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Abstract: Bacterial infections remain a serious and pervasive threat to human health. Bacterial
antibiotic resistance, in particular, lowers treatment efficacy and increases mortality. The development
of nanomaterials has made it possible to address issues in the biomedical, energy storage, and
environmental fields. This paper reports the successful synthesis of CeO2−SnO2 composite nanofibers
via an electrospinning method using polyacrylonitrile polymer. Scanning and transmission electron
microscopy assessments showed that the average diameter of CeO2−SnO2 nanofibers was 170 nm.
The result of photocatalytic degradation for methylene blue dye displayed enhanced efficiency of
the CeO2−SnO2 composite. The addition of SnO2 to CeO2 resulted in the enhancement of the
light absorption property and enriched charge transmission of photoinduced electron–hole duos,
which conspicuously contributed to momentous photoactivity augmentation. Composite nanofibers
exhibited higher specific capacitance which may be accredited to the synergism between CeO2 and
SnO2 particles in nanofibers. Furthermore, antibacterial activity was screened against Escherichia coli
and CeO2−SnO2 composite nanofibers depicted excellent activity. The findings of this work point
to new possibilities as an electrode material in energy storage systems and as a visible-light-active
photocatalyst for the purification of chemical and biological contaminants, which would substantially
benefit environmental remediation processes.

Keywords: CeO2−SnO2; environmental remediation; antimicrobial; photocatalyst; supercapacitor

1. Introduction

Globally, environmental pollution is a serious problem, inflicting harm to life on the
planet. Water pollution, among other types of pollution, has a significant negative impact
on living species, including aquatic life. Water pollution is due to the discharge of harmful
organic chemicals, such as dyes, acids, and antibiotics, into drinkable water bodies, such as
rivers, lakes, and ponds, from textile, chemical, and pharmaceutical facilities. In nature, the
majority of organic molecules are carcinogenic. Furthermore, water pollution sequentially
causes soil pollution, which has a direct or indirect impact on daily living [1,2]. Synthetic
color dyes, particularly those generated during textile washes, combine easily with water in
comparison to chemicals and reagents; hence, the combination of effluents has hazardous
potential. As a result, industrial effluent must be processed prior to being disposed of
in the surroundings [3]. Dyes are colored aromatic organic complexes that capture light
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and provide color [4]. Because of these advantages, various dyes are utilized for a variety
of applications in commerce, such as fabrics, foodstuffs, rubber, lithography, makeup,
medication, plastic, concrete, and paper. Companies produce massive amounts of effluent,
including carcinogenic and poisonous dyes, that pollute water and render it unsafe for
human consumption. The textile sector is the largest dye-consuming business, relying on
textile dyes, which are very complex molecules [5].

Methylene blue (MB), which is extensively used to color different fabrics, such as
silk, wood, and cotton, as well as paper, is one of the most consumed ingredients in dye
commerce [6]. Textile manufacturers typically release a considerable amount of MB dyes
into natural water reservoirs, imposing health threats to beings and microbes [7]. Owing to
its extreme toxicity, MB dye is dangerous to human health above a specific content level.
MB is toxic, cancer-causing, and non-biodegradable, and it can put human well-being in
danger and has a deleterious influence on the environment [7]. Human health dangers
from MB comprise respiratory agony, gastrointestinal problems, vision, and digestive and
mental illnesses [8]. Additionally, it produces indigestion, diarrhea, vomiting, cyanosis,
dizziness, gastritis, jaundice, methemoglobinemia, tissue necrosis, and an escalation of
heart rate, as well as untimely cell death in tissues and skin/eye irritability [7,9]. Contact
with MB might cause skin redness and irritation [10]. For both aesthetic and toxicological
reasons, MB liberation into surroundings poses a considerable concern. The management
of wastewater containing MB dye before discharge into the environment is critical because
of the negative effects on water quality and perception [11].

Likewise, major bacterial diseases are transmitted through wastewater. Therefore,
microbiological management of drinking water should be the standard everywhere. Ad-
ditionally, regular basic microbiological analysis of drinking water should be performed
using culture methods to perceive the presence of pathogenic Escherichia coli. Hygienic
water is essential for life, but an enormous number of persons are deprived of access to
potable water, and many die as a result of waterborne bacterial infections [12]. To date,
many water treatment technologies, including biodegradation, coagulation, adsorption,
and photocatalysis, have been used to remove organic pollutants [13]. Multi-constituent
photocatalysis of organic contaminants utilizing semiconducting NPs has gained popularity
in recent decades because it is a low-cost, ecologically beneficial, and simple technology
for treating dangerous contaminants in wastewater [4,14,15]. When compared with other
ways, this technology is much more appealing due to the cheaper price of catalysts and the
use of renewable energy [16].

One-dimensional (1D) nanostructured inorganic materials, especially nanofibers, are
attracting a lot of attention. They were applied in various applications recently. One-
dimensional metal oxides, as well as hybrids or composites [17], provide a wide range
of material options, providing new options for future applications [18,19]. Electrospin-
ning is one of the best flexible, multipurpose, and economical techniques that produce 1D
nanofibers with a high aspect ratio, permeability, and adjustable penetrability. Remarkable
progress was also made toward the utilization of such purposeful nanofibers in practical
applications, such as fuel cells, lithium-ion arrays, solar booths, electronic sensors, pho-
tocatalysts, and supercapacitors [20]. Given the importance of renewable energy that is
environmentally friendly, supercapacitors are in high demand; mostly because of their
robust charge–discharge capacity, these supercapacitors are reliable [20].

Electrospinning has notable capability because of its proportionally low cost and
relatively fast fabrication speed [21–24]. In recent years, cerium oxide (CeO2) has received
significant attraction owing to its diverse properties, such as high-temperature stability
and light absorption capability, as well as its broad range of catalytic applications [25–27].
It absorbs light in both the UV and visible regions; it was also applied as an effective
oxidation catalyst, as it has high oxygen storage capability [28]. Moreover, it is also being
used for the degradation of dyes and volatile organic compounds (VOCs) [29,30]. Currently,
CeO2 is used as a photocatalyst and as an electrode material for supercapacitors [31,32].
Researchers are trying to enhance the properties of CeO2 for various applications by mixing



Nanomaterials 2023, 13, 1001 3 of 17

or coupling with other semiconductors, such as CeO2/ZnFe2O4 [33], TiO2-WO3-CeO2 [34],
CeO2/Ni-Al [35], CeO2/MnO2 [36], CeO2/SiO2 [37], CuO-CeO2 [38], CaO/CeO2 [39].

Tin oxide (SnO2) is an n-type semiconductor with a band gap of 3.6 eV. SnO2 has
extensively been utilized as gas sensors, transparent conductive electrodes, solar cells,
and photocatalysts [40–42]. It is expected that mixing SnO2 with CeO2 may enhance its
activity for various applications. In the present study, CeO2−SnO2 composite nanofibers
(NFs) were manufactured via electrospinning and screened for antibacterial, photocatalytic,
and electrochemical applications. For decades, antibiotics have commonly been used to
treat bacterial infections. However, the fast growth of antibiotic-resistant bacteria has
caused several issues that place a significant burden on the medical community. As a
result, the use of nanoparticles as an antibacterial substitute has been investigated. Re-
garding this situation, metal nanoparticles showed broad-spectrum antibacterial action.
Furthermore, the use of nanomaterials in the biomedical area allows researchers to solve
the issues of bacterial antibiotic resistance due to their distinct antibacterial mechanisms.
Several metal and metal oxide-based nanomaterials were recently fully integrated into
antibacterial applications and demonstrated remarkable performances [43]. Among them,
Ce- and CeO2-based nanomaterials garnered a lot of attention across the world. Numer-
ous investigations demonstrated that CeO2 nanoparticles have remarkable antibacterial
activity [44,45]. Several investigations showed that CeO2 has an antibacterial impact on
Staphylococcus aureus [46,47]. Furthermore, some research studies used agar diffusion and
microdilution assays to investigate and confirm P. aeruginosa’s sensitivity to CeO2 [48]. In
the same way, SnO2 also received attention as an antibacterial agent, where it was shown
to inhibit the development of several bacterial strains, such as S. aureus and E. coli [49,50].
Furthermore, it was also found that SnO2 disinfects germs effectively once incapacitated
with transition metal ions, for instance, Co@SnO2 and Ag@SnO2 nanoparticles exhibit
powerful antimicrobial properties [51–53].

However, to the best of our knowledge, no research work has been published on
the antibacterial behavior of CeO2−SnO2 composite NFs. This paper describes the facile
manufacturing of CeO2−SnO2 composite NFs via electrospinning and their incredible
photocatalytic, electrochemical applications, and antibacterial activity against E. coli. The
composite was categorized using various physicochemical techniques, such as XRD, SEM,
TEM, FT-IR, PL, and UV-vis. The photocatalytic activity was measured using MB disinte-
gration under visible light radiation. The mechanism of improved photocatalytic activity
of composite CeO2−SnO2 NFs was interpreted. The electrochemical efficiency of synthe-
sized materials was scrutinized in terms of the cyclic voltammetry performance, which
displayed that the CeO2−SnO2 composite possessed outstanding electrochemical efficacy
as a supercapacitor material. Overall, the outcomes of this research highlight the inno-
vative possibilities of utilizing these 1D high-aspect-ratio composite NFs as an electrode
in energy storage systems and as a visible light active photocatalyst for the purification
of chemical and biological contaminants, which would greatly assist in environmental
remediation procedures. Henceforward, composites of these two materials (CeO2−SnO2)
can serve as an excellent preliminary point for augmenting electrodes and photocatalytic
efficiency. Additionally, this combination will be an imminent antimicrobial material with
multiple functionalities. To recapitulate, the novelty of this work is that we used a facile
electrospinning technique to fabricate composite NFs using cost-effective precursors. The
CeO2−SnO2 composite NFs with a high aspect ratio are an auspicious future material and
can be applied for antibacterial, photocatalyst, and electrode purposes, all in one.

2. Materials and Methods
2.1. Synthesis of Pure CeO2 and CeO2−SnO2 Composite NFs

Pristine CeO2 NFs were fabricated via an electrospinning process devoid of tin(II)ethylhexanoate
in sol-gel. A polyvinylpyrrolidone (PVP, 15 wt%) solution was made via the usual tech-
nique by melting PVP in dimethylformamide (DMF) under magnetic stimulation for 5 h
at room temperature. Ce(NO3)3·6H2O (1.0 g) was then added to the PVP solution while
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vigorously shaking. The resulting sol-gel was electrospun. The samples were subsequently
sintered in air for 2 h at 500 ◦C to eliminate the polymer.

In the general process, for the synthesis of CeO2 and CeO2-SnO2 composite NFs,
PVP (15 wt%) solution was primed by liquefying PVP in DMF on a magnetic stirrer as
abovementioned. Tin(II) ethylhexanoate (0.15 mL) was supplemented with 2 mL of ethanol,
then transferred into 10 mL of PVP solution. Ce(NO3)3·6H2O (1.0 g) was added to produce
the final solution. The acquired sol-gel was transported into a 10 mL needle with a stainless
steel spike. A copper pin coupled to a high voltage generator was implanted in solution as
a positive terminal, while a ground iron barrel roofed with a polyethylene leaf assisted as
the counter electrode. The mixture was retained as a capillary by regulating the inclination
angle. A voltage of 17.5 kV was maintained to produce the final resultant assortment.
The distance between the tip of the needle and the collector was held at 15 cm. Primarily,
as-spun composite NFs were desiccated at 80 ◦C for 24 h in a vacuum. Additionally, to
eliminate the polymer, composites were calcined in air at 500 ◦C at a rate of 2 ◦C/min for
2 h.

2.2. Classification of Pure CeO2 and CeO2−SnO2 NFs

The XRD outlines of pure and composite NFs were measured using a Rigaku/Max-
3A (Tokyo, Japan) with Cu Kα radiation (λ = 1.540 Å) over Bragg angles between 20◦

to 80◦. To scan surface features, pristine and composite NFs were examined using field
emission scanning electron microscopy (FE-SEM, JSM6700, JEOL, Tokyo, Japan) and high-
resolution transmission electron microscopy (HRTEM-H-7650 Hitachi, Co., Tokyo, Japan).
The elemental conformation of the samples was scrutinized using energy-dispersive X-ray
spectroscopy (EDS) coupled to an SEM instrument. The EDS of the sample was taken
on carbon tape with a Pt coating. The photoluminescence (PL) spectra of the NFs were
measured at room temperature using the 325 nm line of a He-Cd laser at a power of 25 mW
for excitation (Kimmon Koha, JP/IK 3302 R). The light absorbance of NFs was measured
by means of a UV-vis diffused reflectance spectrum (UV-DRS, 525 Shimadzu).

2.3. Photocatalytic Degradation

Photocatalytic activity of CeO2−SnO2 composite has been performed by disintegration
of MB dye in visible light treatment using 450 W Xenon lamp. In 250 mL of a solution,
there was a dye concentration of 10 mgL−1 and 250 mg of photocatalyst; this was stirred for
1 h in the dark (at a neutral pH). Afterward, around 3 mL of aliquots was taken at regular
time intervals from the solution and centrifuged. The absorbance of MB dye mixture was
analyzed by a UV–Vis spectrophotometer (Shimadzu UV-3101, UV Probe) at a 664 nm
absorbance peak.

2.4. Electrochemical Characterization

Cyclic voltammetry was undertaken in a three-electrode configuration by means of a
potentiostat (Digi-Ivy, USA). A glassy carbon electrode was used, while Ag/AgCl and Pt
were used as the working standard and the counter electrode, respectively. The specific
capacitance (Cs) was measured from CV curves calculated graphically by integrating the
area under the CV curve with help of the following equation [54]:

Cs =

Vc∫
Va

IVdV
1

w × υ × (Va − Vc)
(1)

where w is the mass of the electrode and υ is the sweep rate (V/s).

2.5. Antimicrobial Activity

The antimicrobial actions of CeO2 and CeO2−SnO2 composite NFs were screened
against E. coli, which is ever-present throughout the atmosphere. The bacterial standard
cultures were held on nutrient agar (NA) plates. Bacterial culture from the agar plates was
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seeded in 5 mL NS solution and adjusted to 1 × 106 CFU/mL. To evaluate the antibacterial
effect, different concentrations of CeO2 NFs and CeO2−SnO2 composite NFs were prepared
and screened. Preliminary screening was conducted using an agar diffusion technique,
as described previously [55]. In short, 25 mL of agar holding 1 mL of microbial culture
was placed in Petri dishes. Approximately 50 µL from each dosage was put into a 4 mm
diameter well. Dishes were pre-incubated for 3 h at room temperature to enable the pre-
diffusion of samples and then incubated for 24 h at 37 ◦C. As a negative control, DMSO
was utilized, and the standard drug ciprofloxacin was used as the positive control. The
inhibition potency was described as the absence of bacterial growth in the vicinity of holes
and a caliper was used to determine the inhibition zone.

3. Results and Discussion

Electrospinning is a simple and versatile technology that uses electrostatic repulsion
between surface charges to extract nanofibers from a viscoelastic fluid and can be used for a
variety of materials [56]. In the present study, it was utilized successfully to make composite
NFs with diameters as small as hundreds of nanometers. The XRD configuration of CeO2
and CeO2−SnO2 NFs after calcination at 500 ◦C are displayed in Figure 1. Specifically, all
of the reflection crests in Figure 1a were assigned to the cubic fluorite structure of CeO2
(JCPDS no. 65-2975) at angles of 28.5◦, 33.2◦, 47.5◦, 56.4◦, and 59.1◦, which relate to the
(111), (200), (220), (311), and (222) crystal planes, respectively [26]. A small peak was
observed at 52.5◦, which was probably the peak of Ce(OH)3 [57]. In the XRD configuration
of CeO2−SnO2 (Figure 1b), major diffracted crests identical to those of CeO2 NFs were
visualized. Additionally, diffraction peaks from the tetragonal SnO2 (JCPDS card no.
41-1445) were also observed [58], which demonstrates the effective materialization of
CeO2−SnO2 composite NFs. No other mixes of Ce and Sn were detected using XRD.
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The morphologies of pure and composite NFs obtained after heating at 500 ◦C were
demonstrated using SEM (Figure 2). From Figure 2a, it can be perceived that these arbitrar-
ily oriented NFs had a uniform and continuous structure. Their lengths were measured
as being several micrometers. The average diameter of the pure CeO2 NFs was 400 nm,
whereas the average diameter of CeO2−SnO2 composite NFs was lower at 170 nm, which
might have been due to the interaction between Ce and Sn (Figure 2b).
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The arrows clearly show the characteristic sheath on the composite NFs, which was
due to the presence of SnO2 (Figure 2c). The different salt content significantly increased the
solution conductivity, resulting in thinner electrospun fibers. Due to increased spinnability
in the presence of Ce and Sn precursors, uniform nanofibers were generated. Consequently,
it was observed that a different salt addition had a considerable impact on the spinnability
of the polymer solution. Additionally, because of the increased conductivity, the electric
field accelerated the ions and the interactions between the polymer and the salt resulted
in a less compact polymer structure. Our findings show that when salt (Ce and S) ions
were propelled by an electric field, the polymer chain followed the ions’ motion, thereby
decreasing the fiber diameter size. Analogous studies were reported for polymeric fibers
by electrospinning in the presence of salts [59,60].

Figure 3a demonstrates the EDS results, which confirmed the presence of Ce, Sn,
and O in the CeO2−SnO2 composite NFs. EDS analysis for the composite yielded an
average atomic ratio of 1:0.15 for Ce/Sn. The detailed microstructure and morphology of
composite NFs were further scanned using HR-TEM, the results of which are presented
in Figure 3b. The surface consisted of two sets of lattices with spacings of 0.312 nm and
0.17 nm, corresponding to the interspace area between (111) and (211) of CeO2 and SnO2,
respectively. It further verified the formation of a heterojunction between CeO2 and SnO2.
The inset in Figure 3 demonstrates the low-resolution image of NFs. The TEM morphology
of the CeO2−SnO2 NFs again showed that the average diameter of the composite NFs
was 170 nm (inset of Figure 3). The corresponding selected area electron diffractions
(SAED) arrangement of these NFs displayed a good ring pattern with no dislocations
or imperfections, which can be attributed to the high crystalline phase of the composite
sample, indicating the polycrystalline nature of the composite NFs (inset of Figure 3).

Figure 4 displays the FT-IR bands of the virgin CeO2 and composite CeO2−SnO2
NFs. The existence of a strong band prior to 600 cm−1 could be assigned to the Ce-O-Ce
stretching vibration [61] (Figure 4a). Both spectra revealed bands around 3450 cm−1 and
1637 cm−1 conforming to O–H widening vibration of the remaining water molecules and
hydroxyl clusters. In the nanocomposite NFs spectra (Figure 4b), the occurrence of a band
at 610 cm−1 corresponded to the stretching mode of SnO2 [62]. The presence of both CeO2
and SnO2 peaks suggested the integration of these materials in the final composite NFs.
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The optical characteristics of bare and composite NFs were assessed using UV-DRS
(Figure 5). Figure 5A demonstrates the UV-DRS results of the CeO2 and CeO2−SnO2 NFs,
which show the absorption edge within the visible region. The spectrum of the CeO2-SnO2
composite presented a slight red shift, which coordinated well with pure CeO2 and could
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be ascribed to exciton partial leakage into the CeO2 matrix. To estimate the band gaps of
the prepared samples, the modified Kubelka–Munk function was plotted for (Ahν)2 versus
the energy of the exciting light (hν) using the following formula:

α =
Constant

(
hν – Eg

)n

hν
(2)
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From the inset in Figure 5A, the calculated band gaps of the CeO2 NFs and CeO2−SnO2
composite were found to be 2.87 eV and 2.67 eV, respectively. This means that the smaller
band gap of CeO2−SnO2 composite NFs will harness more visible light than CeO2 NFs.
These results are consistent with an earlier report [63]. The PL emission spectra of the
CeO2 and CeO2−SnO2 composite samples were documented using an excitation wave-
length (Figure 5B). The PL spectrum of CeO2 had prominent peaks at 364, 421, 483, and
530 nm [64–66]. Moreover, the CeO2−SnO2 composite showed weaker emission peaks than
CeO2, indicating a lower recombination frequency of the photogenerated electron–hole pair.
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The photoactivity of pure and composite nanofibers was assessed for the breakdown
of MB dye under visible light (Figure 6). Figure 6A shows the MB concentration change
calculated from its main absorption peak at 664 nm. From a comparative experiment, it can
clearly be seen that CeO2−SnO2 composite photocatalyst displayed better photoactivity
than the pure CeO2 NFs (Figure 6B). After 125 min of visible light irradiation, the pho-
todegradation effectivenesses of the CeO2 and the CeO2−SnO2 composite photocatalysts
for MB were 42% and 85%, respectively. The better photodegradation efficiency of the
CeO2-SnO2 composite can be ascribed to the development of heterojunction between CeO2
and SnO2 and the parting of photogenerated electron–hole pairs.
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Figure 7 shows the reusability capacity of CeO2−SnO2 composite NFs for the degrada-
tion of MB dye. It was demonstrated that even after five cycles, the CeO2−SnO2 composite
still exhibited good photocatalytic efficiency. It can be perceived that as the number of cy-
cles increased, the composite photocatalytic activity marginally declined. The CeO2−SnO2
catalyst degraded 85% of the MB dye solution on its initial application, but after repeated
applications (5th cycle), it had achieved a decolorization efficiency of 81%.
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This shows that the CeO2−SnO2 catalyst was a reliable and efficient composite for dye
degradation. Erstwhile, many similar studies also reported on composite nanomaterials for
MB dye degradation (Table 1).

Table 1. Comparison of photocatalytic work results of different composite nanomaterials for MB dye
degradation.

No. Photocatalyst Dye Light Source Time (min) Degradation
Efficiency (%) Reference

1. V2O5/RGO composite MB UV/visible 100 98.85 [4]

2. HAP−MnFe2O4
nanocomposites MB Visible 150 88 [43]

3. CeO2−Cu2O composite
nanofibers MB UV/visible 180 92 [67]

4. Mo/N−doped TiO2
nanorods@CNFs MB Visible 180 79.8 [68]

5. PANI nanotube@TiO2
composite MB Visible 300 85 [69]

6. C−doped ZnO nanofiber MB Solar 30 >95 [70]

7. TiO2/ZrO2 composite
nanofibers MB Visible 180 82.7 [71]

8. TiO2−decorated carbon
nanofibers MB UV 180 97.4 [72]

9. α−Fe2O3/Bi2MoO6
composite nanofibers MB Sunlight 240 94.8 [73]

10. ZnO/CdO alloy nanofibers MB Visible 270 >90 [74]

11. Nanotextured CeO2−SnO2
composite fibers MB Visible 125 85 This study

A potential mechanism for photocatalytic MB degradation using a CeO2−SnO2 com-
posite is hypothesized and illustrated in Figure 8. Under visible light irradiation, photons
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are absorbed by the CeO2 catalyst when energy is equivalent to or greater than the band
gap. CeO2 gets excited and generates electrons (e−) and holes (h+).

CeO2 + hν→ (eCB
−)CeO2 + (eVB

+)CeO2 (3)
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Figure 8. Schematic representation of the energy band configuration and electron−hole pair separa-
tion in CeO2−SnO2 NFs.

The photoexcited electrons are transported to the SnO2, as the conduction band (CB)
position of CeO2 is more negative than SnO2. Meanwhile, the transported electrons in
the CB of SnO2 will interact with dissolved oxygen molecules to generate superoxide
radical anions (O2

−). The superoxide radicals react with water and produce hydroperoxide
radicals (HO2) and hydroxyl radicals (OH). Subsequently, the holes on the valence band
(VB) of SnO2 migrate to the VB of the CeO2 since the valence band potential of CeO2 is more
negative than that of SnO2. Simultaneously, the generated h+ can oxidize water molecules
to produce OH. These radicals have a strong ability to degrade dye molecules (Figure 8).
The MB dye is photo-oxidized into carbon dioxide and water molecules or inorganic ions
as degradation products [63].

O2 + (eCB
−)SnO2 → O2

− (4)

O2
− + H2O→ HO2 + OH− (5)

h+ + H2O→ OH − + H+ (6)

MB dye + Radical species (O2
−, OH−)→ Degradation products (CO2 + H2O) (7)

Figure 9A demonstrates the cyclic voltammograms (CVs) of the pure CeO2 NFs and
CeO2−SnO2 NFs. The CeO2−SnO2 composite NFs indicated higher current values and bet-
ter voltammetric shapes compared with pure CeO2. The CeO2−SnO2 composite exhibited
improved specific capacitance (413.9 Fg−1) compared with the CeO2 NFs (263.9 Fg−1) at a
scan rate of 10 mV/s. No redox peaks were observed in the CV of the bare CeO2 NFs, which
might have been due to the reason that there was little or no oxidation–reduction (corrosion
or degradation) process going parallel to the double-layer charging. The presence of redox
peaks in the CeO2−SnO2 composite NFs indicates that reversible and incessant faradaic
oxidation–reduction responses were involved during the charging and discharging proce-
dure [75,76]. It can be assumed that the electrochemical performances of composites were
enhanced due to the synergistic effect between CeO2 and SnO2. Figure 9B shows the CV
curves for different scan rates for the CeO2−SnO2 composite. The CeO2−SnO2 composite
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NFs confirmed elevated specific capacitance values of 413.9, 294.94, 147.6, and 16.1 F/g at
scan rates of 5, 10, 50, and 100 mVs−1, correspondingly.
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In the antibacterial bioassay, CeO2 NFs and CeO2−SnO2 composite NFs were tested
against specified bacteria using an agar diffusion experiment at various doses. The CeO2
and CeO2−SnO2 composite NFs were found to be the most promising, with MICs of
50 µg/mL for E. coli (Figure 10). The augmented activity of the CeO2−SnO2 composite
NFs might be attributed to their form and wide surface area [77], as well as the synergistic
influence of CeO2 and SnO2 in the composite NFs. However, the antibacterial activities of
the virgin CeO2 NFs and CeO2−SnO2 composite NFs were identical at a low concentration,
the antibacterial impact varied with the increase in concentration and incubation time.
The chemical components of the CeO2−SnO2 composite NFs primarily reacted with the
bacterial outer cell wall before diffusing inside the inner wall, producing disarray and
leaking through the disturbance in the inner cell content and distortion. A few previous
investigations also showed that CeO2 nanoparticles have exceptional antibacterial activ-
ity [44,45]. In particular, some studies found that CeO2 has an antibacterial effect on S.
aureus [46,47]. Furthermore, agar diffusion and microdilution experiments were utilized in
certain studies to examine and validate P. aeruginosa’s sensitivity to CeO2 [48]. Similarly,
SnO2 also attracted interest as an effective antibacterial, where it was shown to inhibit the
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development of several bacterial strains, such as S. aureus and E. coli [49,50]. Furthermore,
it was observed that SnO2 supplemented with transition metal ions effectively disinfects
microorganisms and possesses potent antibacterial activities [51–53].
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Ciprofloxacin was used as the standard antibiotic. The data are given as mean values and standard
deviations of three replicates. * p < 0.005 and ** p < 0.01 vs. control. (b) Pictorial illustration of
bacterial death and disintegration.

4. Conclusions

In summary, CeO2−SnO2 composite NFs were prepared via electrospinning. As afore-
mentioned, many strategies for removing MB and other textile dyes from industrial effluent
were reported in the literature. However, in the present study, the photocatalysis approach
was used. The addition of SnO2 to CeO2 significantly improved the photocatalytic MB
degradation property and photoelectrochemical performance. After 125 min of irradia-
tion, a photodegradation efficiency of 85% was achieved using the CeO2−SnO2 composite
photocatalyst. Moreover, the CeO2−SnO2 composite NFs also showed higher specific ca-
pacitance. It is believed that these CeO2−SnO2 composite NFs with excellent photoactivity
and electrochemical performance can be very promising for high-performance electrode
materials in supercapacitors and as an efficient alternative photocatalyst. Rationally, due to
their distinctive functional mechanism towards pathogens via reversible oxidation state
transition between Ce(III) and Ce(IV), (IV) CeO2 nanoparticles with lower toxicity work as
powerful antibacterial agents as well. The outcome of this study indicates the prospects
of CeO2−SnO2 composite NFs to be exploited as an antimicrobial material, an electrode,
and as a visible light active photocatalyst, which would greatly aid in the environmental
cleanup process.
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