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Abstract: A variety of nanomaterials have been developed specifically for biomedical applications,
such as drug delivery in cancer treatment. These materials involve both synthetic and natural
nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS)
depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical
functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the
achievement of these desirable features. MOFs consist of metal ions and organic linkers that are
assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining
features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical
functionality, which enable an endless range of modalities for loading drugs into their hierarchical
structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful
DDSs for the treatment of diverse diseases. This review aims to present the development and
applications of DDSs based on chemically-functionalized MOF nanostructures in the context of
cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is
provided.

Keywords: metal–organic frameworks; BioMOFs; nanostructures; chemical modification; drug
delivery; cancer treatment

1. Introduction

Nanoparticles (NPs) are employed as delivery vectors for therapeutic payloads, en-
abling targeted and regulated transportation deep within bodily tissues [1]. This innovative
technology holds great promise for numerous chemotherapeutic agents with poor phar-
macokinetic profiles, swift clearance rates, and non-specific biodistribution [2]. Efforts in
designing drug delivery carriers to overcome these challenges are made by improving
targeted delivery, reducing toxicity and increasing drug effectiveness in targeted tissue.
NPs-based DDSs can help overcome the challenges faced with conventional drugs. Drug
nanocarriers are highly valuable because of their small size, high porosity, enormous sur-
face area and tunable properties. Nanomaterial encapsulated drugs can also allow for
controlled and sustained drug release of less soluble and poorly absorbed drugs. However,
the efficacy of these vehicles depends on their hydrophobicity, size, shape and surface
features [3,4]. Designing a bio-friendly material is essential for biological applications such
as drug delivery. Ideally, the drug carrier should be biocompatible and biodegradable
with minimum side effects. Various types of nanocarriers have been developed, such as
metal NPs [5–8], micelles [9,10], liposomes [11], dendrimers [12,13] and hydrogels [14,15]
(Figure 1 [4]).
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Figure 1. Different types of nanocarriers used as controlled delivery vehicles for cancer treatment. 
Reproduced with permission from Ref. [4]. Copyright © 2018, Nature. 

What differentiates these nanomaterials from each other are their surface properties, 
porosity, hydrophobicity, etc. For example, micelles, which consist of hydrophobic and 
hydrophilic components, can be tuned to release a drug in an environment upon the pres-
ence of stimuli (e.g., pH and enzyme). They can be extensively functionalized than other 
drug delivery vehicles because of their higher surface area owing to their nanosize. A mi-
cellar system, prepared by Watanabe et al., bearing camptothecin was conjugated with 
polymeric micelles composed of various poly(ethylene glycol)–poly(aspartate ester) block 
copolymers. This system showed prolonged circulation and efficient release of the drug 
at the tumor site [16]. Dendrimers have also been used as drug delivery vesicles in tumor 
tissue because of their modifiable peripheral groups and their ability to perform con-
trolled and targeted drug delivery. They allow for a higher stability, increased half-life 
and bioavailability of drugs. Particularly, dendrimer conjugated drugs reduce systemic 
toxicity and increased accumulation in tumor tissue [17,18]. Liposomes, amphiphilic mol-
ecules composed of natural or synthetic lipids, were conjugated with doxorubicin (DOX), 
by Ogawara et al., and investigated in mice with colon cancer. The polyethylene glycol-
coated liposomal DOX showed antitumor effects on DOX-resistant and non-DOX-re-
sistant C26 cells [19]. The success of these NP systems has led to further investigation and 
development of anti-cancer carriers with increased efficacy and reduced toxicity. MOFs 
can overcome limitations faced with using conventional NPs-based DDS such as toxicity, 
poor bioavailability, burst drug release, particle aggregation and small drug loading ca-
pacity. 

Previous reviews discuss the importance of biocompatible MOFs in biological appli-
cations and in biomedicine. In this review, we dive deep into the factors that determine 
the biocompatibility of a MOF structure such as the metal ion and organic linker constit-
uents. Moreover, we discuss the various MOF synthesis methods and the ability of how 
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What differentiates these nanomaterials from each other are their surface properties,
porosity, hydrophobicity, etc. For example, micelles, which consist of hydrophobic and
hydrophilic components, can be tuned to release a drug in an environment upon the
presence of stimuli (e.g., pH and enzyme). They can be extensively functionalized than
other drug delivery vehicles because of their higher surface area owing to their nanosize.
A micellar system, prepared by Watanabe et al., bearing camptothecin was conjugated
with polymeric micelles composed of various poly(ethylene glycol)–poly(aspartate ester)
block copolymers. This system showed prolonged circulation and efficient release of the
drug at the tumor site [16]. Dendrimers have also been used as drug delivery vesicles in
tumor tissue because of their modifiable peripheral groups and their ability to perform
controlled and targeted drug delivery. They allow for a higher stability, increased half-life
and bioavailability of drugs. Particularly, dendrimer conjugated drugs reduce systemic
toxicity and increased accumulation in tumor tissue [17,18]. Liposomes, amphiphilic
molecules composed of natural or synthetic lipids, were conjugated with doxorubicin
(DOX), by Ogawara et al., and investigated in mice with colon cancer. The polyethylene
glycol-coated liposomal DOX showed antitumor effects on DOX-resistant and non-DOX-
resistant C26 cells [19]. The success of these NP systems has led to further investigation and
development of anti-cancer carriers with increased efficacy and reduced toxicity. MOFs can
overcome limitations faced with using conventional NPs-based DDS such as toxicity, poor
bioavailability, burst drug release, particle aggregation and small drug loading capacity.

Previous reviews discuss the importance of biocompatible MOFs in biological applica-
tions and in biomedicine. In this review, we dive deep into the factors that determine the
biocompatibility of a MOF structure such as the metal ion and organic linker constituents.
Moreover, we discuss the various MOF synthesis methods and the ability of how these
reticular materials can respond to certain intrinsic and extrinsic triggers. Understanding
the response to certain stimuli will allow researchers to study MOFs for specific cancers
and other diseases. Finally, the review focuses on all cancers that have exhibited success
with MOF DDSs and/or MOF stand-alone treatments.
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2. MOFs and Their Biomedical Applications

MOFs are a class of crystalline materials with ultrahigh porosity and surface area that
can exceed 6000 m2 g−1 [20]. These MOFs consist of metal ions or clusters coordinated
to organic bridging ligands [21] allowing for the fine tuning and flexible design of pore
size, surface area and functionality with different building blocks [22]. MOFs can be
constructed in the form of 1D, 2D and 3D structures for a wide range of applications [23].
Their synthesis takes place by self-assembly of the metal ion cluster and the organic linker
forming highly thermal and mechanical stable compounds [24]. The high crystallinity of
MOFs provides defined networks and clear structural information, which is important
in determining the interactions with guest molecules. Due to the multiple features of
MOFs, they have been used in various applications such as gas adsorption, storage of
clean gas fuels, catalysis, separation science and drug delivery [25,26]. Depending on the
structure of the MOF as well as its desired application, there are various approaches to
MOF synthesis such as solvothermal, hydrothermal, vapor diffusion, microwave synthesis,
ultrasonic, mechanochemical and electrosynthesis. Moreover, MOFs can also be post-
synthetically modified, introducing functional groups to allow for additional functionality
while maintaining the MOFs integral network [27]. Due to the above-mentioned unique
characteristics of MOFs, they have been also investigated for biomedical applications,
especially in the areas of imaging, bio-sensing, bio-catalysis, drug delivery and cancer
treatment [28–31]. In particular, MOF DDSs have been investigated for the treatment of
breast [32–55], lung [52,53,56], oral [57,58], hepatic [59–65], pancreatic [66,67], colon [68–72],
bladder [73], ovarian [74–82], cervical [71,83,84], brain [85] and blood cancers [86].

MOFs used for biomedical applications are often called “BioMOFs”. The origin of this
abbreviation; BioMOF, was discussed by Cai et al. in 2019 [87]. Based on their hypotheses,
a BioMOF is a MOF whose all or part of the organic linker is biological in nature, but with
chelating characteristics [88–90]. A BioMOF whose organic linker is entirely biological in
nature is abbreviated as Bio-MOF-xxx, where xxx refers to a number given to the BioMOF
upon its synthesis and registration [91–93]. On the other hand, a BioMOF could be related
to a regular biocompatible MOF that is feasible to act as a carrier of biological molecules
and/or drugs [29]. The current critical review, therefore, describes in more details the highly
established potential of BioMOF nanostructures, both pristine and chemically modified,
as successful DDSs for the treatment of cancer. BioMOFs are intrinsically biocompatible
with little to no toxicity. Few factors are to consider when selecting a metal to be used for
biomedical applications including the kinetics of degradation, biodistribution, accumula-
tion in tissues and organs and daily dosage requirements. These characteristics are often
studied on the BioMOFs’ precursors; metal ions and the organic linkers, as well as on the
BioMOFs made thereafter.

2.1. Biocompatibility of Metal Ions

The lethal dose (LD50) of a substance or material is the dose it takes to kill half of
the members of a test population. With MOF preparations, the most fitting metals with
acceptable toxicities include Ca, Cu, Fe, Ti, Zn or Mg with a LD50 ranging from 0.025 g/kg
to 30 g/kg. However, daily dosage and chemical formulation of the metal needs to be
taken into consideration when using MOFs for biomedical applications [94,95]. Grall et al.
evaluated the cytotoxic effects of MIL-100(Fe, Al, Cr) NPs on four human cell lines (A549,
Hep3B, HepG2 and Calu-3) [96]. At the highest concentration of 64 µg/cm, MIL-100(Fe, Al,
Cr) NPs did not induce toxicity in the A549, HepG2 and Calu-2 cell lines. A toxic effect was
observed with MIL-100(Fe) in the Hep3B cell line, which could be due to the absence of
TP53 expression in the hepatocarcinoma cell line. Further, biological applications generally
require a much lower dose than what is used in most cytotoxic studies.

MOFs can be selective and cytotoxic towards certain cell lines, making them successful
DDSs. A Zr-based multivariate (MTV) MOF (UiO-66) was loaded with an anti-cancer
drug and tested on MCF-7 breast cancer cells and HEK293 kidney cells. The MTV-MOF
exhibited a drastic increase in cytotoxicity towards the breast cancer cell line and selective
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biocompatibility towards the HEK290 kidney cells (up to 1 mg/mL) [97]. The selectivity of
MOFs will be further discussed in this review along with their ability to respond to certain
intrinsic and extrinsic triggers.

2.2. Biocompatibility of Linkers

Exogenous linkers, polycarboxylic and imidazolate, have been proven to have low
toxicity due to their high polarity and clearance under physiological conditions [94]. These
linkers can also be functionalized to improve their pharmacokinetics and to allow for an
improved delivery system of bioactive molecules. The use of functional groups has not
only enhanced host-guest interactions but also the adsorption and delivery of the bioactive
molecules due to changes in the MOF flexibility [98,99]. Alternatively, endogenous linkers
with less toxic effects are also ideal for biomedical applications. A functionalized Zr-
fumarate MOF has been reported to outperform UiO-66 for nanoscale drug delivery, as
shown in Figure 2a [100].

Active pharmaceutical ingredients (APIs) have also been used as linkers to reduce
adverse effects once the MOF components are degraded [28]. Using an API in the MOF
structure can lead to improved dosage and/or solubility [101]. Miller et al. built a MOF
using non-toxic iron and the therapeutically active linker, nicotinic acid. This bioactive MOF
displayed a high drug uptake (71 wt%) and a fast release of the drug in phosphate buffer
solution [102]. Zinc and bismuth were also used as coordination networks where an iron
overload drug, deferiprone, was used as a chelating ligand [103,104]. Olsalazine, a prodrug
of the anti-inflammatory 5-aminosalicyclic acid, has the same coordinating functionalities
as 4,4′-dioxidobiphenyl-3,3′-dicarboxylate but with a longer chain length [105,106]. Other
APIs have been used as MOF linkers including the antibiotic nalidixic acid and the anti-
inflammatory, anti-oxidative and anti-cancer drug, curcumin (CCM) [107,108]. Medi-MOF-1
was initially synthesized solvothermally using the less toxic zinc as a metal node and CCM
as a functional natural linker [108]. The MOF was loaded with ibuprofen (IBU) and used as
a co-delivery cargo for the treatment of pancreatic cancer cells (BxPC-3) [108].

Nanomaterials 2023, 13, x FOR PEER REVIEW 4 of 43 
 

 

of TP53 expression in the hepatocarcinoma cell line. Further, biological applications gen-
erally require a much lower dose than what is used in most cytotoxic studies.  

MOFs can be selective and cytotoxic towards certain cell lines, making them success-
ful DDSs. A Zr-based multivariate (MTV) MOF (UiO-66) was loaded with an anti-cancer 
drug and tested on MCF-7 breast cancer cells and HEK293 kidney cells. The MTV-MOF 
exhibited a drastic increase in cytotoxicity towards the breast cancer cell line and selective 
biocompatibility towards the HEK290 kidney cells (up to 1 mg/mL) [97]. The selectivity of 
MOFs will be further discussed in this review along with their ability to respond to certain 
intrinsic and extrinsic triggers. 

2.2. Biocompatibility of Linkers 
Exogenous linkers, polycarboxylic and imidazolate, have been proven to have low 

toxicity due to their high polarity and clearance under physiological conditions [94]. These 
linkers can also be functionalized to improve their pharmacokinetics and to allow for an 
improved delivery system of bioactive molecules. The use of functional groups has not 
only enhanced host-guest interactions but also the adsorption and delivery of the bioac-
tive molecules due to changes in the MOF flexibility [98,99]. Alternatively, endogenous 
linkers with less toxic effects are also ideal for biomedical applications. A functionalized 
Zr-fumarate MOF has been reported to outperform UiO-66 for nanoscale drug delivery, 
as shown in Figure 2a [100]. 

Active pharmaceutical ingredients (APIs) have also been used as linkers to reduce 
adverse effects once the MOF components are degraded [28]. Using an API in the MOF 
structure can lead to improved dosage and/or solubility [101]. Miller et al. built a MOF 
using non-toxic iron and the therapeutically active linker, nicotinic acid. This bioactive 
MOF displayed a high drug uptake (71 wt%) and a fast release of the drug in phosphate-
buffered solution [102]. Zinc and bismuth were also used as coordination networks where 
an iron overload drug, deferiprone, was used as a chelating ligand [103,104]. Olsalazine, 
a prodrug of the anti-inflammatory 5-aminosalicyclic acid, has the same coordinating 
functionalities as 4,4′-dioxidobiphenyl-3,3′-dicarboxylate but with a longer chain length 
[105,106]. Other APIs have been used as MOF linkers including the antibiotic nalidixic 
acid and the anti-inflammatory, anti-oxidative and anti-cancer drug, curcumin (CCM) 
[107,108]. Medi-MOF-1 was initially synthesized solvothermally using the less toxic zinc 
as a metal node and CCM as a functional natural linker [108]. The MOF was loaded with 
ibuprofen (IBU) and used as a co-delivery cargo for the treatment of pancreatic cancer 
cells (BxPC-3) [108]. 

 
Figure 2. Various types of MOF structures for drug delivery formulations. (a) Zr-fumarate. Repro-
duced with permission from Ref. [100]. Copyright © 2019, MDPI. (b) Zn-nalidixate. Reproduced with
permission from Ref. [107]. Copyright © 2019, American Chemical Society. (c) [Fe(H2cit)(H2O)]n
(NICS-2). Reproduced with permission from Ref. [109]. Copyright © 2013, Wiley. (d) Co4O4 cubane.
Reproduced with permission from Ref. [110]. Copyright © 2017, American Chemical Society. (e) MOF-
1201. Reproduced with permission from Ref. [111]. Copyright © 2017, American Chemical Society.
(f) K2Co(C4H4O4)2. Reproduced with permission from Ref. [112]. Copyright © 2001, American
Chemical Society.
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Citric acid and lactic acid are all biocompatible linkers that have also been used
for synthesizing bioMOFs [109–113]. In 2013, the first neutral ferrous citrate MOF was
synthesized hydrothermally and the structure was confirmed using single-crystal x-ray
diffraction. Its structure consists of a pseudo-three-dimensional framework constructed
from infinite chains of iron (Fe) polyhedra. The Fe nodes are hexa-coordinated by two
partially deprotonated citrates and water molecule in a distorted octahedral manner [109].
Yang et al. constructed two porous chiral MOFs, MOF-1201 and MOF-1203, from Ca2+

ions and L-lactate [CH3CH(OH)COO−], where Ca2+ ions are bridged by the carboxylate
functional group of the lactate and acetate linker, as well as the hydroxyl functional group
of the lactate linker. This biocompatible Ca2+ MOF was synthesized using non-toxic lactate
linkers where 1 L of water can degrade 120 ± 10 g of the MOF-1201, making it useful for
medicinal purposes [111]. One of the final products of the Krebs cycle, L-malic acid, was
used to synthesize homochiral MOFs with metals: Mn, Ni, Co, Cu and Ca [114–118]. The
calcium MOF [Ca(HL-MA)]n (H3L-MA = L-malic acid) has been solvothermally synthesized
and displayed very high thermal stability which was determined by thermogravimetric
analysis (TGA) and powder x-ray diffraction (PXRD) [118].

Peptides can also be considered as ideal candidates for synthesizing MOF structures
as they can act as therapeutic agents. A tripeptide (glycine-glycine-L-histidine) and zinc
3D chiral MOF, ZnGGH, was synthesized and the behavior of this MOF was observed after
inducing various chemically triggered conformational changes [119]. The functionalized
internal surface and the flexible Gly-Gly part of the tripeptide increased the responsiveness
of the ZnGGH framework to various solvents, controlling the chemical function of the MOF.
Dioxane and cyclopentanol were not initially adsorbed by DMSO-solvated ZnGGH (DMSO
stands for dimethylsulfoxide); however, the exchange of DMSO solvent from the pores
with dimethylformamide (DMF) triggered the adsorption of these guests [119]. Solvent
exchange helps activate the MOF structure while maintaining its integrity. It is usually
carried out by replacing a higher boiling point solvent (used during synthesis) by a lower
boiling point solvent [120].

3. Synthesis of BioMOFs

In a typical MOF synthesis, the precursor solutions are usually mixed together to allow
for nucleation and crystal growth. Mixing of MOF precursors takes place in a suitable
solvent at room temperature, while the formation of MOF takes place under various
temperatures and pressure [121]. Methods such as solvothermal [122], sonochemical [123],
electrochemical [124], microwave-assisted [125], vapor diffusion [126] and reverse-phase
microemulsions [127] have been used to synthesize BioMOFs, as illustrated in Figure 3.
Details of these methods are explained below. The key to obtain formulations that are
stable and reproducible is to control the particle size of NPs as this dictates the properties
of the NP’s, such as reactivity, external surface and packing [128–131]. When synthesizing
NP’s for specific administration routes, the goal is to produce nanosized, homogenous,
monodispersed and stable particles that fit for the targeted route [94].
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3.1. Solvothermal/Hydrothermal

Conventional synthesis of MOFs takes place in a solvent at temperatures ranging from
room temperature to around 250 ◦C [132]. Solvothermal and hydrothermal methods allow
for a higher yield and smaller, more homogenous crystals than non-thermal methods [133].
Various parameters can affect the nucleation and growth of the MOF particles, such as
temperature, reaction time and stoichiometry. Zinc imidazolate (ZIF-8) is an example of how
reducing temperature and reaction time can produce nanocrystals with the size ∼85 nm
with enhanced thermal, hydrothermal and solvothermal stabilities [134]. Horcajada et al.
tuned porous hybrid solids such as MIL-88A and MIL-88B to improve their structures and
porosities for better drug interactions and high loadings and to serve as nanocarriers for
delivery and imaging applications. They determined that non-toxic porous iron(III)-based
MOFs with engineered cores and surfaces were efficient drug nanocarriers for the delivery
of anti-tumor and retroviral biomolecules [125].

3.2. Sonochemical

Recent MOF synthesis has been geared to a ‘greener’ approach. Using a synthetic
method can minimize the use of organic solvents, decrease reaction temperature/pressure
and reduce reaction time. Sonochemistry, electrochemistry and ball milling are a few
examples of green synthesis. The interaction of high-energy ultrasound with the liquid
sample leads to extremely high temperatures and pressures contributing to a rapid heat-
ing and cooling rate and ultimately fine crystal growth [132,133]. Li et al. synthesized
HKUST-1 crystals under ultrasonic irradiation at ambient temperatures for 5–60 min [135].
They observed improved pore volumes and no significant differences in porosity when
compared with the traditional solvothermal synthesis of HKUST-1. This work proves that
environmentally friendly and efficient alternative methods to MOF synthesis are promising.

3.3. Electrochemical

Electrochemical synthesis allows for the possibility of preparing a higher solids con-
tent when compared to batch reactions [132]. Bio-based MOF, [Zn3(BTC)2] (BTC = ben-
zenetricarboxylate) was prepared using electrochemistry and sonochemistry and then
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loaded with IBU [124]. The electrochemical method produced larger average particle
size (ca. 18.43 ± 8.10 µm) compared to the sonochemical method (average particle size ca.
87.63 ± 22.86 nm). The study also showed that the longer the reaction time took place
under ultrasonic irradiation, the larger the MOF particle size [124].

3.4. Microwave-Assisted

Microwave-assisted synthesis involves the interaction between electromagnetic waves
and moving electric charges in the MOF solid sample. Compared to conventional heat-
ing, microwave-assisted synthesis is faster and produces smaller crystals [132]. This
rapid method is environmentally friendly and produces a high-yield of sample with good
monodispersity and controlled size [133]. Horcajada et al. synthesized an iron terephthalate
MOF, MIL-53 (Fe), at 220 ◦C for 30 min under microwave irradiation at 600 W yielding a
flexible with framework with pore size of 8.6 Å and particle size of 350 nm [125]. The iron
(III)-based MOF was successfully loaded with pharmaceutical drugs including, busulfan,
azidothymidine triphosphate, ibuprofen, caffeine, urea and benzophenone.

3.5. Vapor Diffusion

Vapor diffusion is a method that requires a small amount of reactants yielding good
crystals with control over reaction parameters [136]. Cyclodextrin MOF (CD-MOF) is pre-
pared using edible ingredients including, γ-cyclodextrin, potassium chloride and ethanol
under vapor diffusion synthesis [126]. This porous “edible” MOF has been successfully
used for various applications including drug delivery [137,138].

3.6. Reverse-Phase Microemulsions

This method allows for the control of the MOF particle size by tuning the dimensions
of the micelles of a surfactant. A manganese-based BioMOF was synthesized using this
approach and was further coated with a thin silica (SiO2) shell to enhance its stability
in solution [127]. The Mn-based BioMOF showed a dual function in the diagnosis and
targeted delivery of drugs with a controlled release ability [127].

4. Surface Modification of BioMOFs

Surface modification of BioMOFs is a strategy that can solve challenges such as
targeted delivery, opsonization by blood proteins, biodistribution and transcytosis of drug
molecules [94], as illustrated in Figure 4. It can improve the MOFs water dispersity and
reduce plasma protein binding to help avoiding the reticuloendothelial system and allow
for targeted cell delivery of drugs [139]. Figure 4 shows the ability to modify the surface
(internal and external) of the MOF structure in order to accommodate the differences in the
hydrophobicity/hydrophilicity of the drug and MOF crystal [140] and hence improves its
ability as a BioMOF DDS.
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Certain coating materials such as polyethylene glycol (PEG), can ‘protect’ the NMOF
from early degradation through the development of a brush-like shell onto the surface
of the NMOF; hence, sterically protect it from macrophage uptake [94]. This, in turn,
allowed for a more targeted and increased accumulation of the biomolecule. MIL-100 (Fe)
was functionalized with acryl-PEG (480 Da, 2 kDa and 5 kDa) and acryl-Hyaluronic acid
(HA)-PEG moieties using a green, biocompatible and simple GraftFast method [141]. This
method produced homogenous coatings and improved its shielding effect. The modified
PEG-coated MIL-100 (Fe) produced a lower immune response while maintaining the drug
loading and release. Additionally, the circulation time was prolonged due to reduced
macrophage phagocytosis [141].

Chowdhuri et al. synthesized a carboxymethyl chitosan-modified magnetic NMOF
(IRMOF-3) composed of Zn2+ ions and 2-amino terephthalic acid with a target molecule,
folic acid (FA), on its surface. The results displayed that the carboxymethyl chitosan in-
creased the drug loading efficiency and improved the performance of the pH-responsive
drug release. The anti-cancer drug Doxorubicin (DOX) was incorporated into the NMOF
with a loading capacity of 1.63 g g−1. The release of the drug was investigated in two PBS
media; one at a pH 7.4 and another containing an intercellular cancer cell environment at a
pH 5.5, both at 37 ◦C. After 24 h about 26.72% of DOX was released at pH 7.4, whereas 55.1%
of the drug was released at pH 5.5 [142]. Yang et al. modified Fe3O4 NPs with a layer of PVP
and polyetherimide (PEI) to obtain Fe3O4@PVP-PEI nanospheres for the pH-responsive re-
lease of glycoproteins. Fe3+ ions and the organic ligand 1,4-phenylenebisboronic acid (PBA)
were then added to produce the MOF nanocomposite Fe3O4@PVP-PEI@MOF-PBA with
PBA also serving as a functional molecule in the MOF shell. This MOF-PBA shell displayed
selective and pH-responsive capture (at pH 7) and release (pH 9) of glycoproteins [143].

5. BioMOFs for Drug Delivery Imaging Applications

Traditional therapeutics face challenges such as non-specific distribution, toxic side
effects, poor pharmacokinetics and rapid clearance [144]. NP-based systems can overcome
these challenges by providing a targeted delivery and high accumulation of the drug
molecule. Doxil and Abraxane are commercialized nanodrugs that have opened doors to
the development of other potential nanocarriers/drugs. The goal of creating a successful
DDS is to achieve a high drug loading capacity with little to no side effects.

A drug-MOF conjugate would combine the properties of both the biomolecule and
MOF carrier and enhance the efficacy of the drug [145–147]. The MOF would create a stabi-
lized microenvironment for the drug while improving its activity against harsh conditions,
allowing for the separation and recovery of the drug upon internal/external stimuli. The
formation of a drug-MOF conjugate could be synthesized using various methods (Figure 5).
In general, biomolecules are incorporated through different methods [148]:

◦ absorption into the pores of MOFs;
◦ attachment on the external surface of MOF crystals;
◦ in situ encapsulation into MOF crystals as ‘crystal defect’; and
◦ directly used as ligands to synthesize MOFs.

In 2004 and 2005, Férey et al., developed mesoporous rigid chromium carboxylate
MOFs (MIL-100 (Cr) and MIL-101 (Cr)) that were then loaded with the model drug,
IBU [149,150]. The MOF structures possessed cage sizes around 25 to 34 Å and win-
dows 5 to 16 Å. The Brunauer–Emmett–Teller (BET) surface areas (2100 to 4400 m2 g−1)
allowed for a successful loading of IBU that was 4 times higher than silica materials and
9 times higher than zeolites [151,152]. Although mesoprous silica MCM-41 has a larger
pore size and more impressive pore volume than MIL-101, the higher drug loading capacity
in MIL-101 is evidence that the surface area plays an important role in drug encapsulation
along with the drug/metal interaction [152]. The same group later encapsulated MIL-53 (Fe
and Cr) with IBU and determined that the smaller the pore volume, the less drug loading
occurred [153]. The release of IBU from MIL-100, MIL-101 and MIL-53 happened through
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diffusion and drug-matrix interaction. The MOFs released the drug cargo after 3, 6 or
21 days, respectively, when immersed in simulated body fluid (pH 7.4 @ 37 ◦C) [94].
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Rojas et al. conducted an experimental and computational study on the physiochemi-
cal parameters that were driving the drug adsorption and desorption kinetics of aspirin
and IBU using MIL-100(Fe), UiO-66(Zr) and MIL-127(Fe) [154]. Given that aspirin is hy-
drophilic and IBU is hydrophobic, the drug uptake was dependent on the cargo/matrix
interaction and the accessibility of the drug in the framework. The release kinetics was
dependent on: (i) the structure of the MOF, a slower release with a narrower pore or (ii)
the hydrophobicity/hydrophilicity of the carrier (with UiO-66, aspirin displayed a faster
release and slower release with IBU) [154].

In 2017, Zheng et al. developed a multifunctional hybrid nanosystem, ZnO-DOX@ZIF-
8, consisting of mesoporous ZnO core and a microporous ZIF-8 shell. The drug, DOX,
was loaded in the core and the shell was used to prevent a burst release of the drug at
physiological conditions [155]. The ZnO-DOX@ZIF-8 core–shell NP displayed a 20% of
loaded DOX release in buffer of pH 7.4 and over 80% in buffer of pH 5.5, making it a
promising pH-responsive DDS, as shown in Figure 6a [155].

CD-MOF consists of six (α), seven (β) and eight (γ) glucopyranose units, a truncated
cone with a hydrophobic inner pocket and a hydrophilic exterior. CD-MOF is a popular
biomaterial because of its low cost, biodegradability, biocompatibility and very low toxicity.
It has been utilized in various bio-applications, such as bio-imaging, bio-sensing, tissue
engineering and drug delivery [156,157]. γ-CD-MOFs were later encapsulated with a
model green tea, catechin, (-)-epigallocatechin gallate (EGCG), to protect the antioxidant
from premature degradation [158]. CD-MOF-EGCG displayed a promising inhibitory effect
on cancer cell growth of C6 cells and an enhanced antioxidant activity in basic solutions, as
shown in Figure 6b [158].

More recently, researchers have combined porous MOFs with organic polymers to
prevent a burst release of drug molecules [159]. Souza and colleagues synthesized a
nanocomposite MOF, HKUST-1, embedded in a polymeric matrix (polyurethane) for the
encapsulation and release of 5-fluorouracil (5-FU) (5-FU@HKUST-1/polyurethane). They
used synchrotron microspectroscopy to track the release kinetics of 5-FU and discovered
that HKUST-1 created hydrophilic channels within the hydrophobic polyurethane matrix
to prevent a burst release effect. The MOFs role was to release the cancer agent while the
polymer matrix protected the moisture sensitive MOF structure from water degradation, as
shown in Figure 6c [159].
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BioMOFs can also carry out multiple roles in therapeutic and diagnostic applications,
such as drug delivery carriers and MRI contrast agents, simultaneously. MRI is a non-
invasive imaging technique that provides 3D anatomical images based on the detection
of nuclear spin reorientations. A contrasting agent, Gd, is usually given to patients in-
travenously to allow for faster proton alignment within the magnetic field, for a brighter
image [160]. The Gd chelates a T1-weighted or positive signal enhancement and can help
distinguish between diseases and non-diseased tissue [121]. MRI contrast agents exist as
T1- (positive contrast), shortening the longitudinal relaxation time of water protons and T2-
(negative contrast), which can reduce the transverse relaxation time of water protons [161].
BioMOFs can be utilized as a T1- or T2- contrast or combined for the use of drug delivery
and as an MRI contrasting agent [161].

In 2006, NMOFs consisting of Gd3+ centers were synthesized using BDC and BTC
linkers by reverse-phase microemulsions, which showed potential as contrasting agents for
multimodal imaging [162]. The relaxation rates, R1 and R2, were enhanced because of the
increased amount of Gd3+ centers present in the NMOFs [162].

MOF-based magnetic composites can also be used for targeted drug delivery as
demonstrated by Ke et al. in 2011 [66]. The group synthesized the nanocomposites by
encapsulating Fe3O4 nanorods in HKUST-1. The material displayed magnetic properties
and high porosity, that was able to adsorb around 16 wt% of Nimesulide and release the
drug for up to 11 days in physiological saline solution at 37 ◦C [66]. Later on, Pinna et al.
developed a system for the magnetophoretic drug delivery of dopamine for Parkinson’s
disease [163]. MIL-88A(Fe) crystals were grown around a polymer core containing super-
paramagnetic NPs with tunable sizes between 8 and 86 µm. The drug was stable and did
not undergo oxidation within the carrier. The release of dopamine was assessed using spec-
trofluorimetry and showed a shorter burst effect (during the first 6 h in 1 mM PBS buffer at
pH 7.4) and higher release efficiency when compared to silica-based carriers. Dopamine
was directly taken up by PC12 cells, proving a targeted delivery effect [163]. A multifunc-
tional Fe3O4@polyacrylic acid/Au nanoclusters/ZIF-8 NPs (Fe3O4@PAA/AuNCs/ZIF-8
NPs) was developed for the combination of tri-modal cancer imaging (magnetic resonance,
computed X-ray tomography and fluorescence imaging) and drug delivery of DOX [164].
The goal was to develop a system that had the potential to be used as cancer treatment and
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diagnosis. The multifunctional NPs exhibited a DOX loading capacity of 1.55 mg per mg of
NPs and a pH-responsive controlled drug release [164].

5.1. Stimuli-Responsive BioMOFs

BioMOFs can be designed to respond to intrinsic triggers (pH, ATP, redox, etc.) and/or
external triggers (temperature, ions, pressure, light) to offer an enhanced permeability and
active targeting of the drug molecule, as illustrated in Figure 7 [165,166]. The DDS, once
activated by these triggers, the drug molecule is released in a controlled manner, which is
ideal for cancer treatment.
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5.1.1. pH-Responsive BioMOFs

pH-responsive BioMOFs are of particular interest in cancer treatment as the coordi-
nation bonds are extremely sensitive to external pH changes [167–170]. BioMOFs can be
designed to release cargo at tumor sites (pH ~ 6.5–6.9) for a targeted delivery and increased
cellular uptake. ZIF-8, commonly used for the pH-responsive drug release, was encap-
sulated with DOX/Bovine serum albumin (BSA) NPs by Liang et al. [171]. The BioMOF
carrier was designed for the protection of the drug as it is stable at pH7.4 and can decom-
pose under acidic conditions and to also introduce positive charges on the outer surface for
an increased cellular uptake [171–174]. The BSA/DOX@ZIF nanocomposite demonstrated
a higher efficiency than the free drug and showed an improved biocompatibility when
comparted to pure ZIF NPs [171].

The polyacrylic acid@ZIF-8 (PAA@ZIF-8) NPs are synthesized using a simple synthetic
strategy for the ultrahigh DOX loading capacity of 1.9 g g−1 NPs [172]. This high drug
loading capacity could be due to the electrostatic interaction between the positively charged
drug molecule and the negatively charged –COOH groups located on the PAA@ZIF-8
structure. The coordination of Zn2+ and DOX also plays a role in the uptake of the drug
molecule [172]. The DOX-loaded NPs were efficiently taken by MCF-7 cells and displayed
a faster release of DOX in a mild acidic buffer solution (pH 5.5) when compared to a neutral
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PBS (pH 7.4). The nanocarriers showed low toxicity to normal healthy cells, making them a
promising anti-cancer treatment and potential use in biological applications [172].

Recently, Abazari et al. developed a luminescent FA amine-functionalized BioMOF
(FOLA@NH2-Eu:TMU-62) for the delivery of the anti-cancer drug 5-FU [175]. Luminescent
nanocarriers allow for the observation of structural specificities in tissues and cells and
have been useful for drug delivery and bio-sensing [176,177]. They can be a promising tool
for understanding biological processes, metabolism and pharmacokinetics and particularly
useful for early stage cancer diagnosis and treatment [175,178]. The researchers in this
study believed that the pH-responsive drug release of the carrier, along with the enhanced
internalization of FA by the expression of the folate receptor expressing cells, would lead
to a successful DDS for imaging and targeting. The pH-responsiveness of the system was
studied using four difference pH values (pH 7.4, pH 6.8, pH 5.3 and pH 4). A miniscule
amount of the drug was released at pH 7.4, however, about 55% of 5-FU was released at pH
6.8 and over 90% release with a buffer solution at pH 4.0 within 72 h (Figure 8). Decreasing
the pH broke down the DDS and would most likely lead to a leakage of 5-FU from the
carrier. Overall, the 5-FU-loaded FOLA@NH2-Eu:TMU62 carrier decreased tumor growth
in MCF-7 cells and displayed a targeted delivery to cancer cells by means of the folate
receptor and release of the drug in the cytoplasm [175].
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5.1.2. Ion-Responsive BioMOFs

A drug@MOF composite consists of strong electrostatic interactions between the ionic
drug and ionic MOF structure [179,180]. This interaction allows for the release of the drug
compound through diffusion, making it an ion-responsive mode of drug delivery. An et al.
synthesized a porous anionic MOF, bio-MOF-1, using adenine as the building block for
the storage and release of procainamide, a cationic antiarrythmic drug [181]. With a short
half-life and a dosing of every 3–4 h, procainamide HCl, is an ideal drug for controlled
release studies. After the drug was introduced in the MOF pores, through a cation exchange
process over 15 days, the loading capacity was determined to reach up to 0.22 g g−1. The
ionic interaction between the drug and the MOF triggered a release of the drug from the
carrier when placed in PBS (pH 7.4). This was studied against a control (nanopure water)
to prove that the drug released was mediated by the buffer cations [181].

Later on, the Hu group prepared a positively charged carrier, MOF-74-Fe (III) through
the oxidation of the neutral MOF [182]. The cationic MOF was loaded with IBU anions
and displayed a loading capacity of 0.19 g g−1. Two different release rates were observed
due to the presence of coordinated or free IBU anions. The drug release occurred by
diffusion and triggered by the anionic phosphate buffer solution. Therefore, the drug
release can be controlled by regulating the carrier size and encapsulating them into other
stimuli-responsive matrices (Figure 9a) [182].
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In 2016, Yang and colleagues, constructed a cationic nanocarrier, ZJU-101, by post-
modification of MOF-867. Methyl groups were added to the pyridyl groups of MOF-867
(zirconium with 2,2′-bipyridine-5,5′-dicarboxylate) and loaded with the anionic drug,
diclofenac sodium [183]. Diclofenac sodium forms anions in solution, making it ideal for
loading in cationic MOF pores. The loading of the drug was carried out in ethanol solution
and determined to have a loading capacity of 0.546 g g−1. The drug demonstrated a more
efficient release in PBS of pH 5.4 compared to PBS of pH 7.4. This displays a DDS that is
pH-responsive and a drug release controlled by the anionic PBS and drug anions, as shown
in Figure 9b [183].

5.1.3. Magnetically Responsive BioMOFs

Magnetic-responsive DDSs work under the influence of a magnetic field and can be
used for magnetic targeting, MRI, magnetic separation and magnetic
hyperthermia [166,184,185]. In 2019, Chen et al. constructed a magnetic composite for
the simultaneous treatment using magnetic hyperthermia and chemotherapy [186]. ZIF-90
was grown on polydopamine (PDA) coated Fe3O4 NPs to give Fe3O4@PDA@ZIF-90 core–
shell particles with an average size of 200 nm. ZIF-90 was encapsulated with DOX with a
loading efficiency of 80% (160 µg mg−1) due to the porosity and MOF/drug interaction.
The Fe3O4 cores allowed for the localized temperature to reach hyperthermia conditions
under an alternating magnetic field while eradicating tumor cells with an enhanced effi-
ciency. This synergistic effect is a promising form of cancer treatment compared to magnetic
hyperthermia alone, as shown in Figure 10a [186].

Recently, Mukerjee et al. designed a NP composite for theragnostic applications by
doping NaGdF4 with Yb3+ and Er3+ NPs as imaging agents and MIL-53(Fe) as a drug
carrier with FA conjugated on the surface for targeted drug delivery [187]. The nanocom-
posite was loaded with the anti-cancer drug, DOX, displaying a drug loading efficiency
of 16% and drug encapsulation efficiency of 65%. Not only did the NaGdF4:Yb/Er@MIL-
53(Fe)/FA system suppress tumor cell growth and enhanced cancer cellular uptake, it also
showed colloidal stability and enhanced magnetic and fluorescence properties, making it
an ideal candidate for both relaxation times, T1 and T2 MRI contrasting agents, as shown in
Figure 10b [187].
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5.1.4. Temperature-Responsive BioMOFs

The ability of temperature-responsive MOFs to transform upon thermal stimuli while
maintaining its crystalline structural integrity is of particular interest when it comes to
designing drug delivery nanocarriers [180,188]. A temperature would induce a change in
the thermoresponsive material allowing for the release of the drug cargo. Procainamide has
recently been studied for the control release from UiO-66 in a temperature and pH sensitive
environment [189]. The MOF was surrounded with N-isopropyl acrylamide (NIPAM) and
acrylic acid (AA) by post-synthetic modification to give UiO-66-P(NIPAM-AA). PNIPAM
is known for its thermoresponsive properties and its solubility in water at cloud point,
making it useful in DDSs [190]. UiO-66-P(NIPAM-AA) experienced an on/off release when
exposed to variations in pH and temperature. At pH 6.86 or low temperatures (less than
25 ◦C), the polymer composite turned into a coil conformation, allowing procainamide to
be instantly released from the MOF pores. With a pH 4.01 or high temperatures (more than
40 ◦C), the polymer displayed a globular conformation and the release of the drug was
suppressed. Therefore, drug release can be controlled by applying external stimuli (e.g.,
temperature or pH) even after the initial release of the drug from the MOF carrier [189].

Lin et al., synthesized Zn-GA loaded with the anti-cancer drug, methotrexate (MTX) by
combining Zn(NO3)2·6H2O and L-glutamic acid using a one pot synthesis procedure [191].
The loading amount of MTX was estimated by proton nuclear magnetic resonance spec-
troscopy and was determined to have a drug loading capacity of 12.85%. The MTX@Zn-GA
DDS exhibited much lower viability and increased cancer cell death with the introduction
of the drug to PC12 cells. The DDS proved to have controlled release of the drug when
triggered by pH or thermal stimuli without causing a burst release of the drug [191].

5.1.5. Redox-Responsive BioMOFs

Redox concentrations vary between normal human tissue and cancerous tissue with
tumors having a higher concentration due to the presence of reducing agents, such as
glutathione (GSH) [192,193]. Redox-responsive BioMOFs [194,195] can be functionalized
to target the receptor site that is responsible for the cleavage of the disulfide group in
the presence of GSH. Lei and co-workers developed an intrinsic redox-responsive MOF
carrier, MOF-M(DTBA) (M = Fe, Al or Zr) by using iron, aluminum or zirconium as metal
nodes and 4,4′-dithiobisbenzoic acid (4,4′-DTBA) as the organic ligand [196]. DTBA is a
GSH-sensitive organic ligand, which contains a disulfide bond, cleavable by GSH. In this
study, the researchers loaded the drug carrier with the natural polyphenol anti-cancer drug,
CCM producing, CCM@MOF-M(DTBA). The redox-responsiveness of the synthesized NP
was exposed to various concentrations of DL-dithiothreitol (DTT). The results showed
that with an increase in DTT in PBS, the release of CCM from the DDS was much faster
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(Figure 11a). It is clear that the cleavage of the disulfide bond led to a more efficient release
of the drug molecule [196].

Ferroptosis is cell death dependent on iron and the accumulation of toxic lipid perox-
ides (LPOs), usually in tumor tissue. Once GSH is consumed by cells, glutathione peroxide
4 (GPX4) activity is inhibited and the level of lipid oxidation in cells increases accordingly,
which leads to ferroptosis [197–201]. The ability to produce LPOs can lead researchers
into developing effective targeted cancer treatment. Recently, a group synthesized a hy-
brid PFP@Fe/Cu-SS MOF by coordinating the disulfide-modified, phloroglucinol with
Fe3+ and Cu2+ metals [202]. The porous MOF was loaded with perfluoropentane (PFP)
and the nanocarrier was functionalized with PDA and PEG for improved stability and
biocompatibility. The system proved to increase LPO concentration in tumor sites through
redox reactions generating ·OH while inhibiting the activity of GPX4. This prevented
the conversion of toxic LPO to nontoxic hydroxyl compounds in the presence of GSH
(Figure 11b). The inclusion of the copper (II) metal also allows for the PFP@Fe/Cu-SS NP
to be used as an MRI contrasting agent [202].
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5.1.6. ATP-Responsive BioMOFs

Adenosine triphosphate (ATP) provides energy for all living cells by hydrolyzing
phosphoanhydride bonds. Tumor cells contain a higher level of ATP compared to normal
cells, allowing for the use of ATP-responsive DDSs. A number of BioMOFs have been used
for the delivery of protein NPs that provide ATP response [203,204]. A ZIF-90/protein
NP was synthesized using ZIF-90 as a platform for the cytosolic protein delivery and
CRISPR/Cas9 genome editing. With ATP present as stimuli, the NPs were degraded
to release the protein and this was due to the ATP and zinc metal bond of ZIF-90 [205].
The RNase A-NBC (RNase A modified with 4-nitrophenyl 4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl) benzyl carbonate) protein, having cytotoxic effects against cancer cells,
showed enhanced toxicity against HeLa cells when compared to the free protein (Figure 12).
The cell viability was reduced to 15%, suggesting that ATP can promote protein release
from ZIF-90/RNase A-NBC [205].
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5.1.7. Light-Responsive BioMOFs

Photodynamic therapy (PDT) is non-invasive and has been successfully used in treat-
ment and diagnostics. Light-responsive MOFs can be designed to deliver biomolecules
by irradiation of specific wavelengths of light where the photosensitizers (PSs) in target
cells would absorb the light energy and produce reactive oxygen species (ROS) upon
activation and killing the target cells [194,206]. Recently, ZIF-8 NPs were co-encapsulated
with chlorin e6 (Ce6, a potent PS) and cytochrome c (Cyt c, a protein that induces apoptosis)
by Ding et al. [207]. The NP was then functionalized with a hyaluronic acid (HA) shell to
produce Ce6/Cyt c@ZIF-8/HA for targeted cancer cell activity. 1,3-Diphenylisobenzofuran
(DPBF), an ROS probe, was used to determine the ROS generation of Ce6. Along with a
pH-responsive release behavior of the nanocarrier, light irradiation caused Ce6 to produce
ROS for a PDT effect. Furthermore, Cyt c, in the presence H2O2, will generate ROS while
further inducing cell apoptosis (Figure 13). The co-encapsulation of therapeutic protein in
the porous MOF structure allowed for a synergistic mode of cancer therapy that could lead
to further developments in drug delivery design [207].
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6. BioMOFs for Cancer Treatment

MOFs have alleviated most of the limitations observed from traditional nanocarriers by
providing an enhanced targeted delivery and higher accumulation of drug
molecules [208,209]. Especially, MOFs can be tuned to respond to endogenous and external
stimuli, which can be beneficial in cancer treatment and diagnosis. Their porosity and high
surface area, allows for a more efficient loading of biomolecules while providing a low toxic
carrier. Various cancer treatments and/or diagnosis using MOFs include radiotherapy, MRI
imaging, carbon monoxide therapy, magnetic hyperthermia treatment and PDT depending
on the targeted tumor cells. Table 1 outlines the applications of MOF-based nanomaterials
for the treatment of different types of cancers. The following sections illustrate successful
research trials in more details.

Table 1. Applications of MOF-based nanomaterials for the treatment of different types of cancers.

MOF Cancer Targeting
Material/Drug Cell Lines Activity Ref

MIL-101-NH2(Fe) Breast
single gold nanostar

(AuNS), targeted
peptide (ZD2)

MDA-MB-231 MRI, photothermal
therapy [111] (Zhang)

IRMOF-3 Breast curcumin (CCM), folic
acid (FA) MDA-MB-468, 4T1

ROS-mediated DNA,
mitochondrial DNA

damage
[112] (Laha)

MIL-101(Fe) Breast selenium/ruthenium
nanoparticles, siRNAs MCF-7/T

instability of MTs and
disruption of mitotic

spindle formation
[113] (Chen)

UiO-66 Breast
triphenylphosphonium
(TPP), dichloroacetate

(DCA)
MCF-7 mitochondria-targeted [126] (Haddad)
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Table 1. Cont.

MOF Cancer Targeting
Material/Drug Cell Lines Activity Ref

Fe3O4@UiO-66-
NH2

Breast

Fe3O4, DOX, highly
fluorescent carbon

dots (CDs),
nucleolin-binding
aptamer, AS1411

MDA-MB-231 cellular bioimaging
and chemotherapy [200] (Alijani)

ZIF-8 Breast AuNCs, DOX - photothermal therapy,
chemotherapy [131] (Zhang)

ZIF-8 Breast graphene quantum
dots (GQDs) 4T1 Photothermal therapy,

chemotherapy [133] (Tian)

CS/Zn-MOF@GO Breast
chitosan (CS),

graphene oxide (GO),
5-Fu

MDA-MB 231 chemotherapy, pH
sensitive

[193]
(pooresmail)

Zr-Fc MOF
Nanosheet Breast

ferrocene-based MOF
(Zr-Fc MOF)

nanosheet
4T1

Photothermal therapy
and chemodynamic

therapy
[210] (Deng)

MD@Lip Breast dichloroacetic acid,
(DCA), Fe(II) MOF MDA-MB-231 ROS chemotherapy

Zr-based
porphyrinic MOF Breast, Lung

porphyrin, DOX,
indocyanine green

(ICG)
4T1, A549, U87MG photothermal therapy,

chemotherapy [191] (Sun)

ZIF-67 Breast

phosphorus
nanosheets (BPNSs),

ferrocene (Fc), indium
tin oxide (ITO) slice,

methylene blue
(MB)-labeled single-

strand DNA aptamer

MCF-7

aptasensor for
detecting specific

cancer cell-derived
exosomes

[192] (Sun)

porphyrin
Pd-MOF Breast Pd, porphyrin

4T1, HeLa, 4T1
tumor-bearing

mice

hydrogenothermal
chemotherapy,

photoacoustic imaging
[190] (Zhou)

porphyrin MOF Breast
porphyrin-like single
atom Fe(III) centers,

DOX
MCF-7

photodynamic therapy,
photothermal therapy,
photoacoustic imaging

[188] (Wang)

HKUST-1 Breast Cu2+, Vk3 4T1 chemodynamic
therapy [189] (Tian)

Cu-MOF/Ce6 Breast Cu2+, chlorin e6 (Ce6) MCF-7
chemodynamic

therapy, sonodynamic
therapy

[207] (Zhang)

N3-bio-MOF-100 Breast CCM, FA 4T1 chemotherapy, pH
sensitive [202] (Alves)

Tb-MOF-on-Fe-
MOF Breast Bimetallic FeTb-MOFs MCF-7 aptasensor for

detecting CA125 [184] (Wang)

TA-Fe/ART@ZIF-
8 Breast artemisinin (ART),

tannic acid (TA), Fe(II)

MDA-MB-231,
MDA-MB-231

xenograft tumors
chemotherapy [206] (Li)

HA-PCN Breast PCN-224, HA, DOX MCF-7/MDR photodynamic therapy,
chemotherapy [208]
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Table 1. Cont.

MOF Cancer Targeting
Material/Drug Cell Lines Activity Ref

La(III)-MOF Breast, Lung

La(III)-MOF
(fluorophore) Ag NPs

(quencher),
5′-amino-labeled
ssDNA strands

(aptamers)

miRNA-155
(biomarker)

photoluminescence
Quenching-Based

Detection of
miRNA-155

[195]
(Afzalinia)

Fe-MOF@PEM Breast, Lung
polyelectrolyte

multilayer (PEM),
DOX

MCF-7, A549 ROS, chemotherapy [197] (Wang)

Gd-MOF Lung 5-Fu A549 chemotherapy [198] (Wei)

IRMOF-3 Oral
thermosensitive
hydrogel, DOX,
celecoxib (Cel)

KB, SCC-9 Chemotherapy (pH
responsive [185] (Tan)

Fe3O4@C
nanocomposite Oral Fe3O4, DOX CAL27

MRI-guided
magnetic-triggered
hyperthermia and

chemotherapy

[196] (Xiang)

MIL-53(Fe) Hepatic oridonin (Ori) HepG2 chemotherapy [144] (Leng)

DHA@ZIF-8 Hepatic Dihydroartemisinin
(DHA)

HepG2,
SMMC-7721,

BEL-7404
chemotherapy [194] (Li)

Fe2+ doped ZIF-8 Hepatic Ferrous ion, DHA HepG2 chemotherapy [203] (Xiao)

porphyrin MOFs Hepatic FA, gadolinium (Gd) HepG2, L02 photodynamic therapy,
MRI [147] (chen)

MIL-100(Fe) Hepatic - HepG2 chemotherapy [148] (chen)

Gd(BCB)(DMF)](H2O)2 Hepatic 5-Fu Hep-G2 chemotherapy [149] (Sun)

PCN-224 Hepatic Galactose, DOX HepG2, Huh7
Interventional

photodynamic therapy,
chemotherapy

[150] (Hu)

HKUST-1 Pancreatic Fe3O4 nanorods,
Nimesulide - chemotherapy [81] (ke)

Cu-GA NMOF Pancreatic methylene blue Panc-1 cells chemotherapy,
photodynamic therapy [156] (Sharma)

UiO-Cis Ovarian siRNA, cisplatin SKOV3 cells chemotherapy [168] (He)

Ln-ZMOFs Ovarian Terbium (Tb),
Europium (Eu) LPA (biomarker) Biochemical sensing [174] (Zhang)

Zn-MOF Ovarian
dinuclear gold(I)

pyrrolidinedithiocar-
bamato

A2780, A2870cis,
HepG2, U-87 MG,

MDCK
chemotherapy [176] (Sun)

HKUST-1 Ovarian Cu-MOF SKOV3 chemotherapy [199] (Chen)

MIL-88A Ovarian

minicircle DNA (MC),
MC encoding anti-
CD3/anti-EpCAM

bispecific T cell
engager (MC.BiTE)

SKOV3
Bispecific T-cell
engager (BiTE)

immunotherapy
[201] (Zhao)

FeN200@GOx@M Ovarian FeN, glucose oxidase
(GOx) A2780 chemotherapy [204]
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Table 1. Cont.

MOF Cancer Targeting
Material/Drug Cell Lines Activity Ref

UiO-68 Ovarian, Breast

complementary
sequence to

(miRNA)-21 or
miRNA-221, DOX

OVCAR-3, MCF-7 miRNA responsive,
chemotherapy [179] (Chen)

Cu-MOF Ovarian - Hey ovarian cancer
cells

chemotherapy by ROS
accumulation [181] (Li)

NZIF-8 Cervical CCM HeLa, xenograft
tumors of U14 chemotherapy [183] (Zheng)

NH2-MIL-88B (Fe) Cervical Chloroquine (CQ)
cervical carcinoma

cell line HeLa,
A375

nanocatalytic therapy,
ROS-induced

oxidative damage
[186] (Yang)

HKUST-1 Colon, Cervical Cu2+

CT26, CT26
tumor-bearing
mice, human

cervix cancer cells
HeLa

H2S-activated
photothermal therapy,

chemodynamic
therapy

[187] (Li)

[Zn2(L)(H2O)2](DMA)2 Colon SW60 chemotherapy

InIII-MOF Colon 5-Fu SW60 ROS, chemotherapy [205] (Li)

Cr-MOF@CoPc Colorectal cobalt phthalocyanine
(CoPc) NPs CT26 biosensing [209] (Duan)

Ni(II) MOF Leukemia HL-60 ROS, chemotherapy [207] (Xi)

6.1. Breast Cancer

Breast cancer, according to recent statistics is the most prevalent cancer in women
and the second most common overall, ranking the highest in Belgium, Luxembourg and
the Netherlands [210]. Methods of treatment include radiotherapy, hormone therapy,
chemotherapeutics and/or surgery, each having their disadvantages and toxic side effects.
Breast cancer chemotherapeutics, such as Tamoxifen, can cause endometrial carcinoma
and other unwanted side effects [211]. Using MOFs as anti-cancer drug delivery vehicles
would reduce toxic side effects while increasing drug accumulation in breast cancer tissue
compared to the free drug [48,212,213].

Zhang et al. engineered a triple-negative breast cancer (TNBC) targeted peptide
(ZD2) using a single gold nanostar (AuNS) coated within MIL-101-NH2(Fe) producing
a well-defined core–shell AuNS@MOF-ZD2 nanocomposite [32]. These nanocomposites
were utilized for MRI and photothermal therapy (PTT) specifically towards TNBC. The
AuNS@MOF-ZD2 nanoprobes targeted TNBC cells (MDA-MB-231) but not any other
subtypes of breast cancer cells (MDA-MB-435, MDA-MB-468 and MCF-7), making them
promising tools for theragnostic of breast cancers of a certain molecular classification [32].
Laha and co-workers also developed a system to target TNBC both in vitro and in vivo by
encapsulating CCM in FA conjugated IRMOF-3 (IRMOF-3@CCM@FA) [33]. As previously
mentioned in this review, folate receptors are overexpressed in tumor cells, allowing for
the targeted delivery of drug molecules when FA is conjugated on the MOF surface. The
IRMOF-3@CCM@FA system was successful in reducing tumor size in mice and induced
apoptosis by upregulating the pro-apoptotic protein Bax and downregulating the anti-
apoptotic Bcl-2 while upregulating JNK and p53 in human TNBC cells [33].

Microtubules (MT) play an important role in fundamental cellular activities, such
as cell motility, cell division and intracellular trafficking. Evidence shows that a minor
disruption in the dynamics of MTs can arrest cell cycle progression at mitosis and eventually
lead to cell death. Current treatment includes Paclitaxel and Vinca alkaloids, which are
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designed to disrupt microtubule dynamics without changing MT mass for solid tumors
and leukemias [34]. Although these drugs have been proven to be successful, tumor drug
resistance can be caused by the overexpression of the multidrug resistance (MDR) protein,
P-glycoprotein (Pgp, MRP4, ABCB1) and the class III β-tubulin (TUBB3) [214,215]. Breast
cancer, in particular, has an overexpression of TUBB3, which can increase the dynamic
instability of MTs, reducing the effect of taxane drugs [216,217]. The goal, to overcome
this treatment obstacle, is to downregulate the expression of Pgp while disrupting the MT
dynamics for the inhibition of drug-resistant tumor cells. Chen and co-workers developed
a selenium/ruthenium NP-modified MIL-101(Fe) for the delivery of small interfering
RNAs (siRNAs) to inhibit MDR genes while disrupting MT dynamics in MCF-7/T (taxol-
resistance) cells. RNA interference can be useful for gene-targeted therapy because of
its ability to suppress specific sequences in genes. Previous work has shown that the
simultaneous delivery of nucleic acid drugs and chemotherapeutics reversed MDR in
tumor tissue [218,219]. Selenium was chosen for its ability in reducing the incidence of
cancers while having low toxicity [220–223]. In addition, ruthenium was added to the MOF
NP for its anti-metastatic activity as an attempt for enhanced effect and efficiency [224,225].
MIL-101(Fe) was modified with cysteine owing to the strong linkage between Se/Ru
and the MOF structure forming NPs (Se@MIL-101 and Ru@MIL-101). Small interfering
RNA (siRNA)-loaded MOFs provided enhanced protection against MDR and nuclease
degradation while increasing cellular uptake in MCF-7/T cells (Figure 14a). Furthermore,
in vivo studies confirmed the chemotherapeutic efficiency of Se@MIL-101-(P+V)siRNA
NPs by causing significant shrinkage of tumor size, nuclei fragmentation and chromosome
condensation, and induced apoptosis [34].
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bic glycolysis to oxidative phosphorylation [226]. To confirm the targeted delivery to the 
site of action, Haddad et al. modified the particles with a fluorescent pyrene group, 
fTPP@(DCA5-UiO-66), for imaging and tracking (Figure 14b). It was reported that the re-
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More recently, researchers designed a mitochondria-targeted MOF that tested to
increase the efficacy of the anti-cancer drug, dichloroacetate (DCA) when compared to
the free drug [35]. Given that the mitochondria play an important role in oncogenesis,
targeting it with a triphenylphosphonium (TPP) conjugated MOF would localize the DDS.
Zirconium-based MOF, UiO-66, was conjugated with TPP and loaded with DCA, which
inhibits pyruvate dehydrogenase kinase (PDK), shifting cancer cell metabolism from aerobic
glycolysis to oxidative phosphorylation [226]. To confirm the targeted delivery to the site of
action, Haddad et al. modified the particles with a fluorescent pyrene group, fTPP@(DCA5-
UiO-66), for imaging and tracking (Figure 14b). It was reported that the required dose of
the DCA5-TPP5-UiO-66 DDS was reduced to less than 1% when compared to the free drug
(10%) [35].
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Photodynamic therapy (PDT) involves three key components: (1) light (laser), (2) tis-
sue oxygen and (3) the photosensitizer (PS) [227]. When the PS is illuminated using
the appropriate wavelength, it is able to transfer the absorbed photon energy to oxygen
molecules, generating reactive oxidative species (ROS) leading to cell death and tissue
destruction [228,229]. Gold nanoclusters (AuNCs), as inorganic PSs, have been used in
PDT, but due to their short circulation in the bloodstream their application is limited. To
overcome this hurdle, Zhang et al. developed a stimuli-responsive ZIF-8 encapsulated
with AuNCs and loaded with the anti-tumor drug, DOX to obtain AuNCs@MOF-DOX
nanoprobes for breast cancer treatment. The structure of ZIF-8 degraded when exposed to a
microenvironment with pH 5.5, releasing about 77.1% of DOX. The simultaneous treatment
of DOX and PDT, displayed almost complete tumor inhibition and only partial inhibition
when treated individually [39]. PDT using photo absorbers located in tumors can also be
used to convert near-infrared (NIR) energy into heat, causing irreversible cellular damage
leading to tumor eradication [230]. Tian et al. functionalized ZIF-8 with graphene quantum
dots (GQDs) and encapsulated the carrier with the anti-cancer drug, DOX, using a one-pot
synthesis method [40]. GQDs exhibit good NIR absorbance, high photothermal conversion
efficiency, excellent thermal conductivity and low toxicity [231–233]. The ZIF-8/GQD mul-
tifunctional NPs were able to generate heat caused by NIR irradiation while also displaying
a pH-responsive release of DOX under acidic conditions in breast cancer cells, 4T1 cells.
The system exhibited a synergistic effect in cancer therapy and is a promising tool for future
drug delivery design, as shown in Figure 14c [40].

6.2. Lung Cancer

According to the World Health Organization, lung cancer was the most common cause
of cancer death worldwide in 2020 with around 1.8 million deaths [234]. Risk factors include
environmental, lifestyle and occupational exposures with cigarette smoking being the lead
cause of the deadly cancer [235]. About 16% of cases are detected before malignancy occurs
with most detected during malignant stages [236]. Therefore, the development of a more
complex nanocarrier with better diagnostic and therapeutic efficacy is needed [237,238].
Recently, Wang et al. modified a Fe-MOF system with a cationic polymer made from methyl
viologen and polyallylamine hydrochloride (MV-PAH) and tested its effect on A549 lung
cancer cells [53]. Methyl viologen, a bipyridyl herbicide, have genotoxic and cytotoxic
effects due to its ability to generate ROS [53]. With the pH-responsiveness of the Fe-MOF
system, the encapsulation of DOX and polyelectrolyte multilayer (PEM) coating, it was
possible to successfully synthesize DOX@Fe-MOF@PEM NPs. The uptake of the NPs by
A549 cells was successful and explained by the effective encapsulation of DOX due to the
pH-sensitivity of the PEM coating. The amount of ROS generation in the cancer cells was
30-fold that of the control group and 8.29 fold that of the free drug alone. The DOX@Fe-
MOF@PEM system induced higher apoptosis (62.9%) in A549 cells when compared with
the Fe-MOF (3.34%), the free drug (22.39%) and DOX@Fe-MOF (39.79%) alone. These
results prove the strong synergistic effect of the drug, Fe-MOF and PEM [53].

6.3. Liver Cancer

Hepatocellular carcinoma (HCC) and pancreatic ductal adenocarcinoma (PDAC) are
the most deadly forms of cancer with the shortest life expectancy after diagnosis [239].
HCC is the most common primary cancer of the liver and the fastest rising cause of cancer
related deaths in the US and second leading cause of cancer deaths in East Asia and Sub-
Saharan Africa [240,241]. Both cancers are mostly inoperable and the primary treatment
is chemotherapy or palliative procedures [239,242,243]. There have been limitations with
targeted therapy and the only FDA approved drug, Sorafenib, is for the treatment of ad-
vanced HCC cases. Sorafenib, a protein kinase inhibitor, blocks vascular endothelial growth
factor and platelet-derived growth factor receptors [244,245]. The epidermal growth factor
(EGF) receptor kinase inhibitor, Erlotininib, is also used in conjunction with Gemcitabine
to modestly improve the life expectancy in a sub-group of patients [246]. To overcome
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the hurdles associated with traditional chemotherapeutics, researchers are focused on
developing combined cancer treatments to downregulate MDR, increase drug efficacy and
reduce toxic effects.

Several BioMOFs have been explored as drug delivery vehicles for the treatment of
HCC [247–249]. Leng et al. encapsulated the ent-kaurene diterpenoid compound, Oridonin
(Ori), in MIL-53(Fe) for the delivery in human liver cancer cells, HepG2 [59]. Although
possessing strong anti-cancer activity, Ori is moderately hydrophobic, chemically instable
and has a short half-life [250,251]. Using the flexible, mesoporous and biocompatible MIL-
53(Fe) would help alleviating the challenges of delivering the free drug on its own. The
drug loading capacity was determined to be 56 wt% using a solvent diffusion method and
left for 2 to 4 days at room temperature. The drug release was carried out in PBS pH 5.5
(91.75%) and pH 7.2 (82.23%) on the seventh day. Ori@MIL-53(Fe) showed inhibition of
HepG2 cell proliferation at 28–57 µg/mL (equivalent to 15–30 µg/mL of free Ori), as shown
in Figure 15a.
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For an enhanced targeted delivery and improved pharmacokinetics, Chen and co-
workers synthesized a Gd-porphyrin NMOF with the conjugation of FA to produce FA-
NPMOF [62]. FA is used as a targeting ligand for specific drug delivery in tumor tissue
while porphyrin MOFs work as PSs for their use in PDT. The addition of Gd to the nanos-
tructure will provide the combination of imaging and therapy owing to Gd3+ ions having
long electronic relaxation times. The study was conducted using HCC cells in krasG12V

zebrafish with DOX as the model drug for drug delivery. According to the MRI study, the
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T1-weighted signals were enhanced when FA-NPMOF dosage increased with no malforma-
tions observed. The tumor targeting effect of FA-NPMOF NPs on HCC-bearing krasG12V

zebrafish was determined by treating the cells with 200 µg/mL for 96 h and observing
the fluorescence signal. A gradual increase in fluorescence occurred during the first 48 h
suggesting that the NPs were specially delivered to HCC for that time period. There was
also a noticeable shrinkage in tumor size with a tumor volume of around 23 mm3 in the
FA-NPMOF/PDT group vs. 48 mm3 in the FANPMOF group, concluding the significance
of using PDT in cancer treatments [62].

More recently, MIL-100(Fe) was synthesized by solvothermal method and tested on
two types of hepatocytes: non-cancerous (HL-7702) and cancerous (HepG2) to determine
the biocompatibility and safety of the MOF [63]. MTT assays on various concentration of
MIL-100(Fe) on HL-7702 cells revealed a concentration less than 80 µg/mL was nontoxic
with a cell viability greater than 85%. When the concentration was increased to 160 µg/mL,
LDH was released indicating that the cell membrane was compromised and therefore, toxic
to HL-7702 cells. With human liver cancer cells, Hep-G2, the cell viability was greater than
91% when treated with various concentrations of MIL-100(Fe), revealing a high tolerance up
to 160 µg/mL. The study proved the use of MIL-100(Fe) as potential drug carriers in HCC
treatment [63]. Sun and co-workers loaded a Gd(III) MOF carrier, [Gd(BCB)(DMF)](H2O)2,
with an anti-cancer drug (5-FU) and evaluated its activity on both cell lines (HL-7702 and
Hep-G2) [64]. The 5-FU-loaded MOF had a drug uptake of 36.4% and stimuli dependent
release in an acidic cancer microenvironment. Furthermore, the drug-loaded carrier showed
anti-cancer activity against HCC [63].

In 2020, Hu and co-workers synthesized a photosensitive porphyrinic galactose-
modified MOF encapsulated with the anti-cancer drug, DOX (DOX@Gal-PCN-224) for the
synergistic interventional PDT and chemotherapy using HCC cells and tumor tissue [65].
Galactose can target asialoglycoprotein receptor (ASGPR), which is expressed on the sur-
face of liver cancer cells, enhancing the cellular uptake of the NP [252]. The Dox loading
efficiency was determined to be around 14% while release studies revealed a 16% release
of the drug in PBS (pH = 7.4) compared to an impressive 65% in a more acidic environ-
ment (pH = 5.6). Targeted cellular uptake was determined using confocal laser scanning
microscopy and flow cytometry analysis. HepG2 and Huh7 cells exhibited significant
fluorescence indicating active targeting using DOX@Gal-PCN-224 toward ASGPR+ cells.
In vivo studies proved the DOX@Gal-PCN-224-RhB tumor targeting ability owing to the
higher fluorescence intensity in tumor tissue compared to other organs. As for the com-
bined chemotherapy and PDT effect on tumor growth inhibition, there was a noticeable
increase (>40%) with the group treated using combination therapy, demonstrating the
potential treatment for hepatocellular carcinoma, as shown in Figure 15b [65].

6.4. Colon Cancer

MOFs have also been used as cytosensors to detect colon (CT26) cancer
cells [72,253–255]. Researchers created a nanohybrid nanoparticles by combining a Cr-
based MOF (Cr-MOF) with cobalt phthalocyanine (CoPc). The idea of combining MOFs
with metal nanoparticles can enhance the electrochemical features of the MOF and can
be used in bio-sensing [256,257]. The early detection of colon cancer is paramount when
treating patients as it is the third most prevalent cancer and has contributed to a high
number of cancer-related deaths [258]. The Cr-MOF@CoPC cytosensor developed by Duan
et al., demonstrated a higher sensing sensitivity towards CT26 cells when compared to the
Cr-MOF and CoPc alone [72]. The low limit of detection in CT26 cells was 36 cells mL−1

and 8 cells mL−1 for electrochemical impedance spectroscopy (EIS) and differential pulse
voltammetry, respectively. These values were compared with the detection limit in human
normal L929 cells, which showed no significant EIS signals, proving the selectivity of the
MOF towards CT26 cells.

A porous In(III)-based BioMOF, [In(Hpbic)(pbic)](DMF)3, was prepared using solvother-
mal synthesis with 2-(pyridin-4-yl)-1H-benzo[d]imidazole-5-carboxylic acid (H2pbic) as
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the organic linker for the treatment of SW60 colon cancer cells [69]. The nontoxic MOF
was loaded with 36.2% of 5-FU and displayed a 73% cumulative release up to 192 h. Cell
Counting Kit-8 assay revealed that the BioMOF system successfully reduced cell viability
and proliferation in SW60 cells. Furthermore, the encapsulated MOF increased intracellular
ROS levels with 65 and 96% of apoptosis at 1× and 3× IC50, respectively. Tumor volume
was also inhibited in mice transplanted with SW60 colon cancer cells when treated with the
5-FU@[In(Hpbic)(pbic)](DMF)3 system [69]. More recently, Lv and coworkers synthesized
an Er(III) MOF, [Er3(bpydb)3(HCOO)(OH)(H2O))]·6H2On, using a rigid tripodal nitrogen-
containing heterotopic ligand 4,4′-(4,4′-bipyridine-2,6-diyl) dibenzoic acid (bpydbH2) for
the inhibition of Caco-2 colon cancer cells [70]. The Er(III) based MOF showed a signifi-
cant decrease in cell viability, while the metal ion and ligand had no effect on the Caco-2
cancer cells.

Endogenous H2S is found to be overexpressed in colon and ovarian cancers resulting
from the catalysis of cysteine related enzymes [259–263]. When exposed to endogenous
H2S, HKUST-1 NPs produce NIR-activatable copper sulfide for the synergistic PTT and
CDT of colon cancer [71]. Researchers treated CT26 colon cancer cells with the Cu-based
MOF as a stand-alone treatment. Not only can HKUST-1 be converted to photoactive
copper sulfide for PTT, the MOF NP also exhibits a conversion of H2O2 in cancer cells
into a more toxic ·OH for CDT [71,264,265]. CT26 colon cancer cells exhibited a gradual
reduction in cell viability with increasing concentrations of HKUST-1.

6.5. Pancreatic Cancer

Pancreatic cancer is the seventh leading cause of cancer related deaths worldwide
and the fourth in developed countries [266]. It remains one of the most lethal malignant
neoplasms with over 400,000 new cases globally and a 5-year survival rate at only 9%.
Several BioMOFs have been investigated as DDSs for the targeted delivery of drugs for
the treatment of pancreatic cancer [267–269]. HKUST-1 was incorporated with Fe3O4
nanorods to produce magnetic MOF nanocomposites for the targeted drug delivery of
Nimesulide in pancreatic cancer cells [66]. Nimesulide, a selective cyclooxygenase-2 (COX-
2) inhibitor, exhibits chemopreventive activity by blocking COX-2, thereby decrease the
concentration of prostaglandins inside tumor tissue. It has been shown to protect against
N-nitrosobis(2-oxopropyl)amine-induced pancreatic tumors in hamsters and the post-
initiation development of squamous cell carcinomas in 4-nitroquinoline-1-oxide-induced
rat tongue carcinogenesis [270–272]. The Nimesulide carrier system demonstrated magnetic
properties while showing a drug uptake of up to 0.2 g g−1. The system is a promising
anti-cancer treatment as the drug displayed a sustained release for up to 11 days [66].

More recently, gallic acid (GA), an anti-oxidant and anti-cancer agent was used for
the synthesis of a copper-gallic acid MOF (Cu-GA BioMOF) and post-synthetically loaded
with the PS, methylene blue (MB), for PDT using Panc-1 cells [67]. The copper BioMOF
framework was determined to have a BET specific surface area of 172 m2 g−1 and an
average pore diameter of 2.2 nm. The loading efficiency of MB in the Cu-GA BioMOF
reached 2 wt% owing to the hydrogen bonding between the nitrogen or sulfur groups on
MB and the H+ of GA. There was a higher drug release of GA and MB (69% and 94%)
when placed in PBS (pH 7, pH 4) making it ideal for the drug delivery in tumor tissue.
The hydrophilic nature of GA will reduce its uptake into tumor tissue, whereas the Cu-GA
BioMOF exhibits lipophilicity giving it the ability to interact with the cell membrane of
tumor cells more readily than the free GA (Figure 16). According to the MTT assay using
PANC-1 cells, Cu-GA BioMOF induced cytotoxicity (IC50 = 50 µg/mL) more efficiently
than the free GA (IC50 = 25 µg/mL). The MB-loaded Cu-GA BioMOF induced a significant
tumor growth inhibition in rats, proving its synergistic PDT and chemotherapeutic effects
in pancreatic cancer cells [67].
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6.6. Bladder Cancer

Bladder cancer occurs on the bladder mucosa when the cells’ DNA begins to mutate.
The different types of bladder cancer include urothelial carcinoma, squamous cell carcinoma
and adenocarcinoma. These types are differentiated by the type of cells that are affected.
Risk factors include smoking, age, sex, chemical exposure, chronic bladder inflammation
and family history [273]. CYLD (CYLD Lysine 63 Deubiquitinase) is a gene that plays a
negative regulatory role in bladder cancer and the loss of CYLD expression can be observed
in different types of human cancer [73,274]. MiR-181b (microRNA 181b), an RNA gene, has
been shown to regulate the expression of CYLD, leading to the apoptosis of certain cancer
cells [275].

Several types of BioMOFs have been tested as DDSs for the treatment of bladder
cancer [276,277]. Wu et al. prepared a MOF based on Zn(II) via the rigid V-shaped ligand
2,6-di(2′,5′-dicarboxylphenyl)pyridine (H4L) with Zn(NO3)2·6H2O giving the complex,
[Zn3(L)(OH)2(H2O)4](DMF)5 [73]. The BioMOF complex was observed for the detection
of miR-130 and CYLD and their roles in the progression and downregulation of bladder
cancer. The group exhibited a decrease in miR-130 and an increase in CYLD gene expression
when treated with [Zn3(L)(OH)2(H2O)4](DMF)5. These results indicate that the MOF
compound can induce programmed cell death by regulating the miR-130 and CYLD genes
in bladder cancer.

6.7. Ovarian and Cervical Cancer

Ovarian cancer (OC) is the eighth most commonly occurring cancer in women and
the deadliest among gynecological patients due to the asymptomatic nature of the dis-
ease [278,279]. Patient prognosis has not improved much compared to other cancers due to
the resistance of epithelial ovarian cancer to platinum based chemotherapy [280]. Ovarian
cancer patients are usually diagnosed with stage III and stage IV because of late detection
and poor screening tests [281,282]. Current advanced ovarian cancer treatment involves a
combination of surgical cytoreduction and chemotherapy [283]. The goal is to overcome
drug resistance while using new imaging techniques and contrasting agents for early diag-
nosis and targeted delivery towards ovarian cancer cells [284]. Silencing genes via siRNA,
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has been used in combating resistant cancers and can reverse cisplatin (Cis) resistance in
ovarian cancer [285–288].

Researchers have recently considered several BioMOFs for the encapsulation of drugs
aimed at the treatment of OC [289,290]. He et al. encapsulated a UiO NMOF with siRNA
and the anti-cancer drug, Cis, for the co-delivery in human ovarian cancer cells, SK-OV-
3 [74]. The nanocarrier protects the siRNA from nuclease degradation allowing for an
increased cellular uptake while promoting release from endosomes for the silencing of
MDR genes in OC cells. UiO-Cis exhibited a 12.3 wt% drug loading capacity determined
by inductively coupled plasma mass spectrometry. Dynamic light scattering measurements
increased after the loading of siRNA confirming its presence in the DDS. There was a much
higher siRNA/UiO-Cis cellular uptake compared to the free siRNA solution confirmed by
confocal laser scanning microscopy with red fluorescence in the cytoplasm of SK-OV-3 cells.
The nanosystem was successful in the knockdown and reversal of three MDR- relevant
genes (survivin, Bcl-2 and P-gp) with IC50 decreasing by more than 11-fold by co-delivering
pooled siRNAs and cisplatin in a NMOF carrier, as shown in Figure 17a [74].
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Sun et al. reported a dinuclear gold(I) pyrrolidinedithiocarbamato (PDTC) complex
with a bidentate carbene ligand for the cytotoxic activity towards Cis-resistant ovarian
cancer cells, A2780cis [76]. PDTC, a dithiocarbamate, has been proven to exhibit cytotoxic
and antiangiogenic activities [291]. Furthermore, metal-based dithiocarbamato complexes
have been proven to have anti-cancer potencies comparable to Cis [292]. Zn-based BioMOF
(zinc(II), adenine and a BTC linker was used as a carrier for the uptake and release of dinu-
clear gold(I) pyrrolidinedithiocarbamato complex. The Zn-MOF complex was successful in
killing A2780cis cancer cells with a decreased cell survival by 50% when the co-incubation
period was greater than 24 h. The antimigratory activity of the Zn-BioMOF complex was
exhibited using a transwell antimigratory assay where the Zn-MOF complex effectively
inhibited A2870cis OC cells, as shown in Figure 17b [76].

Lysophosphatidic acid (LPA), a bioactive phospholipid, causes the proliferation of
cancer cells with elevated levels in plasma, suggesting that it plays an important role in
the pathophysiology of cancer cells [293,294]. LPA has also been shown to alter receptor
expression in ovarian carcinogenesis and metastasis when compared to other epithelial
tumors; therefore, the early detection of LPA levels in plasma could aid in early diagnosis
and treatment of the disease [295–297]. Zhang et al. constructed a three mixed-crystal
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isostructural MZMOFs with variable Eu:Tb stoichiometry for the detection of LPA, the
biomarker for OC [75]. Lanthanide-MOFs exhibit luminescent properties associated with
those of lanthanide cations, which can be tuned by host-guest chemistry for the chemical
sensing of LPA [298]. MZMOF-3 (Eu0.6059Tb0.3941-ZMOF) was successful in the detection of
LPA in the presence of other major compounds in the blood plasma making it a promising
biochemical sensing tool, as illustrated in Figure 17c [75].

Recently, Chen et al. loaded a nucleic acid functionalized UiO-68 with DOX for the
unlocking and release of the anti-cancer drug towards OVCAR-3 ovarian cancer cells [80].
The nucleic acid includes a base sequence that is complementary to the miRNA-221, a
specific biomarker for ovarian cancer cells, inducing the ‘un-locking’ of the BioMOF carrier
for targeted delivery of DOX [299]. The research revealed the enhanced release of DOX from
the carrier with increased concentrations of miRNA-221, proving its unlocking capabilities
in target tissue when exposed to exonuclease III. Upon treatment with the DOX-loaded
miRNA-221-responsive NMOFs, OVCAR-3 cells exhibited a 50% decrease in cell viability,
displaying cytotoxicity towards OCCAR-3 ovarian cancer cells [80].

More recently, a Cu(II)-based BioMOF, [(Cu(L)2(H2O)2](DMF)4)n (L = 3-(1H-pyrazol-
4-yl)pyridine) was studied for its inhibitory effect on Hey ovarian cancer cells [81]. MTT
assay, CCK-8 proved the anti-cancer activity of the MOF system with an IC50 value
2.81 ± 0.17 µg/mL. The system induced cell apoptosis in Hey cells by increasing ROS
accumulation. The treatment was dose-dependent, meaning that the level of ROS accumu-
lation increased significantly with increased concentrations of the Cu-BioMOF.

Cervical cancer is the fourth most common gynecologic cause of cancer with about
99% of cases linked with high-risk human papillomaviruses (HPV). Early diagnosis and
treatment can lead to very successful eradication of the cancer [300,301]. BioMOFs have
been also investigated as DDSs in this regard [302,303]. Zheng and co-workers synthesized
a CCM-loaded nanoscale ZIF-8 (CCM@NZIF-8) NP to evaluate the antitumor effect on
xenograft tumors of U14 cervical cancer [83]. The CCM@NZIF-8 NPs exhibited a drug
encapsulation efficiency of 88.2% and a tumor inhibitory rate of 85% making it an ideal,
biocompatible drug delivery carrier. The NPs were also proven to be highly stable when
placed in methanol solution, PBS and fetal calf serum solutions as the hydrodynamic
parameters did not change significantly. TGA was also used to measure the stability of the
NP, resulting in the structure breaking down at 547 ◦C. Furthermore, CCM@NZIF-8 had a
higher inhibition rate and enhanced cytotoxicity in HeLa cells when compared to the free
CCM due to the effective endocytosis by the cells, as shown in Figure 17d [83].

6.8. Oral Cancer

Traditional single cancer therapy has limitations and harmful side effects, owing to
the need of multimodal systems for a more effective therapy [304]. BioMOFs and their
nanocomposites have been investigated in this regard [305,306]. Xiang et al. synthesized
magnetic MOF NPs with porous carbon (Fe3O4@C) for the combined cancer therapy
and magnetic-triggered hyperthermia in human oral squamous cell carcinoma cell line,
CAL27 and CAL27 tumor-bearing mice [58]. The NPs were further coated with PVP and
encapsulated with DOX to give Fe3O4@C-PVP@DOX nanocomposites. About 70% of DOX
was adsorbed and loaded in the porous MOF NPs with only 4% being released after 6 h at
pH 7.4, indicating the effectiveness of the drug loading. The DOX release increased when
an alternating magnetic field (AMF) was added, proving that the NPs are magnetically
triggered. Furthermore, the NPs were incubated with CAL27 cells followed by magnetic
hyperthermia (MHT) at 43 ◦C where more DOX was released, indicating the AMF-triggered
heat leads to the accumulation of the drug towards cancer cells [58].

Tan and researchers developed a hybrid nanocomposite (DOX/Cel/MOFs@Gel)
by integrating IRMOF-3 with a thermosensitive hydrogel, poly(D,L-lactide-coglycolide)-
poly(ethylene glycol)-poly(D,L-lactide-coglycolide) triblock copolymers (PLGA-PEG-PLGA)
where DOX and celecoxib (Cel) were coloaded for a localized treatment in KB and SCC-9
oral cancer cells [57]. The group compared the nanocomposite along with the free drug,
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DOX-BioMOFs and DOX/Cel-BioMOFs. DOX exhibited more than 80% release in an
acidic environment (pH ~ 6.5) with a sustained release due to the protective layer from the
IRMOF-3. The introduction of the thermosensitive hydrogel decreased the burst release
of Cel from the nanocomposite and about 66% of the drug experienced a cumulative re-
lease after 11 days in the acidic medium, which could be due to the hydrophobic nature
of the gel [57]. The cytotoxicity studies on KB and SCC-9 oral cancer cells revealed that
DOX/Cel-BioMOFs had the highest amount of cell death. The thermosensitive gel added
an extra layer for the drug to be able to break through, leading to a weakened cell killing
effect. However, the DOX/Cel-BioMOFs@Gel nanocomposite exhibited the most tumor
ablation in nude mice bearing SCC-9 xenografts. This could be due to the steady drug
release and the combined effect of the DOX and Cel, indicating a localized treatment for
oral cancer patients.

6.9. Brain Cancer

Brain cancer is one of the most aggressive cancers due to late diagnosis and the inability
of DDSs being able to pass through the blood–brain barrier (BBB). NPs have tremendously
improved early and accurate diagnosis while providing enhanced sensitivity and targeted
drug delivery [307–311]. Researchers studied the effect of a planar MOF-based composite
on U87MG brain cancer cells and U87MG tumor-bearing nude mice [85]. They seeded Au
NPs on Zr-based porphyrinic BioMOF nanosheets and loaded them with L-Arg for PDT and
gas therapy [85]. The Au NPs were added for their ability to catalyze glucose into H2O2 and
gluconic acid in the presence of O2 [312,313]. This generated H2O2 can metabolize L-Arg to
L-citrulline, leading to NO generation [314–316]. NO could inhibit cancer growth by causing
DNA damage, the nitrosylation of certain enzymes or mitochondrial ablation [317–319].
A hydrogen peroxide assay kit was used to measure H2O2 generation and the results
indicated that the levels of H2O2 decreased due to the consumption by L-Arg. Griess assay
revealed that NO generation was proportional to L-Arg loading and that the designed MOF
composite (GMOF-LA) could produce NO in the presence of converted H2O2, leading to an
enhanced tumor suppression by means of a biocatalytic cascade [85]. The cellular uptake
of the MOF composite in U87MG human glioblastoma cells increased gradually with a
maximum internalization reaching 12 h. Furthermore, the GMOF nanosheets showed little
to no toxicity against U87MG cells when compared to the combination treatment system
(GMOF-LA + laser). The cell viability decreased to 18.6% when the MOF composite was
used in conjunction with PDT and NO-mediated gas therapy (GMOF-LA). Finally, in vivo
studies revealed the accumulation of GMOF-LA nanosheets in U87MG tumor-bearing mice
reaching a maximum value of 4.45 ± 0.70%ID g−1, owing to the enhanced permeability
and retention effect [85]. This multifunctional MOF composite can pave the way for future
developments using nanoreactor-mediated therapy.

6.10. Blood Cancer

Leukemia, a cancer of blood tissue, occurs when bone marrow overproduces white
blood cells, causing an abnormal amount white blood cells leading to overall malfunction.
Risk factors include genetics, smoking, history of cancer treatment, chemical exposure and
family history [320]. Traditional DDSs used for treating leukemia revealed some challenges
such as stability, drug leakage and toxicity [321–324].

A porous MOF was synthesized by reacting 3-phenylpyridine polycarboxylic (H3L)
ligands with Ni(NO3)2·6H2O giving, (Me2NH2)[Ni3(L)2(µ3-OH)(H2O)]·2DMF [86]. DCFH-
DA detection kit assay was used to determine ROS production of the MOF compound in
HL-60 promyelocytic leukemia cells. The results revealed ROS accumulation in a dose-
dependent manner, with 58.70% and 90.02% at 1× IC50 and 3× IC50, respectively. The
compound was further tested on HL-60 cells using the MTT assay. The results showed
significant reduction in cell colonies and cell viability with IC50 of 2.13 ± 0.07 µg/mL,
suggesting the BioMOFs anti-cancer effect without the addition or encapsulation of other
drug compounds.
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7. Conclusions and Outlooks

MOF materials offer great potential in drug delivery and theragnostic applications
due to their high drug loading capacities, ease of functionalization, biocompatibility and
high flexibility. Significant progress has been made using these hybrid systems, not only
as drug carriers but also for magnetophoretic therapy and as diagnostic tools. BioMOFs
synthesized from non-toxic metals and endogenous linkers would further reduce unwanted
side effects while improving efficacy of therapeutic agents. Additionally, using metals, such
as copper and zinc, can give the DDS the added benefit of having antimicrobial properties.
The functionalization of the MOF particles with polymer and lipid bilayer coatings have
improved pharmacokinetics tremendously while the incorporation of siRNA in the carrier
can overcome MDR in diseases that are drug resistant. The various methods of synthesizing
BioMOF composites (solvothermal, sonochemical, reverse-phase microemulsion, etc.) al-
lows for numerous administration routes and formulations [94]. Despite recent advances in
BioMOF systems and their use as drug delivery carriers, further in vivo studies need to be
conducted to understand the metabolic mechanisms and the pharmacokinetics of BioMOFs
in various organs and tissues and to dissect the degradation pathway of the MOF structure
and the kinetics of drug delivery. Our group has recently observed that the stability of
some BioMOFs in PBS is poor when compared to RPMI culture media. It is critical to dive
deeper in studying the decomposition and stability of MOF materials as this will give us
more insight on the accumulation of the nanocarrier systemically. More recently, BioMOFs
have been used as stand-alone treatment against certain cancers. A treatment plan using a
biocompatible and biodegradable MOF without the need of chemo drugs will provide a
much safer option for cancer patients.
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