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Abstract: Magnetic materials have a very broad application prospect in the field of microwave
absorption, among which soft magnetic materials become the focus of magnetic materials research
because of their high saturation magnetization and low coercivity. FeNi3 alloy has been widely used
in soft magnetic materials because of its excellent ferromagnetism and electrical conductivity. In
this work, FeNi3 alloy was prepared by the liquid reduction method. The effect of the filling ratio
of FeNi3 alloy on the electromagnetic properties of absorbing materials was studied. It is found
that the impedance matching ability of FeNi3 alloy is better when the filling ratio is 70 wt% than
that of other samples with different filling ratios (30–60 wt%), showing better microwave absorption
characteristics. When the matching thickness is 2.35 mm, the minimum reflection loss (RL) of FeNi3
alloy with a 70 wt% filling ratio reaches−40.33 dB, and the effective absorption bandwidth is 5.5 GHz.
When the matching thickness is between 2 and 3 mm, the effective absorption bandwidth ranges from
7.21 GHz to 17.81 GHz, almost covering the whole X and Ku bands (8–18 GHz). The results show
that FeNi3 alloy has adjustable electromagnetic properties and microwave absorption properties with
different filling ratios, which is conducive to selecting excellent microwave absorption materials.

Keywords: FeNi3 alloy; microwave absorption; reflection loss; effective absorption bandwidth

1. Introduction

With the rapid development of information technology in social life, the influence
of electromagnetic waves on society has grown deeply. Electromagnetic interference is
gradually becoming a serious problem that affects our daily life [1–5]. Using microwave-
absorbing materials is a good solution to solving this problem, which could absorb electro-
magnetic waves [6,7]. The microwave-absorbing material not only requires high absorption
strength but also needs to have a thinner thickness and lighter weight so that it can be used
effectively in practical applications [8,9]. Microwave-absorbing materials have many uses
in different fields. For example, in the military, they can be used as a paint for fighter jets to
absorb microwaves emitted by radars, achieving effective concealment [10,11].

According to the different absorption mechanisms, microwave-absorbing materials
can be divided into two types: dielectric loss and magnetic loss materials [12]. Magnetic loss
materials include ferrite, carbonyl iron and other magnetic materials [13,14]. Ferrite (such
as Fe3O4 and NiFe2O4) is a material often used in the field of microwave absorption. The
absorbers made of ferrite-absorbing material have a thin thickness, but the synthesis process
of ferrite is difficult, and the effective bandwidth of the absorber is not enough to cover
various frequency bands [15,16]. However, Fe-based alloy composites can perfectly improve
these performance deficiencies. Yang et al. used a chemical method to prepare the FeCo
nanosheet. The composite material comprising epoxy resin can obtain a reflection loss value
of −43 dB at 8.1 GHz and a thickness of 1.8 mm [17]. Liu et al. used an electroless plating
method to prepare FeNi alloy-coated flake graphite. When the thickness of the composite
material was 1.2 mm, it obtained a minimum absorption RL of −43.7 dB at 12.5 GHz [18].
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Deng et al. synthesized the Mxene/HFO (hollow Fe3O4) mixture via electrostatic assembly.
With a thickness of 1.56 mm, the composite has a minimum absorption RL of −63.7 dB [5].

In recent years, many studies have researched iron-based alloys, such as iron–nickel
and iron–cobalt alloys, as well as further research on coatings with iron-based alloys [19–23].
Among them, the soft magnetic nickel alloy has become popular in the research of mod-
ern microwave-absorbing materials because of its higher saturation magnetization and
lower coercivity [20,24,25]. The different preparation methods of iron–nickel alloys and the
changing of the ratio of iron–nickel among them will cause great differences in microwave
absorption performance. The synthesis method includes sol–gel and hydrothermal synthe-
sis, etc. In addition, there are many options for microwave-absorbing mixed materials, such
as paraffin wax, epoxy resin, etc. Paraffin wax has the advantage of easily passing through
waves. For example, the flake FeNi3 particles, prepared by Shi et al., used the electrodepo-
sition method with a mixed 30 wt% paraffin, which can obtain a minimum reflection loss
of −50.42 dB at 3.44 GHz, and at the same time, when the thickness is 1.3–2.5 mm, it has a
particularly wide absorption bandwidth of 4.4–17.52 GHz [26]. Yao et al. used a two-step
method with a mixed 70 wt% paraffin to prepare FeNi powder. When the composite mate-
rial has a thickness of 3 mm, the minimum absorption peak reaches−52.58 dB [27]. Yan et al.
used the low-temperature reduction method with a 16.7 vol% paraffin to prepare FeNi3
submicron spheres. The absorber thickness was 2.9 mm, and the minimum absorption peak
was −61.3 dB at 8.7 GHz [28]. Therefore, iron–nickel is better for microwave absorption.

The research work on the absorption properties of the FeNi alloy composites described
above is mostly focused on the material’s properties, and there are few studies on the
filling ratio of the composites. However, the filling ratio has a non-negligible influence on
the stealth performance of the absorbing material. Therefore, this paper mainly studies
the influence of the filling ratio on the absorbing performance of FeNi3 alloy by adjusting
different filling ratios. The final FeNi3 alloy obtained has a good absorbing performance
when the filling ratio is 70 wt%. When the matching thickness is 2.35 mm, the minimum
reflection loss reaches −40.33 dB, and the effective absorption bandwidth is 5.5 GHz.

2. Experimental Procedure
2.1. Preparation of FeNi3 Alloy Particles

All the materials were analytically pure (>99.7%) and from Shanghai Maclean Biochem-
ical Technology Co., Ltd. (Shanghai, China). As shown in Scheme 1, the initial materials
were 2.5 mmol iron dichloride FeCl2·4H2O and 7.5 mmol nickel chloride NiCl2·6H2O. These
were dissolved in 80 mL of deionized water H2O to form a mixed solution. A total of 12 mL
of sodium hydroxide NaOH solution and 1 g of Polyethylene glycol (PEG) were added and
magnetically stirred for 10 min, then vigorously stirred with an electric mixer while adding
8 mL of hydrazine hydrates. The solution was continuously stirred for 5 h. After stirring,
the obtained solution was washed three times with distilled water and absolute ethanol and
finally placed in a vacuum drying oven at 40 ◦C and vacuum dried to obtain a FeNi3 alloy
powder sample. Take a certain quality of FeNi3 powder and evenly mix it with paraffin
wax to make 120 mg of a paraffin wax-FeNi3 mixture with FeNi3 mass ratios of 30–70 wt%.
Among the materials, hydrazine hydrate was used as an inorganic hydride-reducing agent
to reduce metal ions from salt solutions or metal organics in solvents. PEG was mainly
used as a catalyst to facilitate reactions between ions.
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of 7 mm and an inner diameter of 3.04 mm, which was used to measure the electromag-
netic parameters with a vector network analyzer (Agilent PNA N5244A, America). 
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2.2. Characterization and Measurements

The X-ray diffractometer (XRD) (Bruker D8 ADVANCE, Germany) was used to analyze
the structure information of the alloy powder samples. In this case, the instrument’s
detection source for the XRD measurements was Cu target Kα rays, and the range of
measurement was from 10◦ to 90◦, with a scanning speed of 2◦ per minute. A scanning
electron microscope (SEM) (Hitachi S4800, USA) and transmission electron microscope
(TEM) (JEOL JEM 2100, USA) were used to analyze the morphology, particle size and
dispersion of the alloy powder samples. A vibrating sample magnetometer (VSM,) (the
Lakeshore 7400, China) was used to measure the magnetic strength of the sample. Energy-
dispersive X-ray spectroscopy (EDX) (JEOL JEM 2100, USA) was used for the micro-
component analysis. At the same time, the void, atomic proportion and density of the
sample were measured. The composites of the alloy powder and paraffin wax with a mass
ratio of paraffin wax of 30–70 wt% were pressed into a ring sample with an outer diameter
of 7 mm and an inner diameter of 3.04 mm, which was used to measure the electromagnetic
parameters with a vector network analyzer (Agilent PNA N5244A, America).

3. Results and Discussion

The XRD diffraction of the FeNi3 alloy sample is shown in Figure 1a. From the XRD
results, there are three diffraction peaks in the range of 10◦ to 80◦, which appear at 44.18◦,
51.56◦ and 75.86◦. These can be determined as the (111), (200) and (222) crystal planes
of the FeNi3 (JCPDS Card No. 38–0419). The crystal system of the FeNi3 alloy is a face-
centered cubic (FCC) lattice structure, and the lattice parameters are

.
a = 3.54,

.
b = 3.54 and

.
c = 3.54. The samples obtained by testing are face-centered cubic (FCC) lattice structures.
The crystallite size of the FeNi3 alloy was calculated by Debye–Scherer’s formula [29]:

Dm = (Kλ)/[δ(2θ)cos θ] (1)

where λ represents the wavelength of X-rays, δ(2θ) represents the full width at half maxi-
mum of the diffraction peak in the XRD pattern, θ represents the Bragg scattering angle.
K is the Scheele constant, and Dm is the grain thickness perpendicular to the grain plane.
The Schieler constant is usually calculated between 0.98 and 1.3, but for crystals with cube,
sphere, tetrahedral, and octahedral shapes, the calculated value of 0.89 is sufficient to
achieve a good fit. Since the samples prepared in this paper are spherical particles, the
Schieler constant is set at 0.89. The three strong diffraction peaks in the XRD results are
calculated, and the grain size of the FeNi3 alloy submicron spheres is about 96 nm [29].



Nanomaterials 2023, 13, 930 4 of 14

Nanomaterials 2023, 13, x FOR PEER REVIEW 4 of 15 
 

 

The porosity test result of the FeNi3 alloy sample is shown in Figure 1b. As can be 
seen, most of the voids are distributed in the range of 10–20 nm. At the same time, the 
density of the FeNi3 alloy was prepared by the density tester (G-DenPyc 2900 true, China) 
with the gas displacement method at 25 °C. The results of the three measurement times 
show that the density of the prepared sample was 5.84 (g/ml). 

 
Figure 1. XRD diffraction (a) and porosity test results (b) of FeNi3 alloy sample. 

The SEM images of the FeNi3 composites are shown in Figure 2a,b. By looking at the 
SEM images, it can be seen that most of the particles appear spherical with well-defined 
particles. The size of the particle spheres is relatively uniform, with most of them having 
diameters between 90–100 nm, which corresponds to the XRD results. The surfaces of the 
granular spheres have rough surfaces with polyhedral edges and corners, and a small 
number of particles exhibit overlapping lamellar structures, which may be caused by the 
overlap between particles. 

 
Figure 2. (a) Low magnification and (b) high magnification SEM images of FeNi3 alloy. 

The TEM image of the FeNi3 alloy is shown in Figure 3a. The TEM results showed 
that the prepared FeNi3 samples were also spherical nanoparticles with a size of about 100 
nm, which was consistent with the SEM results. The elemental mapping and EDX spectral 
images of FeNi3 alloy are shown in Figure 3b and Figure 4, respectively. It can be seen 
from the EDX that the Fe and Ni elements in the prepared FeNi3 sample are evenly dis-
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Figure 1. XRD diffraction (a) and porosity test results (b) of FeNi3 alloy sample.

The porosity test result of the FeNi3 alloy sample is shown in Figure 1b. As can be
seen, most of the voids are distributed in the range of 10–20 nm. At the same time, the
density of the FeNi3 alloy was prepared by the density tester (G-DenPyc 2900 true, China)
with the gas displacement method at 25 ◦C. The results of the three measurement times
show that the density of the prepared sample was 5.84 (g/mL).

The SEM images of the FeNi3 composites are shown in Figure 2a,b. By looking at the
SEM images, it can be seen that most of the particles appear spherical with well-defined
particles. The size of the particle spheres is relatively uniform, with most of them having
diameters between 90–100 nm, which corresponds to the XRD results. The surfaces of
the granular spheres have rough surfaces with polyhedral edges and corners, and a small
number of particles exhibit overlapping lamellar structures, which may be caused by the
overlap between particles.
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The TEM image of the FeNi3 alloy is shown in Figure 3a. The TEM results showed that
the prepared FeNi3 samples were also spherical nanoparticles with a size of about 100 nm,
which was consistent with the SEM results. The elemental mapping and EDX spectral
images of FeNi3 alloy are shown in Figures 3b and 4, respectively. It can be seen from the
EDX that the Fe and Ni elements in the prepared FeNi3 sample are evenly distributed, and
the content of Ni is more than that of Fe. Meanwhile, the ICP results show that the mass
fraction of Fe and Ni in the sample is 23.15% and 71.03%, respectively, with a ratio of nearly
1:3, which proves that the sample prepared by us is indeed FeNi3 alloy.
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The relative complex permittivity and complex permeability of FeNi3 alloy with filling
ratios of 30–70 wt% were measured in the range of 2–18 GHz (Figure 5a,b). It can be
seen that the values of the real and imaginary parts of the relative complex permittivity
increase as the filling ratios increase from 30 wt% to 70 wt%. It is known that ε” usually
represents the storage capacity of electromagnetic wave energy, and ε” represents the loss
capacity of electromagnetic wave energy [11]. The results show that the FeNi3 alloy with
a filling ratio of 70 wt% has higher ε′ and ε” than other ratios; thus, the FeNi3 alloy with
a filling ratio of 70 wt% has better electromagnetic energy storage and loss capacity. It
can be explained by the free electron theory [30]. As the mass ratio increases, the ε” of the
FeNi3 alloy composites increases due to the better electrical conductivity of FeNi3 alloys.
When the filling ratio increases, the composites have higher electrical conductivity, so the ε”
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improves as the filling ratio of FeNi3 alloy increases [26]. The dielectric loss in the FeNi3
alloy sample resulted from the imaginary part of the permittivity, which is also inseparable
from the interfacial polarization phenomenon brought by spherical morphology [28].
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nary parts of the complex permeability of FeNi3 samples with different filling ratios.

Figures 6a,b and S1a–c represent the Cole–Cole curves for FeNi3 alloys with different
filling ratios. It can be seen that there are semicircular curves, and these semicircles indicate
the presence of interfacial polarization in the FeNi3 alloy samples. Figure 5c,d show the
curves of the real and imaginary parts of the FeNi3 alloy mixed with paraffin wax with
different filling ratios. It can be seen that the real part of the magnetic permeability of
all the samples shows a decreasing trend with increasing frequency. The decrease in the
complex permeability is due to the dispersion effect; the real part of the permeability
will be reduced with the increase of frequency, and the peaks near 5–6 GHz are caused
by the natural resonance of the material itself. Meanwhile, the imaginary part of the
magnetic permeability in Figure 5d shows a smaller resonance peak, which is favorable for
microwave absorption.

The main factors that cause magnetic loss are eddy current, natural resonance and
exchange resonance [31]. In the low-frequency range, the magnetic loss thus results from
natural resonance. In Figure 4c, it can be demonstrated how the natural resonance occurred
at 6 GHz nearby. In addition, the eddy current loss exists at a lower frequency. The C0
curves can be used to judge whether the main factor of the dominant magnetic loss is eddy
current loss and the C0 curve has been shown in the following calculation formula:

C0 = µ′′
(
µ′
)−2f−1 (2)

when the C0 curve is in the range of 2–18 GHz, if the eddy current losses inside the material
dominate the magnetic losses, the curve should behave as a constant without fluctuations
and not change with frequency. Figure 6c,d show the C0 curves for the FeNi3 alloy powders
with fillings of 60 wt% and 70 wt%. The values of the C0 curve change somewhat with
frequency range; therefore, it can be demonstrated that the magnetic losses in the composite
are not dominated by eddy current losses but mainly resonance losses. The hysteresis lines
for the FeNi3 alloy are shown in Figure 7. The hysteresis lines show that the saturation
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magnetization strength of the FeNi3 alloy is 40.13 emu/g, and the coercivity is 111 Oe. It
also provides a basis for the magnetic loss capability of the FeNi3 alloy material itself.
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The reflection loss values of the FeNi3 samples are obtained by calculation and simula-
tion of the electromagnetic parameters, and the reflection loss clearly reflects the strength
of a material’s microwave absorption capacity. According to transmission line theory, the
values of reflection loss can be calculated from the following formulas [32]:

Zin = Z0(µr/εr)
1/2tan h

[
j(2πfd/c)(µrεr)

1/2
]

(3)

RL = 20 log|(Zin − Z0) /(Zin + Z0)| (4)
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where Z0 is the free space impedance, Zin is the input impedance, f is the frequency of the
microwave, c is the speed of light in free space, d is the matching thickness of the absorber,
εr is the complex dielectric constant, and µr is the complex permeability.

Figure 8 and Figure S2 show the correlation between the 3D plots of frequency and
reflection loss to match the thickness for the ring samples with different FeNi3 alloy filling
ratios. It can be seen that the microwave absorption performance of the FeNi3 sample
increases with the gradual increase of the filling ratio of the FeNi3 alloy. It can be concluded
that when the filling ratio of FeNi3 alloy is 30 wt%, the reflection loss of the sample does
not reach −10 dB in the full waveband. When the filling ratio of FeNi3 alloy is 40 wt%,
the minimum reflection loss absorption of −5.45 dB can be obtained when the frequency
is at 7.22 GHz and the matched thickness of the sample reaches 5 mm. When the FeNi3
alloy fills with 50 wt%, a minimum reflection loss absorption peak of −9.70 dB is obtained
when the frequency is 12.16 GHz with a thickness of 2.9 mm. The minimum reflection loss
absorption peak of −15.35 dB is obtained when the FeNi3 alloy filling ratio is 60 wt%, the
frequency is 13.60 GHz, and the matching thickness is 2.5 mm. The FeNi3 alloy sample
with a 70 wt% filling ratio exhibits the best microwave absorption capability. When the
frequency reaches 11.88 GHz, the minimum value of the absorbing material is −40.33 dB,
with a strong reflection loss intensity when the matched thickness of the sample is 2.35 mm.
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Figure 9a,c show the frequency range (RL < −10 dB) of the FeNi3 samples with 60 wt%
and 70 wt% filling ratios when the matching thickness is 2–3 mm. Figure 9b,d show
the effective absorption bandwidth for the FeNi3 samples with filling ratios of 60 wt%
and 70 wt%, respectively. It can be seen that the maximum absorption bandwidth of the
FeNi3 alloy with a 70 wt% filling ratio can reach 6.26 GHz when the matching thickness is
varied, while the sample with a 60 wt% filling ratio can reach, at most, 4.08 GHz. When
the matching thickness of a sample with a 70 wt% filling ratio is between 2 and 3 mm
(Figure 8a), the frequency range of RL < −10 dB is 7.21 to 17.81 GHz. It has a very wide
frequency range, covering almost the entire X and Ku bands (8–18 GHz). The frequency
range of RL < −10 dB for the 60wt% filled sample is only 9.56 to 15.43 GHz. Therefore, the
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FeNi3 alloy sample with a 70 wt% filling ratio has a larger absorption bandwidth than the
other samples.
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The main factor affecting the absorption performance is the electromagnetic energy
loss capacity of the FeNi3 alloy. Figure 10 shows the dielectric loss tangent (tan δε = ε′′/ε′)
and magnetic loss tangent (tan δµ = µ′′/µ′) for the FeNi3 samples with different filling
ratios. It can be seen that the dielectric loss tangent of the sample increases as the filling
ratio increases in Figure 10a. When the filling ratio is greater than or equal to 50 wt%,
the dielectric loss tangent first remains constant as the frequency increases, and then a
resonance peak appears after 10 GHz, where the polarization phenomenon occurs to
increase the dielectric loss capability. Figure 10b shows that the magnetic loss tangent of
the samples with different filling ratios show a fluctuating decreasing trend with increasing
frequency, and resonance peaks also appear at individual locations. As the filling ratios of
FeNi3 alloy increase, the magnetic loss tangent also increases. Therefore, the synergistic
effect of dielectric loss and magnetic loss makes the FeNi3 alloy with a filling ratio of 70 wt%
have better microwave absorption performance.

In addition, the other two key factors that determine the microwave absorption
capacity are the electromagnetic attenuation ability of the absorber itself and the impedance
matching ability [33]. The attenuation constant α determines the attenuation characteristics
of the materials, which is presented in the following calculation [34]:

α =

√
2πf
c
×
√
(µ′′ε′′ − µ′ε′) +

√
(µ′′ε′′ − µ′ε′)2 + (µ′ε′′ + µ′′ε′)2 (5)

where c represents the speed of light, and f represents the frequency. Figure 11a shows
the curves of the attenuation constant α of the FeNi3 samples with different proportions.
When the FeNi3 filling ratio increases, the attenuation constant α also increases. At the
same time, they all show an increasing trend with the increase in frequency, indicating the
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attenuation ability of electromagnetic waves is gradually enhanced. Moreover, the relative
input impedance Z of the FeNi3 sample has been exhibited in the following calculation [35]:

Z = |Zin/Z0| (6)
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Figure 11. (a) Attenuation constant and (b) relative input impedance of FeNi3 alloy sample with
30–70 wt% filling ratios.

Figure 11b shows the relative input impedance Z of the FeNi3 samples with different
mass ratios, which gradually decreases with the increase of FeNi3 alloy filling ratios. It can
be seen that the relative input impedance of the FeNi3 alloy with a mass ratio of 70 wt%
is closer to 1, which implies a better impedance matching condition. Therefore, the FeNi3
alloy with a filling ratio of 70 wt% has better microwave absorption properties.

Generally, for absorbing materials, if the thickness of the test sample is an odd time
of one-quarter of the wavelength of the incident electromagnetic wave, when the phase
angle of the incident electromagnetic wave and reflected electromagnetic wave differs
by 180◦, part of the energy of the incident electromagnetic wave will be lost, which the
quarter-wavelength model can explain. This model has also proven to be suitable for the
case where plane waves normally incident on an absorber on a perfect conductor substrate.
The thickness that corresponds to the peak frequency of the sample can satisfy the following
formula [36–38]:

tm = nc/(4fm(εrµr)
1/2
)
(n = 1, 3, 5 . . .) (7)

where c stands for the velocity of light in free space. In order to determine the maximum RL
value that appears at a thickness of 2.35 mm, we performed a simulation of tm under λ/4
occasions for the FeNi3 alloy (Figure 12). The quarter-wavelength rule is a vital dissipation
element in the thickness design of the absorbent. Blue dots stand for the experimental
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matching thickness at fm, and the blue curve is the simulation thickness using the quarter-
wavelength rules. The results show that when the experimental matching thickness is
1.0 mm rather than 2.35 mm, the reflection loss ability is strong and is inconsistent with
the simulated thickness. Therefore, the polarization peaks come from the material itself
rather than the quarter wavelength. The same phenomenon exists for samples with other
filling ratios.
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Figure 13 shows the mechanism of the electromagnetic wave absorption properties
of the FeNi3 alloy sample. When the electromagnetic wave is incoming, the microwave
absorption ring is a whole, in which there are many nanospheres made up. When the wave
is incident on the ring, the interaction of many nanospheres causes the wave conduction
loss as a whole. When electromagnetic waves propagate between the alloy nanospheres,
the accumulation of nanospheres increases the degree of interfacial polarization, which
enhances electromagnetic wave absorption. In addition, there is a magnetic loss and
dielectric loss to improve microwave absorption.
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4. Conclusions

In summary, the FeNi3 alloy was prepared by the liquid phase reduction method in
this study. By controlling the filling ratio of FeNi3 alloy in the composites, the influence
of the filling ratio on its microwave absorption performance was studied. The results
show that the prepared FeNi3 alloys have a spherical morphology, and the particle size is
uniform. The permittivity and permeability of the FeNi3 alloys increased dramatically with
the enhanced filling ratios. The dielectric loss and magnetic loss of the FeNi3 composite are
higher. In addition, the impedance matching is also adjusted with the increase of the filling
ratios. Thus, the filling ratio has a certain regulation effect on the microwave absorption
performance of FeNi3 alloy. Finally, the FeNi3 alloy composites showed the best microwave
absorption characteristics when the filling ratio was 70 wt%, the absorption performance
RL was−40.33 dB at 11.8 GHz, and the effective absorption bandwidth was 5.5 GHz. When
the matching thickness was 2~3 mm, the effective absorption bandwidth was 10.2 GHz
with a frequency range of 7.2~17.8 GHz. Therefore, the electromagnetic properties of the
FeNi3 alloy can be adjusted by adjusting the filling ratios, obtaining better impedance
matching. This is a candidate way to adjust the absorption performance.
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