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Abstract: BiFeO3–based ceramics possess an advantage over large spontaneous polarization and
high Curie temperature, and are thus widely explored in the field of high–temperature lead–free
piezoelectrics and actuators. However, poor piezoelectricity/resistivity and thermal stability of
electrostrain make them less competitive. To address this problem, (1 − x) (0.65BiFeO3–0.35BaTiO3)–
xLa0.5Na0.5TiO3 (BF–BT–xLNT) systems are designed in this work. It is found that piezoelectricity
is significantly improved with LNT addition, which is contributed by the phase boundary effect
of rhombohedral and pseudocubic phase coexistence. The small–signal and large–signal piezo-
electric coefficient (d33 and d∗33) peaks at x = 0.02 with 97 pC/N and 303 pm/V, respectively. The
relaxor property and resistivity are enhanced as well. This is verified by Rietveld refinement, dielec-
tric/impedance spectroscopy and piezoelectric force microscopy (PFM) technique. Interestingly, a
good thermal stability of electrostrain is obtained at x = 0.04 composition with fluctuation η = 31%

( S′max−SRT
SRT

× 100%), in a wide temperature range of 25–180 ◦C, which is considered as a compromise
of negative temperature dependent electrostrain for relaxors and the positive one for ferroelectric
matrix. This work provides an implication for designing high–temperature piezoelectrics and stable
electrostrain materials.

Keywords: BiFeO3–BaTiO3; piezoelectricity; electrostrain; temperature stability; domain structure

1. Introduction

As a mechanical–electricity conversion functional material, piezoelectric ceramics have
wide applications in the defense, industrial, and medical fields, etc. [1–3]. Due to extraordi-
nary piezoelectric properties and electromechanical coupling effects near morphotropic
phase boundary (MPB), Pb(Zr, Ti)O3–based (PZT) ceramics have been a hot research
topic [4,5]. However, with an increasingly serious environmental concern, lead–based ma-
terials are gradually replaced by lead–free materials. A series of lead–free materials such as
(Bi0.5Na0.5)TiO3 (BNT–) [6–8], BiFeO3 (BF–) [9–11], (K0.5Na0.5)NbO3 (KNN–) based [12,13]
ceramics have been widely developed. For example, Liu et al. reported a non-textured
BNT–based ceramic with a large electrostrain value of ~0.7% at room temperature (RT), but
it exhibited relatively large strain hysteresis and a decrease in electrostrain as temperature
increased [14]; Due to polymorphic phase transition effect in KNN–based ceramics, the
macroscopic performance usually exhibited a temperature sensitivity, although composi-
tionally graded multilayer composite and layered distribution of dopants strategy largely
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alleviated this shortcoming [15,16]. In contrast, BiFeO3–BaTiO3–based (BF–BT) ceramics
show a positive temperature dependence of electrostrain as their high depolarization tem-
perature (Td) [17]. According to first–principles calculations, high spontaneous polarization
and electrostrain are facilitated by the inverse rotation of oxygen octahedron and bismuth
and oxygen hybridization as a result of the huge displacement of Bi3+ and Fe3+ ions [18,19].
However, a high leakage current and oxygen vacancies (V..

o ) concentration is detrimental
to electrical performance [20]. Zhao et al. effectively reduced V..

o by annealing ceramics
in an oxygen atmosphere [21]. In addition, electrostrain of BF–BT–based ceramics at high
temperature are frequently reported. For example, Zheng et al. reported that the unipolar
strain increased from 0.10% at RT to 0.32% at 200 ◦C for Bi(Mg2/3Nb1/3)O3 modified BF–BT
ceramics [22]. Similarly, an electrostrain of Sm–doped BF–BT ceramics increased from
0.28% at RT to 0.52% at 125 ◦C [23]. Although a large electrostrain was obtained at an
elevated temperature, the temperature-sensitive electrostrain performance is unfavorable
for practical applications.

Similar to the thermal fluctuation effect, structural and charge disorder in relaxor
ferroelectrics usually produce a negative temperature dependence of electrostrain [24,25].
Also, an increased concentration of nanodomains in relaxors reduces the domain wall
energy to favor ferroelectric domains switching, which can contribute to a significant
increase in electrostrain [26,27]. Therefore, to obtain electrostrain with high–temperature
stability, we combine the negative temperature stability of relaxors and positive temperature
stability of BF–BT ferroelectric matrix. Also, an end-member La0.5Na0.5TiO3 is reported to
not only increase the relaxor degree, but also reduce dielectric loss [28,29]. Interestingly,
phase and domain structures of BF–BT ceramics are significantly modulated by adding
La0.5Na0.5TiO3 in this work, and high piezoelectricity/resistivity and thermal stability of
electrostrain are obtained. The underlying mechanism is comprehensively analyzed by
Rietveld refinement, Raman, dielectric/impedance spectroscopy, and PFM technique.

2. Materials and Methods

We obtained (1 − x) (0.65BiFeO3–0.35BaTiO3)–xLa0.5Na0.5TiO3 (BF–BT–xLNT,
x = 0~0.06) ceramics by conventional solid–state synthesis using Bi2O3, Fe2O3, TiO2, BaCO3,
La2O3, and Na2CO3. Excessive 2%mol Bi2O3 was added for compensation. All raw materi-
als were mixed with alcohol and ball-milled for 15 h and then calcined at 750 ◦C for 6 h
twice. Before the second ball-milling step, 1% mol MnO2 was added to reduce the leakage
current. Then, powders were mixed with 8 wt.% PVA binder and pressed into the discs
with a diameter of 10 mm. After removing the binder, the discs were sintered at 1040 ◦C for
3 h. For electrical measurements, a silver paste was coated on both sides of the polished
samples and fired at 560 ◦C for 10 min.

The crystal structure was measured by X-ray diffractometer (XRD, Rigaku Smart–lab).
A scanning electron microscope (SEM, Regulus 8230; Hitachi Co., Tokyo, Japan) was used
to observe the sample microstructures. Before observing the microstructure, all sample sur-
faces are polished smooth and hot corroded at 950 ◦C for 30 min. A Raman microscope was
used to acquire Raman spectra (Horiba Jobin–Yvon HR800, France). Dielectric/impedance
properties were acquired by Wayne Kerr 6500B impedance analyzer (Wayne Kerr Electronic
Instrument Co., Shenzhen, China). Polarization hysteresis (P–E) loops and electrostrain
(S–E) curves were measured using a ferroelectric measuring system (Precision LC, Radiant
Technologies, Inc. Albuquerque, NM, USA) at a frequency of 1 Hz. The sample was
poled for 15 min under an electric field (E = 60 kV/cm) at 120 ◦C, and then piezoelectric
coefficients d33 were measured with a quasi-static d33 m (YE2730A, China). The domain
structure was characterized by the PFM technique (Asylum Research).

3. Results and Discussion

Room temperature (RT) XRD patterns of BF–BT–xLNT ceramics (x = 0~0.06) are shown
in Figure 1a–g, respectively. All samples have a pure perovskite structure without a second
phase, indicating that LNT is completely dissolved into BF–BT matrix and forms a solid
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solution. To get an in-depth understanding of phase structure and content evolution with
changing LNT, Rietveld refinement is performed and R3cH (R phase) and Pm3m (Pc phase)
space group models are exploited [30,31]. Low fitted values of Rwp, Rp, and χ2 indicate
that fitting results are reliable. Also, locally magnified (111) diffraction peaks are displayed
in their insets. Obviously, a wide (111) peak for the x = 0 sample indicates the existence
of the R phase. The (111) peak gradually becomes narrow and sharp with an increase in
LNT content, indicating that the R phase is gradually substituted by a Pc phase, and finally
evolves into a single Pc phase at x = 0.05, as displayed in Figure 1h. The refined lattice
parameter is plotted in Figure 1i. Table 1 also shows the lattice parameters and R–factors
obtained by Rietveld refinement for better understanding. Obviously, with LNT addition,
the lattice parameter generally exhibits a downward shift, which is mainly attributed to
smaller ionic radii of Na+ and La3+ (CN = 12, RNa

+ = 1.39 Å, RLa
3+ = 1.36 Å) than that of

Ba2+ and Bi3+ (CN = 12, RBa
2+ = 1.61 Å, RBi

3+ = 1.45 Å) [32].
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Table 1. Refined structural parameters and R–factors for BF–BT–xLNT ceramics.

x Space Group Lattice Parameters Rwp (%) Rp (%) χ2

0 R3cH
Pm3m

a = b = 5.69552 Å, c = 13.97396 Å, α = β = 90◦, γ = 120◦

a = b = c = 4.02774 Å, α = β = γ = 90◦
5.70 4.52 1.31

0.01 R3cH
Pm3m

a = b = 5.68390 Å, c = 13.99490 Å, α = β = 90◦, γ = 120◦

a = b = c = 4.02816 Å, α = β = γ = 90◦
6.07 4.63 1.67

0.02 R3cH
Pm3m

a = b = 5.69602 Å, c = 13.97944 Å, α = β = 90◦, γ = 120◦

a = b = c = 4.02837 Å, α = β = γ = 90◦
6.37 4.81 1.56

0.03 R3cH
Pm3m

a = b = 5.68895 Å, c = 13.96117 Å, α = β = 90◦, γ = 120◦

a = b = c = 4.02695 Å, α = β = γ = 90◦
5.95 4.45 1.47

0.04 R3cH
Pm3m

a = b = 5.69720 Å, c = 13.90696 Å, α = β = 90◦, γ = 120◦

a = b = c = 4.02521 Å, α = β = γ = 90◦
6.13 4.59 1.64

0.05 Pm3m a = b = c = 4.02458 Å, α = β = γ = 90◦ 7.61 5.50 2.44
0.06 Pm3m a = b = c = 4.02355 Å, α = β = γ = 90◦ 7.44 5.30 2.21

SEM images of selected compositions (x = 0, 0.02, 0.06) are displayed in Figure 2a–c.
Clearly, all ceramic grains are uniformly distributed, and there are no obvious pores,
indicating a dense ceramic microstructure. The apparent density gradually decreases
with the addition of LNT, which is determined by a smaller molecular mass of LNT as
compared to BF. The relative density in all compositions surpasses ~95%, which verifies
their high compactness.
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Raman spectra technique is a powerful tool to detect phase transition at short-range
scales, and Raman spectra for BF–BT–xLNT ceramics are performed, as shown in Figure 3a.
Generally, the wavenumber range in 50~1000 cm−1 is divided into three vibrational modes,
namely A–site (50~200 cm−1), B–O bond (200~400 cm−1), and BO6 octahedral vibration
(400~1000 cm−1) [33,34]. To clearly demonstrate vibrational mode changes, raw Raman
spectra are fitted by the Lorentzian function, and a series of deconvoluted Raman peaks
are delineated, as shown in Figure 3b. Here, two representative peaks (G and H bands) are
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selected to analyze the wavenumber and FWHM (full width at half maximum) evolution
to detect phase transition, as shown in Figure 3c,d. Notably, two discontinuous changes
in wavenumber and FWHM are observed (as highlighted by shadow), which strongly
suggests that phase transition occurs [35]. Since the Raman shift is interrelated to crystal
stress and polarization, the first abrupt change of G and H bands probably corresponds to
distorted local stress and the polarization field [36]. With an increase of heterovalent ionic
proportion (Na+ and La3+) and corresponding local random field, the second vibration
change may be related to the ferroelectric-to-relaxor (FR) phase transition, which will be
discussed infra in detail.
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Temperature dependence of dielectric constant (εr) of BF–BT–xLNT ceramics (x = 0~0.06)
at 1 kHz~500 kHz are shown in Figure 4a–g, respectively. For x = 0 compositions, it shows
a relaxor-like behavior near 300 ◦C, which is related to a dipolar relaxation caused by V..

o
hopping [37]. The dielectric drift at high temperatures is caused by a large conductivity due
to an increased V..

o motion, as highlighted in Figure 4a [38]. As x increases to 0.01 and 0.02,
the dielectric peak becomes sharp, and εr at Tm (the temperature for dielectric maxima)
also increases (Figure 4h). This is also observed from an obvious hump at the imaginary
part of the dielectric constant (ε′ ′) curve, as shown in the insets of Figure 4b,c. Notably, the
high–temperature dielectric drift is significantly suppressed, indicating the resistivity is
markedly improved with LNT addition, which is also observed from the dielectric loss
(tanδ) in Figure 4i. As to x = 0.03~0.06, diffusive phase transition and frequency dispersion
are clearly observed, exhibiting a relaxation property [39,40]. The dielectric curves for
x = 0~0.06 samples at 100 kHz are collected in Figure 4h. The peak εr value peaks at x = 0.01
and 0.02 and then sharply decreases for further increasing LNT content, accompanied
by a wide and diffuse dielectric shape. This is more clearly indicated by εr/εm versus
T/Tm curves in Figure 4j. Therefore, an addition of an LNT component first improves the
dielectric performance with an appropriate proportion of R and Pc phase. With an excessive
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LNT content, εr is significantly suppressed with a dominant relaxor Pc phase. In order
to quantitatively describe relaxor properties for this system, two parameters of ∆Trelax
[Tm(100 kHz) − Tm(1 kHz)] and ∆Tspan (temperature span corresponds to εr/εm = 0.8 in
Figure 4j) are adopted [41]. Obviously, ∆Trelax and ∆Tspan exhibit an increasing trend as
LNT content increases, as plotted in Figure 4k. Also, a modified Curie–Weiss law is used

to denote the relaxor degree γ: 1
εr
− 1

εm
= (T−Tm)γ

C (1 ≤ γ ≤ 2), where C is Curie–Weiss
constant, εm is dielectric maxima and the parameter γ is adopted to reveal the relaxor
degree [42,43]. As shown in Figure 4l, γ value steadily increases from 1.73 for x = 0 to
1.91 for x = 0.06 composition. Therefore, an enhanced relaxor properties are obtained with
LNT addition.
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To determine the resistivity and conduction mechanism for BF–BT–xLNT ceramics,
complex impedance spectra (CIS) are measured over 280–380 ◦C with an interval of 20 ◦C,
as shown in Figure 5a–g. All ceramics exhibit a single semicircle complex impedance
shape, which is related to a single relaxation mechanism of bulk response [44]. The data
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are well fitted by two parallel R–CPE equivalent circuits, as shown in the inset of Figure 5e,
which represent the grain boundary and bulk (grain) contributions, respectively. As
known, bulk resistance (Rb) often dominates ferroelectric ceramics, and an extrapolated
intercept on Z′ axis corresponds to Rb in CIS. Obviously, Rb gradually decreases with
increasing temperature, indicating a negative temperature coefficient behavior. The Rb
value is obtained by fitting the experimental CIS, as shown in Figure 5a–g. For a better
understanding, the Rb values are also listed in Table 2. Interestingly, the LNT addition
greatly increases the Rb of the BF–BT matrix (Figure 5h,i), which is consistent with a
depressed tanδ. In addition, bulk conductivity (σb) and activation energy (Ea) are calculated
by the following formulas [45]:

σb =
h

S× Rb
(1)

σb = σ0 exp
(
− Ea

kBT

)
(2)

where h is sample thickness, S is electrode area, kB is Boltzmann constant, and T is the
measured temperature. Figure 5i depicts the σb as a function of inverse of temperature,
and the fitted value of Ea is obtained between 0.93 and 1.24 eV, which is close to the Ea
of V..

o (~1 eV) [46]. Therefore, V..
o dominates the high–temperature conductivity and leads

to a large leakage current, which is mainly due to the volatilization of bismuth and the
reduction of Fe3+ [47].

Polarization hysteresis (P–E) and corresponding current density (J–E) loops of BF–
BT–xLNT ceramics at RT are measured at 1 Hz, as shown in Figure 6a,b. Low satu-
rated/remanent polarization (Pm/Pr) with an incomplete domain switching is observed
for x = 0 composition. Interestingly, for x = 0.01 and 0.02 samples, saturated P–E loops and
a sharp J–E peak are observed, featuring a normal ferroelectric. A sharp J–E peak usually
indicates strong ferroelectricity with a fast domain switching behavior under E [26]. As to
x = 0.03 and 0.04, splitting J–E peaks are observed, indicating an emergence of an interme-
diate state with nonergodic/ergodic and ferroelectric phase coexistence. Meanwhile, Pm,
Pr, and coercive field (Ec) decrease strikingly, as plotted in Figure 6c. Slant P–E loops and
J–E platform with low Pr and Ec value indicates a pure relaxor phase for x = 0.05 and 0.06
samples, which also accords with pure Pc phase for both compositions. In addition, bipolar
and unipolar electrostrain (S–E) curves of BF–BT–xLNT ceramics are shown in Figure 6d,e,
respectively. For x ≤ 0.03 samples, typical butterfly-shape bipolar S–E curves are present,
and they gradually evolve into a sprout–shape [decrease in negative strain (Sneg)] with
increasing LNT content. In general, larger Sneg indicates more non-180◦ domain switching
under E, and this predicts improvement of piezoelectric performance. For x = 0.04~0.06
samples, an almost zero–Sneg indicates a gradual FR phase transition. Clearly, positive
strain (Spos) and Sneg peaks x = 0.02 sample, and the normalized d∗33 (Smax/Emax) is calcu-
lated as well, as plotted in Figure 6f. The d33 and d∗33 value simultaneously achieve optimal
value (97 pC/N and 303 pm/V) at x = 0.02, which is contributed by phase boundary effect
with proper proportion of R and Pc phase content. Excessive addition of LNT degrades
piezoelectricity and ferroelectricity and thus d∗33 decreases.

To measure the temperature stability of piezoelectric performance for these composi-
tions, d33 is collected at elevated annealing temperature, as shown in Figure 7a, which is
considered a crucial benchmark for evaluating practical high–temperature performances.
Apparently, x = 0.02 sample not only possesses a peak d33 value but also maintains a wide
temperature span (≤240 ◦C). Also, frequency–dependent εr for poled x = 0.02 sample is also
measured after different annealing temperatures, as shown in Figure 7b. Typical resonance
and anti–resonance peaks are observed for sufficiently poled samples. As the tempera-
ture increases, the peak gradually degrades, indicating depolarization steadily occurs [48].
These peaks dampen gradually and finally vanish as the temperature increased to ~240 ◦C.
This is also indicated by the contour plot, as indicated in Figure 7c. To investigate the
depolarization mechanism on the local structure of representative x = 0.02 and 0.03 ceram-
ics, in situ Raman spectra is performed, as shown in Figure 7d–g. All Raman spectra are
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corrected by equation of Ic(ω) = Im(ω)/[n(ω, T) + 1], where Im(ω) is Raman intensity
and n(ω, T) = 1/

[
exp

(
}ω
kT − 1

)]
is Bose–Einstein temperature factor [49]. The evolution

of wavenumber and FWHM of selected D and G modes are plotted in Figure 7e,f,h,i. The
corresponding discontinuities are highlighted by the shadow. The discontinuity occurs
around Td~240 ◦C and 140 ◦C for x = 0.02 and 0.03 samples, respectively, which indicates
an FR phase transition and also accords with the Td [50].
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Table 2. Resistance value (Ω) of Rb at different temperatures obtained by fitting circuit for BF–BT–
xLNT ceramics.

x/T 280 ◦C 300 ◦C 320 ◦C 340 ◦C 360 ◦C 380 ◦C

0 3230 1721 915 414 149 61
0.01 72,374 31,546 14,720 6758 3391 1753
0.02 177,480 84,263 34,951 15,035 7447 3804
0.03 72,973 37,544 19,766 10,816 6113 3675
0.04 61,701 30,854 16,371 8958 5072 2934
0.05 53,899 27,061 14,361 7946 4521 2632
0.06 54,680 28,263 14,881 8208 4689 2739
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Figure 7. (a) Variation of d33 with thermal annealing at various temperatures for BF–BT–xLNT
ceramics; (b,c) frequency dependent εr evolution for poled x = 0.02 sample at different annealing tem-
perature and corresponding contour plot; (d,g) temperature dependent Raman spectra in 25–360 ◦C
and (e,f,h,i) evolution of wavenumber and FWHM for selected D and G modes for x = 0.02 and
0.03 samples.
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Temperature dependent unipolar S–E curves of BF–BT–xLNT ceramics are shown
in Figure 8a–g. For x ≤ 0.02 compositions with normal ferroelectric character, they ex-
hibit a positive temperature dependence of electrostrain, which mainly originates from
thermally activated domain switching [30,51]. For x = 0.03 composition, the electrostrain
shows a positive temperature dependence below Td~140 ◦C, and finally the electrostrain
performance remains stable. For x = 0.04 sample with less concentration of ferroelectric
domains (R/Pc = 0.25/0.75), the electrostrain shows better temperature stability, which
is probably due to a compromise of thermally activated domain switching and agitation.
As LNT content further increases, the temperature stability of electrostrain is maintained
but strain value decreases. Here, the change rate of electrostrain with temperature is

defined as η = S′max−SRT
SRT

× 100%, where S′max is unipolar electrostrain peak value in the
test temperature range of 25–180 ◦C, SRT is the electrostrain at RT. Evolution of unipolar
S–E with temperature for x = 0~0.06 compositions are summarized in Figure 8h. Obvi-
ously, the x = 0.04 component exhibits a large electrostrain and strong temperature stability
(E = 60 kV/cm). Within 25–180 ◦C, x = 0.04 sample presents a smallest η value of 31%,
indicating an excellent temperature stability of electrostrain performance. A comparison of
electrostrain performance with some representative lead–free piezoelectrics are present in
Figure 8i. The electrostrain value fluctuates more than 100% for some BF–based ceramics,
showing poor temperature stability [22,52,53]. Also, the electrostrain change exhibits a
parabolic–like or monotonous decrease for BNT– and KNN–based ceramics, depending on
phase transition temperature [54,55]. The enhanced temperature stability of electrostrain
performance for x = 0.04 composition is due to the synergistic effect of negative temperature
dependent electrostrain for relaxors with Pc phase and the positive one for ferroelectric ma-
trix with R phase, which strongly suggest the special proportion of relaxor and ferroelectric
phase can produce thermally stable electrostrain performance and thus is highly desirable
for high–temperature of actuator applications.
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It is well known that evolution in macroscopic performance is accompanied by changes
in domain structure, and PFM images can convey domain structure information at a local
scale. Figure 9a–c shows the PFM amplitude images for x = 0, 0.03, and 0.06 samples,
respectively. The highlighted area in the amplitude image represents the piezoelectric
response strength [56,57]. Consistent with the piezoelectric performance, x = 0 and 0.03
samples exhibit large bright areas, whereas x = 0.06 has only few bright areas, as indicated
by the blue dashed box. Also, as shown in phase images of Figure 9d–f, broad strip–like
long–range ordered macrodomains are clearly observed in the x = 0 and 0.03, and thin strip–
shaped short–range ordered nanodomains are observed in the dim area of x = 0.03 and 0.06.
This indicates that both large–sized macrodomains and small–sized nanodomains coexist
in the ferroelectric and nonergodic phase composition (x = 0.03 as an example). For relaxor
phase in x = 0.06, small–sized nanodomains occupy almost the entire area. Therefore, large–
sized macrodomains with nanodomains blending have a positive effect on the piezoelectric
effect, whereas the composition with increased concentration of nanodomains are beneficial
for temperature–stable electrostrain performance.
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4. Conclusions

BF–BT–xLNT (x = 0~0.06) ceramics are obtained via conventional solid-state synthe-
sis. Rietveld refinement, Raman spectroscopy, and dielectric analysis show the system
undergoes from R–to–Pc phase transition that is driven by LNT addition. Dielectric and
impedance spectra show that the addition of LNT reduces the V..

o concentration and greatly
increases the resistivity of BF–BT ceramics. At the same time, the piezoelectric performance
is optimized at x = 0.02 composition (d33 = 97 pC/N), which is contributed by phase bound-
ary effect and enhanced resistivity for efficiently poling. Notably, temperature stability
of electrostrain is obtained for x = 0.04 composition, which is due to the synergistic effect
of negative temperature dependent electrostrain for relaxor nanodomains with Pc phase
and the positive one for ferroelectric bulk domains with R phase. This is certified by PFM
images that nanodomains emerges from ferroelectric matrix with increasing doping content.
It can be seen that the addition of LNT not only improves the resistivity and piezoelectric
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properties of BF–BT ceramics, but also enhances the temperature stability of electrostrain.
Therefore, this work has implications for the design and application of high–performance
piezoelectrics and temperature–stable electrostrain materials.
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