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Abstract: In this work, we studied the influence of cross-interference effects between VOCs and NO
on the performance of SnO2 and Pt-SnO2-based gas sensors. Sensing films were fabricated by screen
printing. The results show that the response of the SnO2 sensors to NO under air is higher than that of
Pt-SnO2, but the response to VOCs is lower than that of Pt-SnO2. The Pt-SnO2 sensor was significantly
more responsive to VOCs in the NO background than in air. In the traditional single-component
gas test, the pure SnO2 sensor showed good selectivity to VOCs and NO at 300 ◦C and 150 ◦C,
respectively. Loading noble metal Pt improved the sensitivity to VOCs at high temperature, but also
significantly increased the interference to NO sensitivity at low temperature. The explanation for this
phenomenon is that the noble metal Pt can catalyze the reaction between NO and VOCs to generate
more O−, which further promotes the adsorption of VOCs. Therefore, selectivity cannot be simply
determined by single-component gas testing alone. Mutual interference between mixed gases needs
to be taken into account.

Keywords: Pt doping; VOCs; NO; cross-interference; selectivity

1. Introduction

Volatile organic compounds (VOCs) and nitrogen oxides (NOx), are common toxic and
harmful gases. They have short-term and long-term adverse effects on health, including on
respiration, the nervous system and the endocrine system [1,2]. In addition, by detecting
the concentration of VOCs and NO, a variety of diseases can be discriminated, such as type
1 diabetes mellitus (T1DM) and asthma [3,4]. Therefore, the demand for gas sensors with
high accuracy and selectivity is increasing.

There have been a variety of sensors designed and manufactured to detect the con-
centration of NOx and VOCs. As one of the widely researched chemiresistive sensors, the
one adopting a metal oxide semiconductor (MOS) as the sensing material, has received
increased attention due to its low cost, high stability, simple operation principles and
easy fabrication [5,6]. The most widely used MOS sensor in China is the SnO2-based sen-
sor [7–9]. Many other promising MOS sensing materials, such as In2O3 [10,11], ZnO [12,13],
a-Fe2O3 [14,15], WO3 [16,17], NiO [18,19] and so on, have been continuously reported for
the use of detecting VOCs and NO.

However, the operation of most MOS sensors shows a major disadvantage, poor
selectivity [20], which hinders the practical application. This means that any active gas
may cause the appearance of sensor response, that is, change of resistance/conductivity
of the gas sensitive layer. There have been many reports on improving MOS selectivity,
including using aliovalent doping [21,22], a two nanomaterial composite [23,24], noble
metal loading [25,26] and so on. By adjusting the electron depletion layer on the surface of
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materials, constructing potential barriers, adjusting the carrier concentration of materials,
changing the distribution of oxygen components on the surface and introducing catalysts,
the sensitivity and selectivity of the gas-sensitive material can be improved [27,28]. For
example, Wenwen Zeng et al. synthesized hierarchical SnO2-Sn3O4 heterostructural gas
sensors; at an optimal operating temperature 150 ◦C, all the sensors had better responses
to NO2 than to the other contrast gases (acetone, toluene, xylene, etc.). Its response to
5 ppm NO2 was 240, but the response to other contrast VOC gases was less than 6 [29].
Aran Koo et al. prepared Pt-decorated Al-doped ZnO (Pt-AZO) nanoparticles. At an
optimal operating temperature of 450 ◦C, the Pt-AZO showed remarkably enhanced sensing
properties, with a sensing response of 421 under exposure to 10 ppm acetone, but almost
no response to 10 ppm NOx under the same conditions [30].

In addition, the description and evaluation of sensor selectivity is also critical. At a
certain working temperature, the use of one semiconducting gas sensor insufficient to detect
contaminated air quality. It can be seen from previous research that, the optimal operating
temperature of NOx is mainly at low temperatures, below 250 ◦C, and the optimal working
temperature of VOCs is mainly at high temperatures above 300 ◦C [31–33]. Though it
seems simple to create a gas sensor that is highly selective for NOx and VOCs, it is not.
Tomoda Munenobu et al. [34] discovered that when NO2 exists in the air, the sensitivity to
VOCs of TGS2600 (SnO2-based) and SmFeO3-based gas sensors was enhanced. VOCs may
have a much greater impact on the response of NOx at low temperatures. Therefore, the
gas interference between VOC and NOx is inevitable. It is necessary to use at least two gas
sensors working at different temperatures for the prediction of each of the contaminated
levels of VOCs and NO2. In practice, in the metal oxide sensor studies, the problem of
interference of various gases is not well considered. Only a limited number of articles are
devoted to this topic [35–39].

Taking into account the above discussion, it was decided to carry out a project to study
the response of SnO2-based sensors to VOCs and NO pairs under different conditions and
the cross interference between them. Firstly, the gas sensitivity of SnO2 and Pt-SnO2 to
different VOCs and 1ppm NO in the air is characterized. Then, the response curves of
VOCs at low temperature with and without Pt in the NO background are further compared.
The selectivity in complex environments is redefined by analyzing the difference of sensor
response to NO and VOCs under different situations. In addition, the mechanism behind
this phenomenon is explained in detail. Finally, it is pointed out that the selectivity cannot
be determined simply through the single component gas test, and the interference between
the gas mixtures should be considered.

2. Materials and Methods
2.1. Materials Synthesis

SnO2 nanoparticle nanomaterials were firstly synthesized by hydrothermal method.
SnCl4·5H2O and H2PtCl6 were purchased from Aladdin Co., Ltd. (Shanghai, China). They
were analytical grade and could be used without further purification.

SnCl4·5H2O (6 mmol) was added into a beaker containing 50 mL benzyl alcohol
and stirred at room temperature to form a pale white solution. When the solution was
clear, the mixture was transferred to a 100 mL Teflon-lined stainless steel autoclave and
reacted at 200 ◦C for 48 h. After naturally cooling down to room temperature, the obtained
precipitate was washed several times with chloroform and anhydrous ethanol. Eventually,
the precipitate was dried at 60 ◦C for 8 h to obtain SnO2 nanoparticles.

A certain amount of noble metal ion solution was added into 18 mL of oxide suspen-
sion (containing 0.2 g of SnO2 powder), stirred vigorously and 2 mL of sodium borohydride
(0.5 wt% concentration, in which 5 wt% NaOH was added to create an alkaline environment
to slow down the decomposition of sodium borohydride) was dropped in. The suspension
slowly changes changed color. It was stirred for 4 h, then transferred to a centrifuge tube,
centrifuged at 5000 r/min for 5 min, repeated for three times, and dried at 60 ◦C to obtain
Pt-SnO2 nanoparticles.
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2.2. Characterization

SnO2 nanoparticles were analyzed by X-ray diffraction (XRD) performed on a Philips
X’Pert diffractometer (2θ from 20◦ to 80◦, λ = 1.5406 Å) with Cu Kα radiation. Micromor-
phology and element distribution of pure SnO2 and Pt-decorated SnO2 were characterized
by field emission scanning electron microscopy (FE-SEM, Hitachi S-4800, Tokyo, Japan) and
an energy dispersive spectrometer (EDS, Hitachi S-4800, Tokyo, Japan). TEM images were
obtained by a JEOL 2100F microscope (Tokyo, Japan). The X-ray photoelectron spectroscopy
(XPS) test was conducted by a Kratos XSAM800 spectrometer (Manchester, England).

2.3. Gas Sensor Fabrication and Measurement

The manufacturing method of the SnO2 and Pt-decorated SnO2 gas sensors were as
follows: 1 mol% H2PtCl6 and 10 mmol SnO2 nanoparticles were dispersed in 40 mL ethanol
and magnetically stirred for one hour at room temperature. Then the mixed solution was
dried in an oven at 70 ◦C (pure SnO2 gas sensor adds SnO2 nanoparticles only). After that,
the pre-dried nanoparticles were ground with homemade organic solvent (terpinol 50%,
butylcarbitol acetate 30%, dibutyl phthalate 10%, ethyl cellulose 5%, Sorbitan Trioleate
3.5%, 1,4-butyllactone 1% and hydrogenated castor oil 0.5%) and made into pastes by the
ball-milling technique. The pastes were printed onto the substrate with pre-fabricated
Pt interdigital electrodes by screen printing. The sample was obtained by annealing the
synthesized pastes in this experiment at 350 ◦C for 2 h and then 550 ◦C for 2 h to evaporate
the organic solvent. The mechanical bond between the film particles was improved at the
same time by the heat treatment process [30]. Finally, substrates with sensing film were
made into sensors.

The gas sensing properties test was implemented using a self-made high-throughput
testing platform. The error rate was less than 5% between 100 Ω and 1 GΩ and less than
15% between 1 GΩ and 10 GΩ [32]. In this work, the gas sensing test proceeding in air and
1ppm NO (air balance) was termed the single-component gas test and mutil-component
gas test, respectively. The definition of the response was different in reducing and oxidizing
gas: for oxidizing gases, the response of the gas sensor is indicated as the quotient of the
resistance in target gas divided by the resistance in dry air (Rgas/Rair). For the reducing gas,
the response is defined as the reciprocal of the response of the oxidizing gas (Rair/Rgas).

All sensors were aged at 350 ◦C for two days to improve the signal stability before
measurement of sensing performance. In the temperature range from 100 ◦C to 350 ◦C,
the response state of the sensor to 10 ppm of different volatile organic compounds, 1 ppm
of nitric oxide and 1 ppm of nitrogen dioxide was continuously tested (the temperature
interval was 50 ◦C), in order to obtain the optimum response temperature. Subsequently,
at the optimum operating temperature of NO, the responses of VOCs with different con-
centrations in air and 1 ppm NO (air balance) atmosphere were tested. The interference of
volatile organic compounds on the sensitivity of nitrogen oxides at low temperature can be
studied according to the results.

3. Results and Discussion
3.1. Structure Characterization

The XRD patterns of synthesized SnO2 are exhibited in Figure 1; all peaks matched
perfectly with the cassiterite SnO2 phase (JCPDS No. 99-0024) and the SnO2 made by the
non-aqueous sol-gel method was highly crystalline.

Figure 2a shows the SEM and TEM images of SnO2 powder. As can be seen, the
structure of SnO2 appears to be the accumulation of numerous uniform nanoparticles. To
further confirm this feature, high-resolution TEM images of the SnO2 powder were taken
and the result is displayed in Figure 2b. It can be observed in the TEM images that some
areas are clearly distinguished between light and dark, which proves the stacked structure
of nanoparticles; the diameter of synthesized SnO2 nanoparticles was approximately 20 nm.
EDS mapping of Pt-decorated SnO2 sensing film is shown in Figure 2c–f. The results
evidently show that corresponding signals of O, Sn and Pt were evenly distributed.
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In order to explore the mixed valence in Pt-SnO2, XPS measurement was done. It
was processed by XPSPEAK41 software (Version No.4.1, V G Scientific Ltd., St Leonards,
England). The fitting process included establishing background baseline, adding peaks
and fitting. From Figure 3, one can clearly see that besides added noble metal and metal
oxides, the sample also contains a small amount of carbon. This is because a small amount
of carbon may diffuse into the metal oxide at high temperature. The XPS spectrum of Pt
was placed at the upper right corner of the survey spectrum; the Pt 4f spectrum can be
fitted by two Gaussian peaks, indicating that 4f5/2 and 4f7/2 exist in Pt-SnO2, and the peaks
are located at about 74.5 eV and 71.1 eV.
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3.2. Selective Redefinition

The responses of SnO2 and Pt-SnO2 to VOCs and NOx at various working temperatures
are shown in Figure 4a,b, respectively. It can be seen that the optimal operating temperature
of NO and NO2 was at 150 ◦C and 100 ◦C, and the optimal working temperature of VOCs
was mainly at 300 ◦C. Loading of noble metal Pt improved the sensitivity to VOCs at high
temperature. In order to reveal the selectivity of NOx and VOCs, Figure 4c,d displayed the
response of pure SnO2 and Pt-SnO2 to VOCs and NOx; the temperatures are 150 ◦C and
300 ◦C, respectively. It can be clearly seen that both sensors have good selectivity for VOCs at
300 ◦C and good selectivity for NOx at 150 ◦C in the traditional single-component gas test.
The selectivity in the multi-component gas environment was next analyzed.
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Dynamic resistance curves of SnO2 to 1 ppm NO and 10 ppm C2H5OH at 150 ◦C are
shown in Figure 5a. Figure 5b shows the response of SnO2 to 10 ppm ethanol in air and
1 ppm NO (air balance). As one can see, the response of SnO2 to 10 ppm ethanol in air
was low at 150 ◦C and in the presence of 1 ppm NO (air balance), the response of 10 ppm
ethanol was barely improved. This means that ethanol does not interfere with the response
of SnO2 to NO at low temperature. Figure 5b shows the response of Pt-SnO2 to 1 ppm NO
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(air balance) was 218 and the response to 10 ppm ethanol was only 3.2, but in the presence
of 1ppm NO (air balance), the response of 10 ppm ethanol was significantly improved. The
results show that, although Pt-SnO2 showed high selectivity to NO at low temperature in a
traditional single-component gas test, ethanol does in fact interfere with the response of
NO significantly. These results were assigned to the loaded Pt, which catalyzed the product
of reaction between NO and ethanol to further react with ethanol.
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In order to show the response of ethanol under the multi-component gas test more
clearly, the response was defined, which is shown in Figure 6. In the traditional single-
component gas test, the response of ethanol was defined as Rair/Rethanol, where Rair was
the resistance when sensors were in air, and Rethanol was the resistance when sensors were
exposed in the ethanol gases, as shown in Figure 6a. The response of ethanol in 1 ppm NO
(air balance) was defined as RNO/RNO+ethanol, which is shown in Figure 6b, where RNO was
the resistance of the sensors in 1 ppm NO (air balance) and RNO+ethanol was the resistance
of the sensors exposed in 1 ppm NO (air balance) and in 10 ppm ethanol mixed gases.
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According to the definition above, the response of SnO2 and Pt-SnO2 to 10 ppm
different VOCs at 150 ◦C in air and in 1 ppm NO (air balance) was tested, and the results
were are shown in Figure 7a,b. The comparison showed that at 150 ◦C, in the traditional
single-component gas test, SnO2 and Pt-SnO2 had almost no response to different VOCs
under the air background. Under the multi-component gas test, the responses of SnO2 to
10 ppm VOCs were barely improved, but the responses of Pt-SnO2 to different VOCs were
greatly improved. This indicated that not only ethanol but also other VOCs interfere with
the NO response of Pt-SnO2 at low temperature.
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In addition, we considered the existence of humidity in practical application scenarios.
At 50% RH, the response of SnO2 and Pt-SnO2 to 10 ppm different VOCs at 150 ◦C in air
and in 1 ppm NO (air balance) was tested, and the results are shown in Figure 7c,d. The
results showed that when humidity was present, the conclusion was the same as above, but
the sensitivity of SnO2 and Pt-SnO2 sensors to all gases showed a slightly decreased trend.

Based on the above results, it can be summarized that the responses of VOCs will
rise in NO, which in turn decreases the selectivity to NO. Therefore, we cannot simply
define the selectivity to NO as a sensitivity difference between NO and VOCs at a certain
concentrations in the air background; the interference between gases must be taken into
account. In addition, this also implies that gas response-gas concentration curves in the air
background, as a method to display sensitivity and selectivity to target gas, are insufficient
to demonstrate the selectivity to NO with VOCs present.

It can be summarized that in the single-component gas test, SnO2 and Pt-SnO2 had
good selectivity to NO at 150 ◦C, the response was proportional to the concentration. Under
the background of 1ppm NO (air balance), the response of SnO2 to VOCs was not greatly
improved, though and there was still a good selectivity for NO; but the response of Pt-SnO2
to VOCs was greatly improved, which presented great interference on the selectivity of NO.

3.3. Gas-Sensing Mechanism

First, according to the ionosorption model [33], oxygen in the air will diffuse to the
surface of the sensing membrane when heated. The adsorbed oxygen molecules in this
process will extract electrons from the conduction band and capture the electrons on the
surface as ions to form various oxygen ions (OX−), including O2

−, O− and O2− which
cause the transition of an electron from the top of it.

As indicated in literature [31], O2
−, O− and O2− are stable at 50–200 ◦C, 200–400 ◦C

and 400–600 ◦C, respectively. During the reaction, the electron concentration of the sensing
film will decrease because of the electronic transition between the top of the conduction
band and the surface chemisorption oxygen. This process results in the generation of
an electron depletion layer (EDL), which in turn increases the resistance and reduces the
conductivity of SnO2.
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When the metal oxide sensing film is exposed to VOC gases, these gases react with
the surface chemisorption oxygen. Without exception, these chemical processes include
electrons releasing back to the top of the conduction band. Reactions between surface
chemisorption oxygen and VOC gases follow the reaction path (taking ethanol as an
example, Equations (1)–(3)) [35,40–43]:

C2H6O(g) + 3O−2(ads) → 2CO2(g) + 3H2O + 3e− (1)

C2H6O(g) + 6O−
(ads) → 2CO2(g) + 3H2O + 6e− (2)

C2H6O(g) + 6O2−
(ads) → 2CO2(g) + 3H2O + 12e− (3)

According to the above analysis, O− ions play a key role in the adsorption of VOCs; O−

ions exist between 200–400 ◦C, so the response of SnO2 to VOCs is relatively high at around
300 ◦C. When the temperature is higher than 400 ◦C or lower than 200 ◦C, OX− mainly
exists in the form of O2− and O2

−, so the response of the sensor to VOCs decreases rapidly.
When the temperature is lower than 200 ◦C, O2

− plays a major role in NO adsorption [44].
SnO2 shows good sensitivity to NO at lower temperatures. Therefore, in the traditional
single-component gas test, the sensor of pure SnO2 exhibited good selectivity for VOCs
and NO at 300 ◦C and 150 ◦C, respectively.

In NO, in addition to the above-mentioned effects, Pt also shows a catalytic effect.
As a common surface catalyst, Pt has high catalytic activity [45]. Here, it is considered
that Pt may catalyze the reaction between NO and VOCs. Taking ethanol as an example,
the reaction process is as follows. Firstly, Pt catalyzed the oxidation-reduction reaction
between ethanol and NO to produce CO2 and NO−; then, NO− was decomposed into N2
and O−. This process increased the amount of O− on the surface. Subsequently, O− further
reacted with VOC, as shown in Equations (4) and (5). Therefore, it was observed that the
sensitivity of Pt-SnO2 to VOCs was greatly improved under the background of 1 ppm NO
(air balance). As the presence of Pt has no effect on the adsorption process of NO, SnO2
and Pt-SnO2 showed similar responses to NO.

C2H5OH + 3NO + 3O−2
Pt−→ 2CO2 +

3
2

N2 + 3O− + 3H2O (4)

C2H5OH(ads) + 6O−
(ads) → 2CO2(g) + 3H2O(g) + 6e− (5)

4. Conclusions

In summary, SnO2 and 1mol% Pt decorated SnO2 (Pt-SnO2) gas-sensing films were
fabricated onto the substrate with prefabricated Pt interdigital electrodes by screen printing.
The SnO2 sensor had a better response to NO, and the Pt-SnO2 sensor had a better response
to VOCs. By comparing the response of SnO2 and Pt-SnO2 to VOCs in an air background
and in 1 ppm NO (air balance) under single-component and multi-component atmospheres,
it was found that the presence of NO can improve the response of VOCs at low temperature.
In addition, the Pt-SnO2 sensor showed a significant increase in VOC sensitivity under
the NO background. The explanation of this phenomenon is that the noble metal Pt can
catalyze the reaction between NO and VOCs to generate more O−, which further promotes
the adsorption of VOCs. The result of this work is of great significance for the study of gas
selectivity. The selectivity cannot be simply defined by a single-component gas test; mutual
interference between mixed gases needs to be taken into account.
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