gate, forget gate, and output gate. The input and output gates control the input and output
flow of cell activation, respectively. The forget gate helps adaptively reset the cell’s memory
by preventing the processing of non-segmented input streams. In other words, the forget
gate categorizes whether specific information should be preserved or discarded. Together,
all three gates control the amount of information that flows into and out of a memory cell.
Figure 3a summarizes the internal mechanism of the LSTM and how these three gates
operate. Based on this mechanism, mapping from an input sequence and output were
computed: using the following Equations (1) to (6), we can calculate the network unit
activations iteratively from t = 1 to T [36]:

it = Relu(Wixxt + Wimmt−1 + Wicct−1 + bi) (1)

ft = Relu
(

W f xxt + W f mmt−1 + W f cct−1 + b f

)
(2)
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ct = ft.ct−1 + it.g(Wcxxt + Wcmmt−1 + bt) (3)

ot = Relu(Woxxt + Wommt−1 + Wocct + bo) (4)

mt = ot.h(ct) (5)

yt = φ
(
Wymmt + by

)
(6)

Figure 2. Diagram illustrating the introductory digital twin based on a predictive model.

Figure 3. The prediction model architecture: (a) LSTM internal structure and (b) deep LSTM.

Here, the W term indicates the weight matrices (for example, Wix denotes the weight
matrix from the input gate to the output) while b terms denote the bias vectors (e.g., bi
is the bias vector of the input gate). Relu is the activation function (Relu(x) = max (0, x)).
The terms i, f, o, and c respectively represent the input gate, forget gate, output gate, and
cell activation vectors, shown in Figure 3a. All these terms have the same size as the cell
activation vector m. Based on the activation function Relu’s value, the three gates can have
a value of either 0 or a positive number. A value of 0 would indicate that no information
would pass the gate, but a positive value would allow all information to pass [37]. g and
h denote the cell input and output activation functions, respectively, which here are tanh.
φ is the network output activation function. In this paper, the output activation function
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Dense was used. Based on this internal mechanism, the memory cells of LSTM networks
can store information which can be read from, stored into, and written to previous cells.
Thus, relevant information from previous cells are able to enter the current cell during
the sequence’s processing. Since the R2Rg printing is a continuous process, in which the
register error does not only depend on the system’s current state but also on its previous
state, the LSTM is suitable for modeling and predicting the register error. Figure 3b shows
the deep LSTM architecture adapted from [31–33] and used in this work. Deep LSTM is
built by stacking several LSTM layers, and for our deep LSTM, we stacked two LSTM
layers. Since the LSTM can only provide the internal state of the hidden units as output, a
Dense layer is added. The Dense layer can change the LSTM output vector dimensions to
those desired so that the model can easily interpret the input–output relationship. Deep
LSTM RNNs offer another benefit over other RNNs: they can make better use of parameters
by distributing them over the space through multiple layers. This was useful for us, as it
meant we did not need to increase the memory size of our network [36].

The loss function was defined, in which the minimization problem was solved using
the equations above to find the optimal W value. We used a mean square error loss function
(MSE) defined using the equations below [38]:

MSE =
1
n

n

∑
t=1

(yt − ŷt)
2 (7)

where yt is the observed output (the MD register error here), and ŷt is the predicted
error. In machine learning, after training the model, a metric must be chosen to evaluate
its performance. Since our output is a continuous variable, we used the coefficient of
determination, also known as R2 score [39]. We can use the equation below to calculate this
metric:

R2 = 1 −
Σn

t=1(yt − ŷt)
2

Σn
t=1(yt − y)2 (8)

where y is the mean of the observed output values and can be calculated as follows:

y =
1
n

n

∑
t=1

yt (9)

3. Experimental Results
3.1. Data Acquisition

To train the error prediction model in the MD, we obtained tension, nip force, MD
OPRA, and TD OPRA data from several printing processes at the R2Rg printing system
installed at Sungkyunkwan University. The data was acquired at a printing speed of
90 mm/s. Figure 4 shows the effects of the OPRA on the variation of threshold voltage
(Vth) in the R2R printed TFTs. To calculate the threshold voltage variation values depicted
in Figure 4, eight randomly selected TFT samples were used. When printed layers are
normally aligned (Figure 4a), the Vth mean values and variation are relatively low. On the
other hand, the MD misalignment in the OPRA resulted in the larger Vth mean values and
variation compared with the normal and the TD misalignment samples. Therefore, in this
work, we focused on optimizing the MD misalignment error in the OPRA, as this helped
minimize the variation of R2Rg printed TFTs.
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Figure 4. Effects of the OPRA on the variation in threshold voltage (Vth) of the R2R printed TFTs:
(a) optical image of TFTs showing OPRA with normal alignment, misalignment in TD and misalign-
ment in MD; and (b) Vth mean value variation for TFTs with normal alignment, misalignment in TD
and misalignment in MD.

Figure 5 shows samples of the raw data obtained during a printing process, including
the input data of nip force and tension (Figure 5a,b) with the printing speed of 90 mm/s. We
observed a variation of 2 kgf and 0.5 kgf in the nip force and the web tension, respectively.
Figure 5c,d shows the data obtained from the camera system for MD and TD misalignment
of printed markers, respectively. Figure 5e shows the MD register errors attained from
the camera data. These peaks represent the local minima and maxima in the camera data
for MD by simply comparing the neighboring values, while Figure 5f shows MD errors
computed by subtracting the peaks from an average offset value in the MD camera data.
MD error was observed in the range of 50 to 100 µm while we theoretically expected it to
be close to zero with the camera control system.

Figure 5. Raw data from the R2R gravure printing processes: (a) the nip force data from first and
second printing units, (b) the web tension data from unwinder, first and second printing units,
and out-feeder, (c) registration errors for MD, (d) registration errors for TD, (e) peak values from
the camera data, obtained by computing the local minimums and maximums in MD registration
errors (shown in (c)), and (f) the MD error calculated by estimating an offset line around which the
registration error peaks oscillate, and then subtracting the offset value from the peaks graph.

3.2. Prediction Model Training and Evaluation

Based on the framework described in Figure 2, we used the collected data during
the printing process to train the deep LSTM model (Figure 3b). First, to prepare the
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training dataset, we manually extracted statistical features from each input variable for a
one-second time window, including mean, standard deviation, minimum, and maximum
values. Table 1 shows a sample of the computed statistical features. Second, we mapped the
extracted input features and MD register error data. Subsequently, we divided the dataset
into sequences of 10-s length to accurately capture the system behavior. Supplementary
Tables S2–S5 elaborate the mapping algorithm used to map the camera data to tensions
and nip force data in order to prepare the dataset for training, testing and evaluating our
model.

Table 1. Statistical features computed from the input data.

T2_Mean T2_Std T2_Min T2_Max . . . NIP2_F_Min NIP2_F_Max

4.92 0.192353841 4.6 5.1 . . . 5.6 6.1
4.86 0.260768096 4.6 5.2 . . . 6.3 7.0
4.92 0.044721361 4.9 5.0 . . . 7.1 7.8
4.82 0.334664011 4.5 5.3 . . . 6.1 7.2
. . . . . . . . . . . . . . . . . . . . .

5.12 0.083666003 5.0 5.2 . . . 5.5 6.9
5.14 0.089442719 5.0 5.2 . . . 6.0 7.4

Figure 6a shows the training results of the prediction model. The training and valida-
tion loss converges to a constant value after epoch 150 (training iteration). Figure 6b shows
the predicted and observed MD error from new printing processes. We were able to see
how well the model can capture the system’s behavior. Table 2 reports the R2 value when
training the model at various input sequence lengths. The attained R2 value represents the
coefficient of correlation; a measure of accuracy for the prediction model as described in
Section 2.2. At a sequence length of 10 s, we obtained the highest R2 value of 77% indicating
the best model performance.

Figure 6. Training results: (a) training and validation mean square error (MSE) loss graphs for each
epoch and (b) actual and predicted MD errors.

Table 2. R2 value for different sequence lengths.

Sequence length (seconds) 4 s 6 s 8 s 10 s

R2 value 62% 71% 66% 77%

4. Effects of the Nip Force Variation on MD Error under Various Printing Speeds

Since we had an introductory DT that could predict the system behavior, we used it to
elucidate the effects of varying the nip force and the printing speed on the MD misalignment
and to extract printing conditions by which we could optimize the OPRA. We collected
data from the R2R gravure system without actual printing at different nip force levels and
printing speeds, similar to the data obtained during printing. We used the introductory
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DT to acquire the MD misalignment error values. Since the experiment was carried out
without actual printing, there were no observed MD error values.

Table 3 summarizes the conditions by which we collected data and ran the DT with
a total of 3 × 4 = 12 combinations of nip forces and printing speeds. Figure 7a,b shows
samples of the raw data of nip force collected over a five-minute interval without actual
printing. In Figure 7a, we can observe that the noise frequency in the nip force changed
when the nip force was at a specific level (here 6 kgf), and the printing speed varied.
Similarly, at the printing speed of 90 mm/s, we noted that the noise frequency in the nip
force remained constant at all levels as shown in Figure 7b. We assume that the nip force
fluctuation is due to off centric rotation of the gravure cylinder (Supplementary Figure S1).

Table 3. The nip-speed experiment parameters.

Process Parameter Units Values

Nip force Kgf [4, 6, 8]
Printing speed mm/s [30, 60, 90, 120]
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Figure 8 shows the predicted error from our trained LSTM model as a function of
the time domain (Figure 8a,b) and as a function of the frequency domain (Figure 8c,d)
under the printing conditions depicted in Figure 7a and 7b, respectively. We observed a
relative decline in the MD misalignment error at the higher printing speeds (Figure 8a).
Also, MD misalignment error was predicted under the variation of nip forces between 4
to 8 kgf (Figure 8b). Figure 8c,d shows the analysis of the predicted error as the function
of the frequency domain. We can observe that the predicted error noise frequency peaks
varied at different speeds and increased in proportion to the increase in printing speed
(from 0.07 Hz at 30 mm/s to 0.3 Hz at 120 mm/s in Figure 8c). On the other hand, we
noticed that the frequency of the error signal remained constant when printing speed was
constant, while the nip force changed—as shown in Figure 8d where the printing speed
for all three conditions was 90 mm/s and error signal noise frequency peak remained
around 0.22 Hz. One major reason which can explain these observations originates from
the variation in the number of printed markers occurring per rotation while varying the
printing speed, which further validated the predictability of our DT. These observations
further strengthen the correlation between nip force noise frequency, printing speed, and
predicted error frequency. Supplementary Figure S2 provides additional analysis of nip
force, observed MD error, and predicted MD error as a function of time and frequency
domains. These data were acquired from a real printing session and further validated our
results. We calculated the frequency of noise in the nip force (Figure S2a,d) and found
it to be similar to noise frequency in the register error from actual printing. From this
observation, we hypothesized that the nip force and register error will always have the
same noise frequency. Hence, we manipulated the nip force noise frequency by varying the
printing speeds and obtained a predicted error from our model. As hypothesized, the error
frequency was similar to nip force at varying printing speeds.
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Figure 8. Effects of nip force variation on machine directional (MD) error by varying printing speeds:
(a) predicted MD error at different printing speeds (set nip force = 6 kgf) and (b) at different nip
forces (set printing speed = 90 mm/s) as a function of the time domain; (c) predicted MD error at
different printing speeds (set nip force = 6 kgf) and (d) at different nip forces (set printing speed =
90 mm/s) as a function of the frequency domain.

5. Conclusions

In this paper, we presented the foundations for adapting the digital twin paradigm
into the R2Rg system for printing TFTs with multilayer structures where each layer should
be well optimized in the OPRA. We focused on developing the MD register error prediction
model as the first step toward predicting future events in the digital twin paradigm, since
the MD misalignment brought larger Vth variation than that from the well aligned and
TD misalignment samples. Thus, we proposed using a deep Long-Short Term Memory
(LSTM) neural network architecture as a time series forecasting method. The introductory
DT used R2Rg printing parameters including web tension and nip force as register error
predictors. We evaluated the performance of the deep LSTM at different sequence lengths
and obtained the best accuracy of 77% at a 10 s input sequence length. This accuracy
indicated the validity of using tension and nip force parameters in the R2Rg system as
input variables of an LSTM-based DT to forecast MD registration error.

The paper explored the effects of varying nip force and printing speeds on the pre-
dicted register error using the proposed introductory DT. Evaluating the results in the time
domain denoted a decline in MD error at higher printing speeds. Moreover, analyzing the
predicted error in the frequency domain indicated a correlation with printing speed and
nip force signal frequency. This finding further validated the DT’s performance.

In future work, we will focus on the link to feed process data from the R2Rg system
into our DT in real time. We will further investigate process parameters, such as ink
rheology and printed pattern quality which may affect the MD error and include them to
expand our model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13061008/s1, Figure S1: (a) schematic showing gravure
roller eccentricity resulting in nip force fluctuation, (b) noise frequency due to roller eccentricity
calculated considering roller circumference of 408mm at different printing speed; Figure S2: time
domain data of (a) nip pressure, (b) observed overlay error in MD, and (c) predicted overlay error
in MD, and frequency domain data of (d) nip pressure, (e) observed overlay error in MD, and (f)

https://www.mdpi.com/article/10.3390/nano13061008/s1
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predicted overlay error in MD; Table S1: description for the typical parameters in the R2R gravure
process in Figure 1; Table S2: data mapping algorithm for registration error, tension and nip force;
Table S3: tension and nip force data; Table S4: MD and TD camera trigger data; Table S5: mapping
tension and nip force data to MD and TD camera trigger data.

Author Contributions: Experimental investigation, B.B.M., A.S., S.S. and S.P.; writing—original draft
preparation, A.S. and B.B.M.; writing—review and editing; supervision and review, G.C. and Y.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grants from the National Research Foundation of Korea,
funded by the Korean government (MSIT) (Nos, 2020R1A5A1019649), and the Technology Innovation
Program (20018357, Development of design for user biological and environmental information
reactive printed electronic chameleon sheet) funded by the Ministry of Trade, Industry & Energy
(MOTIE, Korea).

Data Availability Statement: Data can be obtained on request from anood.shakil@g.skku.edu. It
may also be accessed from supplementary materials after publication of manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hyun Kim, S.; Hong, K.; Xie, W.; Hyung Lee, K.; Zhang, S.; Lodge, T.P.; Daniel Frisbie, C.; Kim, S.H.; Hong, K.; Xie, W.; et al.

Electrolyte-Gated Transistors for Organic and Printed Electronics. Adv. Mater. 2013, 25, 1822–1846. [CrossRef]
2. Kang, J.; Tok, J.B.H.; Bao, Z. Self-Healing Soft Electronics. Nat. Electron. 2019, 2, 144–150. [CrossRef]
3. Dai, Y.; Hu, H.; Wang, M.; Xu, J.; Wang, S. Stretchable Transistors and Functional Circuits for Human-Integrated Electronics. Nat.

Electron. 2021, 4, 17–29. [CrossRef]
4. Lee, G.H.; Moon, H.; Kim, H.; Lee, G.H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S.H.; Bao, Z.; Hahn, S.K. Multifunctional Materials

for Implantable and Wearable Photonic Healthcare Devices. Nat. Rev. Mater. 2020, 5, 149–165. [CrossRef] [PubMed]
5. Bonnassieux, Y.; Brabec, C.J.; Cao, Y.; Carmichael, T.B.; Chabinyc, M.L.; Cheng, K.T.; Cho, G.; Chung, A.; Cobb, C.L.; Distler, A.;

et al. The 2021 Flexible and Printed Electronics Roadmap. Flex. Print. Electron. 2021, 6, 023001. [CrossRef]
6. Jung, M.; Kim, J.; Noh, J.; Lim, N.; Lim, C.; Lee, G.; Kim, J.; Kang, H.; Jung, K.; Leonard, A.D.; et al. All-Printed and Roll-to-Roll-

Printable 13.56-MHz-Operated 1-Bit RF Tag on Plastic Foils. IEEE Trans Electron Devices 2010, 57, 571–580. [CrossRef]
7. Krebs, F.C. Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques. Sol. Energy Mater.

Sol. Cells 2009, 93, 394–412. [CrossRef]
8. Ng, T.N.; Schwartz, D.E.; Lavery, L.L.; Whiting, G.L.; Russo, B.; Krusor, B.; Veres, J.; Bröms, P.; Herlogsson, L.; Alam, N.;

et al. Scalable Printed Electronics: An Organic Decoder Addressing Ferroelectric Non-Volatile Memory. Sci. Rep. 2012, 2, 585.
[CrossRef]

9. He, Z.; Asare-Yeboah, K.; Zhang, Z.; Bi, S. Manipulate Organic Crystal Morphology and Charge Transport. Org. Electron. 2022,
103, 106448. [CrossRef]

10. Sun, J.; Park, H.; Jung, Y.; Rajbhandari, G.; Maskey, B.B.; Sapkota, A.; Azuma, Y.; Majima, Y.; Cho, G. Proving Scalability of an
Organic Semiconductor to Print a TFT-Active Matrix Using a Roll-to-Roll Gravure. ACS Omega 2017, 2, 5766–5774. [CrossRef]

11. He, Z.; Zhang, Z.; Asare-Yeboah, K.; Bi, S. Binary Solvent Engineering for Small-Molecular Organic Semiconductor Crystallization.
Mater. Adv. 2023, 4, 769–786. [CrossRef]

12. Kang, D.; Kim, H.; Kim, H.; Jo, J.; Lee, T.-M. Actively Compensated Precision Overlay in a Reverse-Offset Printing System for
Realizing Printed Electronics of a Large-Area and Multi-Layer Structure. Flex. Print. Electron. 2022, 7, 014010. [CrossRef]

13. Noh, J.; Yeom, D.; Lim, C.; Cha, H.; Han, J.; Kim, J.; Park, Y.; Subramanian, V.; Cho, G. Scalability of Roll-to-Roll Gravure-Printed
Electrodes on Plastic Foils. IEEE Trans. Electron. Packag. Manuf. 2010, 33, 275–283. [CrossRef]

14. Sneck, A.; Ailas, H.; Gao, F.; Leppäniemi, J. Reverse-Offset Printing of Polymer Resist Ink for Micrometer-Level Patterning of
Metal and Metal-Oxide Layers. ACS Appl. Mater. Interfaces 2021, 13, 41782–41790. [CrossRef]

15. Kusaka, Y.; Sugihara, K.; Koutake, M.; Ushijima, H. Overlay of Semi-Dried Functional Layers in Offset Printing for Rapid and
High-Precision Fabrication of Flexible TFTs. J. MicroMech. MicroEng. 2014, 24, 035020. [CrossRef]

16. Moonen, P.F.; Yakimets, I.; Huskens, J.; Huskens, J.; Moonen, P.F.; Yakimets, I. Fabrication of Transistors on Flexible Substrates:
From Mass-Printing to High-Resolution Alternative Lithography Strategies. Adv. Mater. 2012, 24, 5526–5541. [CrossRef]

17. Fukuda, K.; Someya, T. Recent Progress in the Development of Printed Thin-Film Transistors and Circuits with High-Resolution
Printing Technology. Adv. Mater. 2017, 29, 1602736. [CrossRef]

18. Takeda, Y.; Hayasaka, K.; Shiwaku, R.; Yokosawa, K.; Shiba, T.; Mamada, M.; Kumaki, D.; Fukuda, K.; Tokito, S. Fabrication of
Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications. Sci. Rep. 2016,
6, 25714. [CrossRef]

19. Hammock, M.L.; Chortos, A.; Tee, B.C.K.; Tok, J.B.H.; Bao, Z. 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin):
A Brief History, Design Considerations, and Recent Progress. Adv. Mater. 2013, 25, 5997–6038. [CrossRef]

http://doi.org/10.1002/ADMA.201202790
http://doi.org/10.1038/s41928-019-0235-0
http://doi.org/10.1038/s41928-020-00513-5
http://doi.org/10.1038/s41578-019-0167-3
http://www.ncbi.nlm.nih.gov/pubmed/32728478
http://doi.org/10.1088/2058-8585/abf986
http://doi.org/10.1109/TED.2009.2039541
http://doi.org/10.1016/j.solmat.2008.10.004
http://doi.org/10.1038/srep00585
http://doi.org/10.1016/j.orgel.2022.106448
http://doi.org/10.1021/acsomega.7b00873
http://doi.org/10.1039/D2MA00726F
http://doi.org/10.1088/2058-8585/ac5213
http://doi.org/10.1109/TEPM.2010.2057512
http://doi.org/10.1021/acsami.1c08126
http://doi.org/10.1088/0960-1317/24/3/035020
http://doi.org/10.1002/adma.201202949
http://doi.org/10.1002/adma.201602736
http://doi.org/10.1038/srep25714
http://doi.org/10.1002/adma.201302240


Nanomaterials 2023, 13, 1008 12 of 12

20. Choi, K.; Thanh, T.; Kim, D.-K. A Precise Control Algorithm for Single-Span Roll-to-Roll Web System Using the Back-Stepping
Controller. In Proceedings of the 2009 IEEE International Symposium on Industrial Electronics, Seoul, Republic of Korea, 5–8 July
2009.

21. Choi, K.H.; Tran, T.T.; Ganeshthangaraj, P.; Lee, K.H.; Nguyen, M.N.; Jo, J.D.; Kim, D.S. Web Register Control Algorithm for
Roll-to-Roll System Based Printed Electronics. In Proceedings of the 2010 IEEE International Conference on Automation Science
and Engineering, Toronto, ON, Canada, 21–24 August 2010.

22. Lee, J.; Shin, K.; Jung, H. Control Scheme for Rapidly Responding Register Controller Using Response Acceleration Input in
Industrial Roll-To-Roll Manufacturing Systems. IEEE Trans. Ind. Electron. 2022, 69, 5215–5224. [CrossRef]

23. Gafurov, A.N.; Jeong, J.; Park, P.; Kim, I.; Phung, T.H.; Kim, H.C.; Kang, D.; Oh, D.; Lee, T.M. Registration Error Analysis and
Compensation of Roll-to-Roll Screen Printing System for Flexible Electronics. Flex. Print. Electron. 2021, 6, 024003. [CrossRef]

24. Kang, H.; Lee, C.; Shin, K. Modeling and Compensation of the Machine Directional Register in Roll-to-Roll Printing. Control Eng
Pract. 2013, 21, 645–654. [CrossRef]

25. Kang, H.K.; Lee, C.W.; Lee, J.M.; Shin, K.H. Cross Direction Register Modeling and Control in a Multi-Layer Gravure Printing. J.
Mech. Sci. Technol. 2010, 24, 391–397. [CrossRef]

26. Research, A.K.-I.J. of P.; 2018, undefined Smart Manufacturing. Taylor Fr. 2018, 56, 508–517. [CrossRef]
27. Negri, E.; Fumagalli, L.; Garetti, M.; Tanca, L. Requirements and Languages for the Semantic Representation of Manufacturing

Systems. Comput. Ind. 2016, 81, 55–66. [CrossRef]
28. Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems. Manuf. Lett.

2015, 3, 18–23. [CrossRef]
29. Cimino, C.; Negri, E.; Fumagalli, L. Review of Digital Twin Applications in Manufacturing. Comput. Ind. 2019, 113, 103130.

[CrossRef]
30. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural. Comput. 1997, 9, 1735–1780. [CrossRef]
31. Graves, A.; Mohamed, A.R.; Hinton, G. Speech Recognition with Deep Recurrent Neural Networks. Neural Evol. Comput. 2013,

6645–6649. [CrossRef]
32. Eyben, F.; Wollmer, M.; Schuller, B.; Graves, A. From Speech to Letters—Using a Novel Neural Network Architecture for

Grapheme Based ASR. In Proceedings of the 2009 IEEE Workshop on Automatic Speech Recognition & Understanding, Moreno,
Italy, 13 November–17 December 2009.

33. Graves, A.; Jaitly, N.; Mohamed, A.R. Hybrid Speech Recognition with Deep Bidirectional LSTM. In Proceedings of the 2013 IEEE
Workshop on Automatic Speech Recognition and Understanding, Olomouc, Czech Republic, 8–12 December 2013. [CrossRef]

34. Yao, L.; Guan, Y. An Improved LSTM Structure for Natural Language Processing. Proceedings of 2018 IEEE International
Conference of Safety Produce Informatization, IICSPI, Chongqing, China, 10–12 December 2018. [CrossRef]

35. Bhandari, H.N.; Rimal, B.; Pokhrel, N.R.; Rimal, R.; Dahal, K.R.; Khatri, R.K.C. Predicting Stock Market Index Using LSTM. Mach.
Learn. Appl. 2022, 9, 100320. [CrossRef]

36. Sak, H.H.; Senior, A.; Google, B. Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic
Modeling. Available online: https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/4390
5.pdf (accessed on 5 February 2014).

37. Rajagukguk, R.A.; Ramadhan, R.A.A.; Lee, H.J. A Review on Deep Learning Models for Forecasting Time Series Data of Solar
Irradiance and Photovoltaic Power. Energies 2020, 13, 6623. [CrossRef]

38. Das, K.; Jiang, J.; Rao, J.N.K. Mean Squared Error of Empirical Predictor. Ann. Statist. 2004, 32, 818–840. [CrossRef]
39. Lewis-Beck, C.; Lewis-Beck, M. Applied Regression: An Introduction. In Applied Regression: An Introduction; SAGE Publications,

Inc.: New York, NY, USA, 2017. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TIE.2021.3084182
http://doi.org/10.1088/2058-8585/abf987
http://doi.org/10.1016/j.conengprac.2012.09.012
http://doi.org/10.1007/s12206-009-1110-0
http://doi.org/10.1080/00207543.2017.1351644
http://doi.org/10.1016/j.compind.2015.10.009
http://doi.org/10.1016/j.mfglet.2014.12.001
http://doi.org/10.1016/j.compind.2019.103130
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.48550/arxiv.1303.5778
http://doi.org/10.1109/ASRU.2013.6707742
http://doi.org/10.1109/IICSPI.2018.8690387
http://doi.org/10.1016/j.mlwa.2022.100320
https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/43905.pdf
https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/43905.pdf
http://doi.org/10.3390/en13246623
http://doi.org/10.1214/009053604000000201
http://doi.org/10.4135/9781483396774

	Introduction 
	The Overlay Printing Registration Accuracy (OPRA) Prediction in R2R Gravure Printing 
	R2R Gravure Printing Process Parameters 
	The Prediction Model 

	Experimental Results 
	Data Acquisition 
	Prediction Model Training and Evaluation 

	Effects of the Nip Force Variation on MD Error under Various Printing Speeds 
	Conclusions 
	References

