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W N e

Abstract: Graphene is a carbon-based nanomaterial used in various industries to improve the
performance of hundreds of materials. For instance, graphene-like materials have been employed
as asphalt binder modifying agents in pavement engineering. In the literature, it has been reported
that (in comparison to an unmodified binder) the Graphene Modified Asphalt Binders (GMABs)
exhibit an enhanced performance grade, a lower thermal susceptibility, a higher fatigue life, and
a decreased accumulation of permanent deformations. Nonetheless, although GMABs stand out
significantly from traditional alternatives, there is still no consensus on their behavior regarding
chemical, rheological, microstructural, morphological, thermogravimetric, and surface topography
properties. Therefore, this research conducted a literature review on the properties and advanced
characterization techniques of GMABs. Thus, the laboratory protocols covered by this manuscript
are atomic force microscopy, differential scanning calorimetry, dynamic shear rheometer, elemental
analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy,
thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. Consequently,
the main contribution of this investigation to the state-of-the-art is the identification of the prominent
trends and gaps in the current state of knowledge.
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1. Introduction

Transportation infrastructure is a crucial element for the socioeconomic development
of communities [1-4]. The preceding is evident in the growth of pavement construction and
maintenance projects worldwide [5-8]. Notably, most of the road infrastructure in the world
corresponds to asphalt pavements [4,9,10]. In this way, the demand for asphalt binders has
soared at an accelerated rate. Consequently, the environmental impacts of this industry are
immense and tend to grow over the years [11-13]. Therefore, researchers have proposed
various strategies to decrease these environmental burdens [14-16]. One of the most
promising alternatives is the production of high-performance asphalt binders [17-19]. The
concept behind this approach states that employing materials with a longer useful life can
mitigate the depletion of raw materials (i.e., non-renewable resources) and, thus, increase
sustainability (both in environmental and economic criteria) in the long term [20-22].

Overall, high-performance asphalt binders are achieved by mixing the virgin/pristine
binder with an additive agent [23—-26]. Within these materials, the Graphene Modified
Asphalt Binders (GMABs) stand out for their excellent mechanical behavior in a wide range
of temperatures and frequencies [27-30]. The GMABs are the result of modifying the asphalt
binder with graphene-like materials (i.e., graphene and its derivatives) [31-34]. Although
there are many derivatives of graphene, only two are widely used in pavement engineering:
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Graphene Oxide (GO) and Graphene Nanoplatelets (GNPs) [35-38]. Remarkably, the flake
graphite and expanded graphite nanosheets are other derivatives utilized to improve the
engineering characteristics of asphalt binders [31,32,39].

In the last two decades, nanomaterials have been used with great notoriety to modify
a broad type of materials, including asphalt binders [18,40-42]. The main nanomaterials
employed for developing high-performance asphalt binders are chemical compounds based
on carbon, for instance, graphene-like materials, carbon nanotubes, and nanoclays [43,44].
These modified asphalt binders are attractive because they (adequately) support high-traffic
loads under harsh external conditions (i.e., high humidity, great environmental salinity;,
and intense ultraviolet radiation) at high and low temperatures [10,35,45]. Notably, the
GMAB:s are one of the most versatile and resistant binders (i.e., provide an augmented
service life) since they simultaneously improve fatigue and rutting resistances [31,32,36,46].
The preceding is particularly important because the asphalt mixtures (and successively
the asphalt pavement structures) tend to fail mainly due to distresses associated with low
fatigue life and raised accumulation of permanent deformations [18,38,40,47]. Another of
the primary advantages of GMABs is that they are favorably compatible (to be blended)
with other technologies, such as crumb rubber, electric arc furnace slag, epoxy resins,
polystyrene, and Styrene-Butadiene-Styrene (SBS) [38,48-52].

Unlike neat asphalt binders, GMABs have such a complex chemical structure that they
cannot be characterized only with traditional laboratory tests (i.e., density, penetration,
softening point, dynamic viscosity, ductility, flash point, and solubility) [4,21,32,46,49].
Thus, in order to adequately describe the GMABs, it is necessary to carry out evaluations
of their chemical, rheological, microstructural, morphological, thermogravimetric, and
surface topography properties [34,53-55]. However, there is still no consensus in the
literature on what particular tests should be conducted for these characterizations; more-
over, there is much less consensus on the behavior of the GMABs under these laboratory
protocols [31,32].

The preceding situation has motivated this manuscript to develop a comprehensive
literature review on the properties and characterization techniques of GMABs. In this
way, the main objective of this manuscript is to identify the main trends and gaps in the
current state-of-the-art. Thus, it is expected that this investigation encourages researchers
to improve their current practices and address those aspects that are still susceptible to
improvement in the future. It is important to note that the scope of this review is limited to
three graphene-like materials, i.e., graphene, GO, and GNPs.

Following, the structure of the subsequent sections of this paper is described. Section 2
presents the basics of the asphalt binder, emphasizing the aspects related to its chemistry.
Next, Section 3 clarifies the essential concepts and features of graphene-like materials.
In Section 4, the properties of GMABs are detailed together with the main modification
processes. Likewise, Section 5 examines the state-of-the-art characterization techniques for
GMABEs, i.e., Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC),
Dynamic Shear Rheometer (DSR), Elemental Analysis (EA), Fourier Transform Infrared
Spectroscopy (FTIR), Raman Spectroscopy (RS), Scanning Electron Microscopy (SEM),
Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), and X-ray Photoelectron
Spectroscopy (XPS). Successively, in Section 6, there is a discussion about the trends and
gaps in the literature. Then, Section 7 proposes recommendations for future research lines.
Finally, Section 8 lists the main conclusions of this investigation.

2. Basics of Asphalt Binder

Asphalt binder is one of the derivatives obtained from refining crude oil (also named
petroleum) [56-62]. Asphalt binder is a material with outstanding hydrophobicity and
excellent adhesion capabilities, allowing it to be employed in a wide range of applications,
for instance, as a binder for producing composite materials (e.g., asphalt mastic and asphalt
mixtures) and as a coating membrane for waterproofing projects [9,63-68].
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Due to the variety of petroleum sources, each asphalt binder has a distinct chemical
composition and a distinct performance for engineering applications [59,69]. Beyond these
differences, asphalt binders can be chemically described as an intricate combination of
thousands of hydrocarbon molecules, oxygen compounds, and small amounts of nitrogen
and sulfur compounds with traces of metals [57,70-76]. Notably, a singular assortment of
hydrocarbon and oxygen compounds generates a specific temperature-dependent viscoelas-
tic behavior [67,77]. These compounds can be classified from lower to higher polarity as
Saturates, Aromatics, Resins, and Asphaltenes, i.e., the so-called SARA fractions [74,78-80].
Figure 1 illustrates their standard molecular structure. Remarkably, the SARA fractions
are a colloidal system in which micelles of asphaltenes remain in maltenes (i.e., aromatics,
resins, and asphaltenes) [63,73]. In other words, the high polar solid particles are dis-
persed constantly in the low polar oily environment [81-83]. Figure 2 exhibits a sketch of

this model.

Aromatics

~@

Resins

Saturates

Figure 2. Colloidal model of the asphalt binder. Adapted from [3]. Legend: 1—central part of the
asphaltene; 2—compounds with aromatic nature and high molecular weight; 3—compounds with
prevalent aromatic nature and low molecular weight; 4—compounds of mixed aromatic—naphthenic
nature; 5—compounds of mixed naphthenic-aliphatic nature.

The equilibrium of SARA fractions is essential in the behavior of asphalt binder
because the maltenes allow the proper state of fluidity /workability, and the asphaltenes
ensure adhesion with aggregates [63,84,85]. Some specific trends that asphalt binders have
according to the distribution of their SARA fractions are listed below [3,63,72,78,86,87]:

e  If the amount of resins and asphaltenes increases, the asphalt binder exhibits a more
solid-like state. As a result, it causes an increase in stiffness.
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e If the amount of saturates and aromatics increases, the asphalt binder exhibits a more
liquid-like state. As a result, it causes a decrease in stiffness.

e  If the amount of aromatics and asphaltenes increases, the asphalt binder reaches better
properties at high temperatures.

e If the resin content increases, the viscosity of the asphalt binder augments
proportionally.

e Adequate amounts of saturates, aromatics, and asphaltenes provide an appropriate
fluid state.

e  Alow asphaltene content improves the temperature sensitivity behavior.

In this way, it is evident that a delicate chemical equilibrium in the SARA fractions
widely controls the engineering performance of asphalt binders. The preceding is particu-
larly important because incorporating graphene-like materials alters the SARA fractions.
Thus, it explains why GMABs exhibit such complicated behavior, which is difficult to
understand only by using traditional laboratory protocols. Subsequent sections of this
manuscript detail the characteristics and properties of GMABs.

The further substantial effect that graphene-like materials have in asphalt binders
is that the introduction of these additives prevents the oxidation aging mechanism (by
extending the diffusion path of the gas) [88-91]. Notably, oxidation is the mechanism by
which atmospheric oxygen diffuses throughout the asphalt matrix [63,92,93]. In turn, when
the oxygen reaches the organic molecules of the asphalt binder, three chemical changes
are assembled: fragmentation, oxygen addition, and condensation [92,94]. First, the large
molecules are broken during the fragmentation, producing the smaller ones [92,95]; thus,
the proportion of molecules with high molecular weight is progressively diminished [69,96].
Subsequently, the oxygen addition corresponds to constituting new functional groups, such
as carbonyl (C=0), sulfoxide (5=0), hydroxyl, acid, and ester [77,79,92,97]. Figure 3 shows
the chemical structure of some of these functional groups. Finally, during the condensation
(also called the carbonization process), the aromatic (benzylic carbon group) and the larger,
weightier molecules are formed due to polyaromatic oxidation reactions [63,92,98-100].
Consequently, the oxidation mechanism causes an increase in the stiffness of the asphalt
binder and a loss of its adhesion/cohesion properties, which make it brittle, thus promoting
cracking failure [101-104].

\ C’/O / /C) O
_ \O —C 11
/ \ S C S
/% O-H }
Carboxylic acid (i, ii) Ketone (i) O. H

Anhydride (ii) Phenolic (i)

/\ o O
|>| Sulfide (i) - S -
H Sulfoxide (ii)

Polynuclear aromatic (i)

Pyridinic (i) Pyrrolic (i)

Figure 3. Functional groups formed during the oxidation aging mechanism. Adapted from [3].
Legend: (i) Naturally occurring; (ii) Induced by oxidation processes.

Consequently, it is notorious that the oxidation mechanism generates a complicated
chain reaction of molecular rearrangements [3,105,106]. Furthermore, these reactions are
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complex when asphalt binders are modified with graphene-like materials [31,32]. There-
fore, in order to correctly characterize the GMABs, it is necessary to perform chemical,
rheological, microstructural, morphological, thermogravimetric, and surface topography
tests [34,53-55].

3. Basics of Graphene-like Materials

Despite being (correctly) isolated less than two decades ago (i.e., in 2004), graphene is a
widespread substance with applications in dozens of heterogeneous industries
(e.g., adsorption of pollutants, composite structures, detection of pesticides, combat against
infectious diseases, lithium-ion battery manufacturing, membrane distillation, and wastew-
ater treatment) [107-115]. Graphene can be defined as one of the allotropic forms of
carbon, which has the shape of one thick atom layer of graphite [116-118]. Notably, the
graphene’s carbon atoms are organized as a honeycomb lattice with a network of de-
localized 7t electrons [119-121]. In this way, graphene is an inorganic 2D nanomaterial
hexagonally arranged in a structure through an sp2 hybridization [112,122,123]. Normally,
graphene can be found in three forms: fullerene, nanotube, and graphite sheets [32,107]. On
the other hand, graphene has many derivatives (also called “graphene family nanomateri-
als”), such as expanded graphite nanosheets, flake graphite, fluorographene, nanographite,
reduced graphene oxide, graphane, graphene nanocomposites, graphene nanoribbon,
graphene nanosheets, graphene quantum dots, graphone, and graphyne [124-127]. How-
ever, the most used (in different sectors) are the GO and GNPs [31,37,39,128,129].

The GO is the 2D material formed by oxidizing graphite, which is usually achieved
with chemicals, such as sulphuric acid [33,51,88,91]. GO stands out over graphene and
graphite because it has large amounts of surface functional groups, such as hydroxyl,
carboxylic, and epoxy [31,40,130]. Moreover, unlike graphene, GO exhibits excellent dis-
persion in the aqueous solutions [18,40,131]. The preceding permits its correct blend and
compatibility with the asphalt binder and other additives [18,35,52,132]. For instance, GO
can promote the absorption of aromatics and saturates from SBS polymer to enhance the
temperature response of the GMABs [30,31,51].

GNPDs are platelet-like graphite nanocrystals formed by several graphene layers (usu-
ally less than ten) [10,32,133,134]. On the one hand, GNPs stand out over pure graphene
and other derivatives due to a low production cost (at least regarding large-scale fabrication
analysis) [133,135,136]. Furthermore, the GNPs exhibit a morphological characteristic of
narrow distribution, an ultra-high aspect ratio, a significantly lighter weight, an ultra-high
aspect ratio, a tensile strength of 101 GPa, and Young’s modulus of 0.8-1 TPa [10,46,137].
Notably, GNPs develop an increased melting temperature and a low coefficient of thermal
expansion that offers remarkable modifying-agent features [138-141]. Consequently, GNPs
can be used at low concentrations to yield high-performance nanofluids [142-144].

Some main preparation methods for graphene-like materials are anodic bonding,
chemical synthesis, using benzene as the building block, chemical vapor deposition
process, growth from SiC, liquid phase exfoliation, micromechanical cleavage, molec-
ular beam epitaxy, photoexfoliation, and precipitation from a carbon-containing metal
substrate [29,32,145,146]. These preparation techniques can be classified as chemical prepa-
ration, physical preparation, micromechanical methods, and ultrasonic dispersion meth-
ods [32,34,39,147]. Regardless of the method employed for their preparation, the above
nanomaterials present remarkable properties in common, i.e., elevated specific surface area,
increased absorption, low bulk density, high functional density, great light transmittance,
functional group-rich surfaces, and strong thermal-electrical conductivity [18,31,148]. Ta-
ble 1 summarizes the main characteristics of these graphene-like materials. Due to these
properties, graphene, GO, and GNPs have been used to modify asphalt binders [9,40]. In
this way, the produced GMABs achieve a more extended service life with better perfor-
mance (in comparison with a traditional unmodified asphalt binder) [31,32]. The subse-
quent section of this manuscript discusses the principal features of GMABs.
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Table 1. Properties of main graphene-like materials.

Properties Graphene GO GNPs References
Appearance Odorless black powder [39,51,119]
Solubility in water Negligible Non-negligible [119,149,150]
pH 8.3-11.4 Wildly variable [119,151,152]
Number of layers 3-8 5-15 3-7 [18,35,40,51,133,153,154]
Diameter size, &/(ium) 11-18 5-100 1-15 [18,35,40,51,119,133,153]
Thickness (nm) 1-2 1-8 2-3 [18,35,40,51,133,153]
Specific surface area (m?2/ g) 360 50-450 30-50 [18,35,39,40,51,153]
Bulk density (g/cm3) 0.4 0.9-1.8 0.01-0.13 [39,119,155]
C content (wt.%) 100 60-75 99.5 [40,88,119]
O content (wt.%) - 20-35
S content (wt.%) - 2
Mn content (wt.%) - 1 Negligible [88,156,157]
K content (wt.%) - 1
Si content (wt.%) - 1

4. Properties of GMABs

Table 2 shows the effects of graphene-like materials on asphalt binder behavior. Over-
all, the GMABs present superior performance over traditional asphalt binders regarding
fatigue and rutting resistances [31,32,90,158]. In this table, it is also evident that incorpo-
rating these nanomaterials causes the asphalt binder to increase its viscosity [18,147,155].
Because of this, GMABs used to require higher mixing temperatures (to produce asphalt
mixtures) than conventional asphalt binders [39,50,88]. Likewise, the optimal binder
content developed by GMABs is more elevated than the associated with neat asphalt
binders [40,137,159,160].

Table 2. Effects of graphene-like materials on asphalt binder behavior. Adapted from [31,32,88,90,158].

Properties

Graphene GNPs

Aging resistance

Density

Ductility

Fatigue resistance
Flash point

Loss modulus

m value

Moisture stability
Penetration
Recovery rate
Rutting resistance
Softening point

Stifness modulus

Storage modulus

Thermal susceptibility
Viscosity

T
[]

—

!
£

T
T
T
1
T
T
T

T
T
T
!

1
%em a%%»e%““»%e m% 8
— m n%%%%% m mﬁ% m m%

—
Legend: 1 increment; | reduction; . no explicit trend.

GMABs have remarkable resistance to different aging processes, i.e., thermal, ultravio-
let, and even water aging [21,30,89,90,161]. Nonetheless, the GMABs may exhibit increased
volatilization of light components due to the high temperatures required for their produc-
tion [3,162]. The preceding is associated with the large specific surface area of graphene-like
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materials, which makes it difficult to disperse in some fluid media [31,32]. Notably, in order
to facilitate the dispersion of graphene-like materials within the asphalt matrix, it is feasible
to incorporate solvent or dispersant agents [119,163]. For instance, some common solvents
are trichloroethylene and anhydrous ethanol [9,39,91,163]. Meanwhile, the dipropylene
glycol dimethyl ether and polyvinyl pyrrolidone are typical dispersants [31,39,155]. Al-
though there is still no total consensus in the literature, it is found as a majority trend that
GO disperses more easily than graphene and GNPs [31,119]; this may be associated with
the enriched number of oxygen-containing functional groups that the GO has [132,164].

Although the effects described in Table 2 are widely accepted in the literature, it is
essential to clarify that the physicochemical properties of GMABs depend on the prepa-
ration process used to disperse and blend the graphene-like materials within the asphalt
matrix [34,89,163]. There are three paramount manners for preparing GMABs, namely
the direct addition method, the indirect addition method, and the auxiliary addition
method [29,31,147]. These methods are described below [31-33,146]:

e  Direct addition method: the graphene-like materials are directly added into the asphalt
binder (previously elevated to a high temperature).

e Indirect addition method: the graphene-like materials and asphalt binder are simulta-
neously dissolved into a medium solution to subsequently form a uniform solution.

e Auxiliary addition method: the graphene-like materials are first altered by specific
functional groups, and then, the new modifying agent is melted into the asphalt binder.

The graphene like-materials exhibit a large shape ratio (i.e., diameter/thickness),
increased specific surface area, and scalable pore dimension [17,145,147,165]. Due to
these properties, the geometry of the graphene-like materials controls the performance
of the GMABs [49,50]. Notably, as the particle size of the modifying agent decreases,
the GMABs increase their free volume fraction, glass transition temperature, and shear
viscosity [18,83,128,138]. In other words, the particle geometry controls the low-temperature
behavior and resistance to the permanent deformation [27,28,155,166,167]. Table 3 presents
several case studies regarding GMABs and their performance. This table also includes
information on graphene-like materials’ particle geometry.

Table 3. Summary of case studies on GMABs.

Graphene-Like Material

References *  Neat Asphalt Binder ** Extra Modifying Agent
Type Geometry Dosage (%)
2:0.2-10 um Cross-linked chitosan,
9] 60/80 PNG GO Thickness: 1-5 nm 0.06 Glutaraldehyde, SBS
[10] 60/70 PNG GNPs 275 um 0.5,1,15 -
2 10-50 pm
[18] 60/70 PNG GO Thickness: 1-1.77 05,1,15,2,25 -
nm
[27] 60/70 PNG Graphene &1 <6 pm 2,4,6,8,10 -
&: 5-10 pm
[28] 60/70 PNG GNPs Thickness: <3 nm 04 Polyethylene
[33] 60/70 PNG GO “not specified” 0.1,0.3,0.5,0.7,0.9 -
2:10-50 pm .
[52] 80/100 PNG GO Thickness: 1 nm 0.2,05,1 Epoxy oligomer
[119] PG 76-22 Graphene 2: 11 pm 0.3,0.65 1, 1.5, SBS
25,57
[129] 60/80 PNG GNPs “not specified” 0.02, 0.08 Polystyrene, SBS
[130] 80/100 PNG GO “not specified” 05,1 Polyurethane
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Table 3. Cont.

Graphene-Like Material

Ref *  Neat Asphalt Binder ** Extra Modifying Agent
elerences P Type Geometry Dosage (%) ying 28

[131] 70/90 PNG GO 2 15-20 um 05,1,1.5,2 -
&:2-7 um

[137] 60/70 PNG GNPs Thickness: 210 nm 2,4 -

[147] 60/70 PNG GO Thickness: 50-80 nm  0.2,0.4,0.8,1.6 Polyurethane
#:1-15 um Polyvinylpyrrolidone,

[155] 60/80 PNG GNPs Thickness: 2.4 nm 05,1,15,2 SBS

[158] ~80 PNG Graphene #: 5-50 pm 05,1,15 ;

P Thickness: 3.4-8 nm e

[163] PG 64-22 Graphene 2. 7-15 um 2-20 Ethylene bis(stearamide)
& 5-50 um . .

[165] 60/80 PNG Graphene Thickness: 3 4-8 nm 2,4,5.9 Carbon fibers, Nickel
& 5-50 pum

[166] 80/100 PNG GNPs Thickness: 3.4-8 nm 05,1,15,2 SBS

[168] 60/80 PNG GO #: 0.2-10 pm 0.02, 0.04, 0.06, 0.08 Fe3*-TA, SBS

Thickness: 1-5 nm

* In all case studies, a general improvement of mechanical properties was reported. ** PNG: penetration grade;
PG: performance grade.

5. Characterization Techniques for GMABs

GMAB:s are usually initially characterized with a traditional test protocol, that is, the
set of evaluations for density, penetration, softening point, dynamic viscosity, ductility,
flash point, and solubility [4,10,18,21,32,46,49]. Nevertheless, these tests are insufficient to
understand the thermo-dependent viscoelastic behavior of the GMABs [31,32]. For these
purposes, it is necessary to resort to more advanced tests, such as AFM, DSC, DSR, EA,
FTIR, RS, SEM, TGA, XRD, and XPS [4,21,32,49,169,170]; these are described below. In
this way, it is possible to comprehensively assess chemical, rheological, microstructural,
morphological, thermogravimetric, and surface topography properties. Moreover, these
sophisticated tests allow to evaluate and ensure the correct dispersion of graphene-like
materials within the structure of the asphalt matrix [119,158,171,172].

51. AFM

The AFM is a microscopy designed to record the topography of materials at a sub-
nanometric scale for liquid and air media [173-176]. The AFM has been widely used to
study GMABs [9,89,132]. The AFM employs a sharp-stylus probe to scan the material’s
surface by exploring the repulsive and attractive forces between the material and the
probe [177-179]. In this way, a high-resolution dimensional topographic image in 2D or
3D is formed [49,89,166]. The analysis of these images (usually conducted with special-
ized software/algorithms) can yield additional information (not exclusive to the surface
topography), such as adhesion forces, elasticity, electrostatic force, morphology, nanoinden-
tation, nano-phase separation, roughness, and even stiffness [174,180,181]. The combined
assessment of these properties can be utilized to identify changes in the asphalt binders’
chemical structure [180,182,183]. For instance, through the identification of the three main
phases of the asphalt binder morphology, i.e., catanaphase (bee structures), periphrases
(dispersed phase), and paraphase (the matrix) [61,78,183-185]. Overall, the graphene-like
materials can augment the number of “bee” structures in the structure of the asphalt binder
but diminish their size [132,166].
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5.2. DSR

The DSR is an apparatus utilized to measure the rheological response of some flu-
ids under a wide range of temperatures, frequencies, and shear stress [19,186-189]. For
instance, the DSR is typically used to examine the temperature-dependent viscoelastic
behavior of asphalt binders, including GMBAs [166,188]. This device can record essential
properties/parameters, such as complex modulus, complex viscosity, elastic modulus,
phase angle, strain, stress, and viscous modulus [190,191]. Likewise, these results make
it feasible to compute other vital parameters, such as zero shear viscosity, rutting factor,
fatigue factor, non-recoverable compliance, and DSR function [192-194]. In the literature,
it has been reported that the fatigue and rutting factors are especially sensitive to change
after modifying the asphalt binder with graphene-like materials [46,137].

5.3. EA and XPS

The set of techniques employed to estimate the proportion of the chemical elements
that contain a material is denominated EA [195-198]. Thus, the EA has commonly used to
outline the chemical changes that an asphalt binder undergoes after its
modification [67,199-201]. A wide range of devices and techniques exist to conduct an EA,
even though XPS is the most utilized in the road infrastructure industry [202-204]. The
preceding is because the XPS is efficient and versatile [3,205]. Overall, the XPS emits X-ray
photons (with distinct energy) to excite electrons in the innermost orbitals of atoms [206,207].
Hence, a distinctive energy spectrum is generated, which contains peaks corresponding to
the structure of the atoms found on the surface of the analyzed sample [204,208-210]. Con-
sequently, it is easy to establish the chemical elements (and their proportions) that compose
a material [211-213]. For instance, after modifying the asphalt binder with graphene-like
materials, it is expected that the asphalt matrix will undergo an increase in the carbon ratio
and a decrease in oxygen [53,214,215].

5.4. FTIR

The incorporation of graphene-like materials within the asphalt binder causes the as-
phalt matrix to alter the functional groups, i.e., some are transformed into new
ones [9,37,169]. However, there is still no consensus regarding chemical reaction
paths [89,130,146]. Notably, the chemistry of the GMABs will depend on the specific
composition of the raw materials employed [29,34,161]. Therefore, in order to understand
the changes suffered by the functional groups from a neat asphalt binder to a GMABs, it is
necessary to carry out an FTIR analysis [28,90,166].

FTIR is a spectrometry method to estimate the capacity of a material to absorb light
(infrared radiation) regarding a characteristic wavelength range [57,216]. Therefore, the
FTIR computes the spectral bands, which are the brusque changes in the transmittance
vs. the wavenumber [71,217,218]. Figure 4 shows a sketch of a typical plot from an FTIR
analysis. In this way, since each functional group has a specific spectral band, it is feasible
to calculate the proportion of one [44,219,220]. Although there are several approaches
to calculating it, the most popular way is to divide the area under the curve centered
on the specific spectral band of a functional group into the area under the curve of the
entire spectrum evaluated [161,190,221]. It is important to note that the FTIR has a central
problem: there is no unanimity on the specific wavenumbers and the entire spectral band
to be considered [3,216]. The preceding can be evidenced in Table 4. This table presents the
wavenumbers and spectral bands used to compute the functional group indexes in some
case studies for C=0, S=0O, aromatic, and butadiene groups. Thus, the proper producibility
and replicability of the results could be affected.
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Figure 4. Typical graph of an FTIR analysis conducted in an asphalt binder sample. Adapted from [3].

Table 4. Wavenumbers and spectral bands used to compute the functional group indexes. Adapted
from [3].

Total Spectral

. TR 1
Functional Group Distinctive Wavenumber (cm~1) Band Evaluated (cm—1) References
around 1600 600 to 2000 [222]
=0 around 1694 600 to 2000 [44]
- around 1700 725 to 3570 [223]
around 1702 722 t0 2920 [218]
around 1015 725 to 3570 [223]
5-O around 1027 600 to 2000 [44]
- around 1030 500 to 4000 [224]
around 1032 723 t0 2924 [71,217]
around 1600 723 to 2924 [220]
A H around 1601 600 to 2000 [60,225]
romatic around 1601 723 to 2924 [71,217]
around 1606 725 to 3570 [223]
around 966 600 to 2000 [222,226,227]
Butadi around 966 722 t0 2920 [218]
utadiene around 968 600 to 2000 [228]
around 985 600 to 2000 [229]
5.5. RS

As its name indicates, the RS is a spectroscopy technique that emits/relies upon Raman
scattering (i.e., inelastic scattering of photons) in a specific (monochromatic) electromag-
netic spectrum [230,231]. Usually, the RS devices detect and measure the vibration changes
(scrolling up and down) in the system produced by the energy of the laser photons [232,233].
With this procedure, it is possible to deeply study a sample and, thus, obtain a “fingerprint”
for each molecule [234,235]. In other words, RS allows the identification of the presence
(in its quantity) of particular chemical compounds with high precision [236-238]. For the
specific case of the GMABEs, it is feasible to determine the content of graphene derivatives
(i.e., carbonous materials) and their number of layers [169,239,240]. Consequently, the car-
bon molecules’ diffusion degree (or coupling) within the GMABs can be estimated [241,242].
Although there is no consensus on the spectral range to be employed with GMABEs, it is
typical to consider a range between 800-2000 cm ! [146,169]. Undoubtedly, it is expected
that the amount of carbon molecules will increase remarkably after modifying the asphalt
binder with graphene-like materials [54,243].

5.6. SEM

The SEM is a method for scanning and analyzing the microscopic morphology of
organic and inorganic materials [244,245]. The resolution of the SEM tests can vary from
micrometer to nanometer scale [246,247]. Overall, the SEM applies backscattered and
low-energy secondary electrons to estimate the changes in the topography of a material’s
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surface [248,249]. Therefore, it is feasible to generate 3D images exhibiting the microstruc-
tural characteristics of the sample [250,251]. Although the results of SEM tests on GMABs
may vary depending on the modifying agent used, it is almost considered by consensus
that graphene-like materials cause the asphalt binder to develop a multilayer stacked flake
structure with smooth and flat surface similar to crystal stone-like grooves [9,90,155,167].

5.7. TGA and DSC

The GMABSs can develop complex thermal stability, varying over time [43,166]. Al-
though there is no consensus on this criterion, thermal stability can be assessed by employ-
ing a TGA [252,253]. The TGA is a method that evaluates sample mass changes during a
gradual temperature increase (even up to 1600 °C) [254-257]. Therefore, this test permits
estimating different parameters related to the activation energy, decomposition, reaction
kinetics, resistance to pyrolysis, and thermal behavior [252,258-260]. For asphalt binders,
it is typical to draw a curve of temperature augments vs. mass lost ratio and then look
for abrupt or accelerated changes (low thermal stability is evidenced with very noticeable
changes) [252,253,261]. Notably, there is a wide range of TGA protocols; however, the DSC
is the most widely used for petroleum-derived products [180,262-265]. The DSC stands
out because it is the only direct method that allows estimating the enthalpy of a process
and also indicates correlations between the physical properties of substances with their
thermal behaviors [266-268]. Remarkably, the glass transition temperature is the most ad-
vantageous parameter for examining asphalt binders utilizing the DSC analysis [27,37,52].
This temperature is the middle point where the glass transition appears [26,60].

5.8. XRD

After modifying an asphalt binder with graphene-like materials, the asphalt matrix
develops high quantities of new crystal structures [9,49,158]. Accordingly, one way to
measure the degree of coupling between the molecules of the asphalt binder with molecules
of the modifying agent is to evaluate the formation of crystalline structures [42,162,269,270].
Moreover, adding graphene-like materials diminishes the oxygen- containing functional
groups (especially on the structural layer of carbon atoms) [9,32,48]. The preceding can
be conducted through the XRD technique [271-273]. An XRD device implements X-rays
(i.e., high-energy electromagnetic energy with low wavelengths) to emit photons directly
to a sample [274-276]. Then, the XRD measures and follows the diffraction patterns and
peaks [146,241]. In this way, it is possible to obtain data ¢ ng the atomic structure of a specific
material [163,277]. Likewise, examining the position of atoms and their arrangement is also
feasible [278,279]. Notably, because this is a non-destructive test, the XRD has been used in
various industries to study sensitive materials [280,281].

5.9. Summary of Characterization Technigues

Table 5 summarizes several investigations in which the preceding characterization
techniques were implemented to analyze asphalt binders. Specifically, this table presents
the central findings of various case studies on GMABs. In this way, each graphene-like
material’s main effects on the behavior and performance of the asphalt binders are exhibited.
Additionally, Figure 5 shows a schematic explication of each of these devices.
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Table 5. Summary of case studies on the analysis of GMABs with advanced characterization techniques.

Characterization Technique Modifying Agent Neat Asphalt Binder Main Findings References

The graphene promotes the nucleation of bee structures,
Graphene 60/80 PNG which augments the number and reduces the volume of [55]
these structures.

AFM GO 40/50 PNG The GO causes a graftlpg reaction that y_1elds wavy bends 89]
with a wide degree of curling.
THE AFM force curve analysis shows that GNPs reduce
GNPs 60/80 PNG temperature sensibility and enhance plasticity and viscosity [49]

behavior.

As the graphene content increases, the asphalt binder
Graphene 60/70 PNG increases its viscosity and reduces its [27]
high-temperature susceptibility.

DSR GO can greatly elevate the permanent deformation
GO 60/70 PNG resistance of asphalt binders in a wide range [35]
of temperatures.

GNPs 60/80 PNG The GNPs inclusion enhances the high-temperature rutting

resistance performance and the fatigue resistance. [49]

The GMABs show three distinctive functional groups:
Graphene 40/50 PNG nonoxygenated C-C (285.08 ev), ether C-0 (286.43 eV), and [282]
C=N bond (280 ev).

EA and The strongest peaks caused by the GO were at 284.79,
XPS GO 40/50 PNG 286.61, 287.28, and 288.86 eV, representing C-C, C-O-Si, [89]
C-SH, and HO-C=0, respectively.

Regarding the GO, GNPs reduce the interplanar spacing of
GNPs 40/50 PNG modified asphalt binder by approximately 48%.

[89]

The graphene yields anti-aging properties to the asphalt

Graphene 40/60 PNG binder, at least in the spectral range of 1760-1500 cm™!.

[169]

The more substantial absorption peaks were at 3386.6 and

FTIR GO 40/50 PNG 1375.7 cm™ !, representing the hydroxyl group stretching [89]
and bending oscillation.

The GNPs modification was highlighted by characteristic

GNPs 60/80 PNG absorption peaks at 1184.44, 1601.02, 1492.61, 1450.95, [49]
755.12, and 698.43 cm 1.
Graphene 40/60 PNG The G-band (1580 cm ') and the D-band (1350 cm™~!) can [169]

assess the presence of graphene.

GO modification is characterized by distinctive D and G

RS GO 70/100 PNG peaks at 1352 cm ™! and 1600 cm ™!, respectively. (171
The modification with GNPs provokes the prominent peaks:
GNPs PG 58-28 D-peak (1330 cm™1), G-peak (1580 cm~1), and 2D-peak [283]
(2660 cm™1).
The graphene provokes a microcrack propagation path,
Graphene 40/50 PNG easily distinguished through this technique. [282]
SEM GO 40/50 PNG The GO yields a clear sheet structure with a smooth surface. [89]
GNPs 60/80 PNG GNPs develop notorious small wrinkles and [49]
ellipsoidal structures.

The presence of graphene causes the asphalt binder to

Graphene 40/60 PNG increase its maximum degradation temperature and melting [169]
peaks.

TGA and GO can considerably enhance the thermal stability of

DSC GO 60/80 PNG asphalt binders. [168]

The modified asphalt binder reduces the susceptibility to
GNPs PG 52-34 moisture damage and increases the stiffness and resistance [284]
to failure conditions.

Graphene 60/80 PNG Graphene develops a multilayergd morphoiogy with a peak [158]
centred at approximately 24°.
The GO generates a grafting process, which is easily
XRD GO 40/50 PNG identified by an interplanar spacing of 0.421 nm. (8]
GNPs 60/80 PNG XRD pattern analysis demonstrates that the asphalt binder [155]

molecules increased the interlayer distance of GNPs.




Nanomaterials 2023, 13, 955

13 of 27

Photodiode

P

Detector and
feedback
electronics

\". — Cantiliever & tip

Sample surface PZT

(a) ARM

Laser +—

Raster Scanned
Micro-Focused

X-ray Beam Ellipsoidal
Energy Analyzer Quartz Crystal
4 Monochromator
Inputs Raster Scanned
Lens Electron Gun
Sample Al Anode
(c) XPS
CCD detector
Spectrograph
Laser and /"'--- grating
line filter ™!
7
7/
Beam
/7 splitter
/ Mirrors
Sample Microscope Notch
lens filter
Macrobeam mirror Adjustable entrance slit
(e) RS
REFERENCE PAN SAMPLE PAN

Ih; ) U 1]

Pans
‘_-\_.
T\A

Reference [ Sample
material L L F
Ptresistance
W W thermometer

t t

Heaters

(g) DSC

Water bath level
Oscillating disc

Sample
Fixed disc

(b) DSR

Stationary Mirror

Split Beam

Delayed
Split Beam
Coherent
Light Source

Beam

Splitter Moving Mirror

Recombined

Beam

Sample

Detector

(d) FTIR

i
L___}) Electron Gun

;‘_‘_‘_f‘;, Electron Beam

G

s Anode

[ —
G

22202 Condenser Lens

N e
& L-..}) Objective Lens

Secondary Electron
Detector

Secondary

_ \
Electrons “ {'_'.'.f:} Sample/Stage
(f) SEM
Collimator 4
20
Crystal

X-ray

source

(h) XRD

Figure 5. Schematic description of the functioning of the leading advanced characterization tech-
niques for GMABs. Adapted from [285-292].



Nanomaterials 2023, 13, 955

14 of 27

6. Discussion

Current investigation trends show that the researchers focus on applying optical tech-
niques to study GMABs. Although these techniques are extremely useful for performing
the physical-chemical characterizations of different materials, these laboratory protocols
also can present significant disturbances and errors in the result reports [293,294]. Notably,
optical-type techniques (basically all varieties of microscopy and spectroscopy) employ
light (i.e., photochemistry, luminescence, and light scattering) to probe or manipulate mate-
rials [295,296]. Unfortunately, small changes in the conditions (both external and internal)
of the test can greatly influence the observations and measurements recorded [297,298].
Thus, disturbances or inconsistencies in the execution and post-processing of the tests
may impair the reliability of the results [299,300]. Accordingly, the test outcomes depend
on the sample preparation quality and the skills of the laboratory worker (i.e., control
over the environment, mastery over the test apparatus, and the ability to interpret the
results) [301,302]. Even though more of these aspects cannot be easily handled, there is one
that can be, that is, the data post-processing [303,304]. Researchers’ main difficulty when
using these optical techniques is interpreting the resultant images/photography manu-
ally [305,306]. Fortunately, this can be addressed by employing computational methods,
such as artificial neural networks [245,250]. By implementing this type of artificial intelli-
gence, it is feasible to analyze images in detail and find patterns, arrangements, and changes
that could be effortlessly ignored (if they are done traditionally) [236,247]. Nonetheless, in
the literature review, no research was found using machine learning to examine the test
results on GMABs. The preceding represents an important gap in the literature.

On the other hand, another critical gap was evidenced in the literature: the tests on
asphalt binders are usually conducted only before (i.e., on neat asphalt binders) and after
(i.e., on GMABs) the modification processes. In this way, it is not common for the researchers
to evaluate the properties of the GMABs over time, e.g., after several months of modifying
the binder. The preceding implies that in the current state-of-the-art, there is no consensus
on how the physical-chemical properties of the GMABs evolve in the long term. Conse-
quently, this scenario is disturbing because the average service life of traditional asphalt
pavements is 20 years, while it is 50 years in the case of perpetual pavements [12,307-310].
In other words, existing research trends do not permit knowing how GMABs would behave
when used for road infrastructure construction. Notably, [55,90,161] evaluated the aging of
the GMABs using the rolling thin film oven test, pressure-aging vessel test, and ultraviolet
lamps. However, although these research efforts are not comparable to real-time long-term
measurements [3,311], they demonstrate that some case studies have identified the need to
carry out this type of assessment.

7. Future Research Lines

In light of the above, the current state-of-the-art about graphene-like materials and
their applications to produce GMABEs is susceptible to improvement. Therefore, some sug-
gestions for future research lines are presented below: (i) implement machine learning to in-
terpret the results obtained through advanced characterization techniques;
(ii) research the physical-chemical change of the GMABs over the long term; (iii) de-
velop mathematical-computational models to predict the effect of graphene-like materials
on the asphalt binder performance; (iv) establish boundaries about the optimal geometric
features that the graphene-like materials should have to guarantee the better possible
behavior; and (v) evaluate the viability of other graphene derivatives, such as expanded
graphite nanosheets, flake graphite, fluorographene, graphane, graphene nano-composites,
graphene nanoribbon, graphene nanosheets, graphene quantum dots, graphone, graphyne,
nanographite, and reduced graphene oxide.

8. Conclusions

In this research, a comprehensive literature review on the properties and characteriza-
tion techniques of GMABs was carried out. Likewise, the main physicochemical aspects of
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asphalt binders and graphene-like materials were explored and discussed. In this way, it
was possible to draw the following conclusions:

e Neat asphalt binders are modified with graphene-like materials to produce high-
performance binders.

e  The prominent advantages of GMABs over traditional asphalt binders are decreased
thermal susceptibility and increased resistance to aging, fatigue, rutting, and
moisture damage.

e  The primary graphene-like materials are used to modify asphalt binders are graphene,
GO, and GNPs.

e  The main processes for producing GMABs are the direct addition method, indirect
addition method, and auxiliary addition method.

e  GMABs are highly compatible with a wide variety of additional modifying agents,
such as carbon fibers, cross-linked chitosan, crumb rubber, electric arc furnace slag,
epoxy resins, ethylene bis(stearamide), Fe>*-TA, glutaraldehyde, nickel, polyethylene,
polystyrene, polyurethane, polyvinylpyrrolidone, and SBS.

e Conventional laboratory tests (i.e., density, penetration, softening point, dynamic vis-
cosity, ductility, flash point, and solubility) are insufficient to characterize the complex
behavior of GMABs. Therefore, it is necessary to employ advanced characterization
techniques.

e In order to properly characterize the GMABEs, it is essential to conduct assessments
regarding chemical, rheological, microstructural, morphological, thermogravimetric,
and surface topography properties. Notably, AFM, DSC, DSR, EA, FTIR, RS, SEM,
TGA, XRD, and XPS are the leading tests for these purposes.

e  There is still no consensus in the literature on the physicochemical properties of
GMABs and their performance as a material for the road infrastructure industry.
Regardless, all cutting-edge evaluation techniques indicate an improvement in low-
and high-temperature performance (regarding the neat asphalt binders).

e  Two primary gaps in the literature were identified: (i) although most of the advanced
characterization techniques for GMABs are based on optical methods, researchers do
not use computational approaches (such as artificial neural networks) to automatize
the data interpretation process, and thus, reduce the inaccuracies associated with these
observations/measurements; and (ii) not enough research efforts have been carried
out to understand the behavior of the GMABs in the long-term.
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