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Abstract: In this study, we considered the linear and non-linear optical properties of an electron in
both symmetrical and asymmetrical double quantum wells, which consist of the sum of an internal
Gaussian barrier and a harmonic potential under an applied magnetic field. Calculations are in the
effective mass and parabolic band approximations. We have used the diagonalization method to find
eigenvalues and eigenfunctions of the electron confined within the symmetric and asymmetric double
well formed by the sum of a parabolic and Gaussian potential. A two-level approach is used in the
density matrix expansion to calculate the linear and third-order non-linear optical absorption and
refractive index coefficients. The potential model proposed in this study is useful for simulating and
manipulating the optical and electronic properties of symmetric and asymmetric double quantum
heterostructures, such as double quantum wells and double quantum dots, with controllable coupling
and subjected to externally applied magnetic fields.

Keywords: harmonic-Gaussian potential; double quantum well; magnetic field

1. Introduction

It is very important to construct a universal empirical potential energy function for
diatomic and/or polyatomic molecules. For example, the first simple empirical analytical
potential function proposed by Morse in 1929 [1] was used to study transition frequencies
and intensities in a series of diatomic and polyatomic molecules [2]. For diatomic molecules,
by employing the dissociation energy and the equilibrium bond length as explicit parame-
ters, the Rosen–Morse, Manning–Rosen, Schiöberg, and Tietz potential-energy functions
have been generated [3–5]. The modified Lennard–Jones potential energy function [6] has
been used to perform potential fits experimental data to diatomic molecules.

As is known, double quantum wells (DQW) that characterize the bilayer systems are
the semiconductor heterostructures exhibiting tunnel coupling. DQWs, which consist of
various semiconductor materials, frequently appear in lasers emitting light in a wide range
of wavelengths [7,8]. DQW’s potential energy functions, suggested to obtain information
about diatomic molecules, are known as quasi-exactly solvable (QES) potentials. The
quartic [9], sextic–decatic [10], Razavy [11], and Manning [12] double well potentials which
provide a useful approximation for the potential energy of a diatomic molecule are some
of them. Dong and Lemus reported the ladder operators for the modified Pöschl–Teller
potential [13]. Particularly, they found a closed form of the normalization constants of the
wave function by using two different methods and calculated analytical expressions for
the matrix elements derived from the ladder operators. Using the exact quantization rule,
Gu et al. calculated the energy spectra for modified Rosen–Morse potential [14]. In the
same way, Dong et al. reported semi-exact solutions of the Razavy potential [15]. In their
work, they show how to find the wave function exact solutions, which are given by the
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confluent Heun functions. Additionally, their method has been extended to the calculations
of the asymmetric double well potential [16].

The optical properties of semiconductor quantum wells depend on the asymmetry of
the confinement potential. So, the optical properties of the low dimensional heterostruc-
tures that are either with the inherent asymmetric character without an electric field or
symmetrical character under an electric field have been studied intensively [17–25]. In
this context, in this study, we examined the linear and non-linear optical properties of
an electron in both symmetrical and asymmetrical DQW, which consist of the sum of an
internal Gaussian barrier and a harmonic potential under an applied magnetic field.

To our knowledge, such a study has not yet been reported. This potential formed by
the sum of a harmonic and Gaussian potential has been used to study the eigenstates in
ammonia (umbrella inversion in ammonia) [26], and the proton transfer between two water
molecules [27]. In these cases, the potential is symmetric, and the Gaussian maximum
coincides with the parabola minimum. The inversion of ammonia, in which the hydrogen
atoms pass from one side of the nitrogen atom to the other, is a significant problem that
has been studied by many researchers. The potential function for the vibration leading to
inversion is generally considered a harmonic potential with a potential barrier to hinder.

The harmonic oscillator (HO) potential is used to describe a molecular vibration in
the very close neighborhood of a stable equilibrium point. This is one of the few quantum-
mechanical systems with exact and analytical solutions. The Gaussian barrier within the
dominant harmonic potential causes a bunching between adjacent symmetric (+) and anti-
symmetric (−) states. All energy states increase by the presence of the barrier, but energies
of anti-symmetric states increase less than the symmetric ones since asymmetric states have
a node in the barrier that is not in symmetrical states.

The work is organized as follows: we describe the theoretical framework in Section 2.
In Section 3, we discuss the obtained electronic and optical properties, and finally, the
conclusions are found in Section 4.

2. Theoretical Model

In the effective mass approximation, the Hamiltonian for an electron under an applied
magnetic field can be expressed as,

H =
1

2m∗
[
~p +

e
c
~A(~r)

]2
+ V(z) (1)

or

H =
−h̄2

2m∗
d2

dz2 +
e2B2z2

2m∗c2 + V(z) , (2)

where the magnetic field-~B is applied perpendicular to the growth direction, ~A = (0,−B z, 0)
is the vector potential associated with the magnetic field, ~p is the momentum operator,
m∗ is the electron effective mass, e is the elementary charge, and V(z) is the confinement
potential of harmonic-Gaussian double quantum well (H-G DQW). Its functional form is
given as follows [28]

V(z) = V0

[
A1 (z/k)2 + A2 e−(

z
k−z0)

2
]

, (3)

where V0 is the depth of the quantum well, the k-parameter is related to the well and
barrier width, z0 is the asymmetry parameter, A1 and A2 are the structural parameters that
adjust the coupling between the wells, well width and barrier height. For example, as the
parameter A1 increases, the well width becomes narrow. The A2 parameter is related to the
barrier height.

After the energies and related wave-functions are acquired, the linear and non-linear
absorption coefficients are found using the perturbation expansion and the density matrix
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methods for transitions between two electronic states. The linear, third-order non-linear,
and total absorption coefficients (TACs) are found as follows [21,28–32], respectively,

β(1)(ω) =

√
µ0

εR

|Mij|2σν h̄ωΓij(
Eij − h̄ω

)2
+
(
h̄Γij

)2 , (4)

β(3)(ω, I) = −2
√

µ0
εR

(
I

ε0nrc

) |Mij |4σν h̄ωΓij[
(Eij−h̄ω)

2
+(h̄Γij)

2]2

×
[

1− |Mjj−Mii |2

|2Mij |2
(Eij−h̄ω)2−(h̄Γij)

2+2Eij(Eij−h̄ω)

E2
ij+(h̄Γij)2

]
,

(5)

and
β(ω) = β(1)(ω) + β(3)(ω) . (6)

In the case of the relative changes of the refraction index coefficient, the corresponding
expressions are

∆n(1)(ω)

nr
=

σv |Mij|2

2 ε0 n2
r

Eij − h̄ ω

(Eij − h̄ ω)2 + (h̄ Γij)2 , (7)

∆n(3)(ω,I)
nr

= − µ0 c I σv |Mij |2

4 ε0 n3
r

Eij−h̄ ω

[(Eij−h̄ ω)2+(h̄ Γij)2]
2

×
[

4 |Mij|2 −
|Mjj−Mii |2

E2
ij+(h̄ Γij)2

{
Eij (Eij − h̄ ω)− (h̄ Γij)

2 − (h̄ Γij)
2 (2 Eij−h̄ ω)

(Eij−h̄ ω)

}]
,

(8)

and
∆n(ω, I)

nr
=

∆n(1)(ω)

nr
+

∆n(3)(ω, I)
nr

, (9)

Here, εR = n2
r ε0 is the real part of the permittivity, ε0 is the permittivity of vacuum, nr =

√
εr,

is the refraction index, σν is the carrier density in the system, µ0 is the vacuum permeability,
Eij = Ej − Ei is the energy difference between two electron states, Mij = |〈ψi|e z|ψj〉|,
((i,j = 1,2)) is the dipole matrix element between the eigenstates ψi and ψj for incident
radiation polarized in the z-direction, Γij = (1/Tij) is the relaxation rate, Tij is the inverse
relaxation time, c is the speed of the light in free space, and I is the intensity of incident
photon with the ω-angular frequency that leads to the intersubband optical transitions. It
should be noted that we will use the reduced dipole matrix element (RDME) definition
(η = Mij/e) in the length dimension in the figures.

3. Results and Discussion

To perform our numerical calculations the parameters are: εr = 12.58, m∗ = 0.067 m0
(where m0 is the free electron mass), V0 = 228 meV, Tij = 0.2 ps, µ0 = 4π × 10−7 H m−1,
σν = 3.0× 1022 m−3, and I = 5.0× 108 W/m2. The value used for the width parameter in
this study is k = 20 nm [30].

The changes in the shape of H-G DQW potential according to the structure parameters
as a function of the z-coordinate are given in Figure 1a–d, where z0 is the asymmetry
parameter. When the z0-parameter is zero, the structure has a symmetrical character
(Figure 1a). If z0 6= 0, it becomes asymmetrical (Figure 1b–d). Thus, we will use the
abbreviations H-G SDQW and H-G ADQW for the symmetric and asymmetric cases,
respectively. The parameter A1 causes a shift toward the higher energies in the confinement
potential and a decrease in the effective width. The parameter A2 causes an increase in
the potential barrier height while the effective well width decreases. As seen in Figure 1d,
for A1 = 0.5, electrons on the third and fifth levels from the squared wave functions
corresponding to the first six levels of the confined electron in H-G ADQW are located in
the right well, and the others in the left well. For A1 = 0.2, it is seen that electrons on the
third and sixth levels from the squared wave functions corresponding to the first six levels
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of the confined electron in H-G ADQW are located in the right well (RW) and the others in
the left well (LW). That is, electrons with energies of E3 and E5 in the first case and electrons
with energies of E3 and E6 in the second case penetrate from LW to RW by tunneling.
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Figure 1. Harmonic-Gaussian DQW confinement potential profile for a constant value of k = 20 nm
versus the z-growth direction coordinate. Harmonic-Gaussian symmetric DQW, solid (dashed) lines
are for A2 = 2.0 (A2 = 4.0) and black (red) lines A1 = 0.2 (A1 = 0.5) (a). For z0 = 0.15, A1 = 0.5, and
A2 = 2.0 harmonic-Gaussian asymmetric DQW confinement profile and squared wave functions
corresponding to the first six energy levels (b). For different z0-values and some values of the
structure parameters, the harmonic-Gaussian asymmetric DQW profile (c), and harmonic-Gaussian
asymmetric DQW confinement profile and squared wave-functions corresponding to the first six
energy levels for the constant values of A2 and z0 but two different values of the parameter-A1 (d).

For k = 20 nm and z0 = 0, the variation of the energies corresponding to the first
six lower-lying levels of a confined electron within H-G SDQW as a function of the A2-
parameter for A1 = 0.2 and A1 = 0.5 are given in Figures 2a and 2b, respectively. Solid
(dashed) lines are for B = 0 (B = 15 T). As A2 increases, the barrier height increases while
the effective well width narrows, resulting in an increase in subband energies in the absence
and presence of the magnetic field. The increase in the subband energies in the presence of
the magnetic field is more pronounced since the magnetic field creates additional parabolic
confinement. Without a magnetic field, the energy levels are two-folded and degenerate.
First, the higher levels and then all energy levels begin to separate due to the increase
caused in the energies by the magnetic field at small A2 values (A2 ≈ 2), and this behavior
is observed at larger A2 values (A2 ≈ 3) as A1 increases. Because the potential barrier
for these energy levels is sufficiently thin, coupling between the wells increases. Since A2
causes an increase in barrier width and a decrease in coupling between wells, a two-folded
degeneration in the energies is observed again, even in the presence of the applied magnetic
field at large A2 values. Energy levels are two-folded degenerate due to the symmetry of the
structure. The lower-lying bound states are two-folded degenerate since the barrier width is
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large to have no coupling between the wells. For higher bound states, the barrier thickness
is narrower, and, therefore, the symmetric and antisymmetric states are separated due to
the increasing energy with the magnetic field effect, and therefore degeneracy gradually
disappears towards higher energy levels as in the fifth and sixth energy levels.
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Figure 2. For k = 20 nm and z0 = 0, the variation of the energies corresponding to the first six
lower-lying levels of a confined electron within Harmonic-Gaussian symmetric DQW as a function of
the A2-parameter: A1 = 0.2 (a) and A1 = 0.5 (b). Solid (dashed) lines are for B = 0 (B = 15 T).

For a constant A2-value (A2 = 2.0), the variation of the energies that corresponds to
the first six lower-lying levels of a confined electron within H-G ADQW as a function of the
z0-asymmetry parameter. Solid (dashed) lines are for A1 = 0.2 (A1 = 0.5) in the absence
and presence of the magnetic field are given in Figures 3a and 3b, respectively. While the
first two energy levels are a direct decreasing function of the asymmetry parameter for both
A1 values, the first two energy levels are a direct decreasing function of the asymmetry
parameter while the energies of the other levels increase and/or decrease according to
the increasing z0 parameter. The main reason for the oscillations of the energies is that
the electrons at some other levels, except for the ground state, are localized in the right
well. The level of electrons localized in the right well varies depending on the external
parameters. For example, in Figure 3a, for A1 = 0.2 and z0 = 0.15, when there is no
magnetic field, electrons in the third and fourth levels are localized in the right well, for
A = 0.5, at the same z0 value electrons in the fourth and sixth levels are localized in the
right well. In the presence of the magnetic field, for A1 = 0.5 and z0 = 0.15, all electrons are
localized above the potential barrier, i.e., in a wider well. The localization in the right or left
well of electrons at different levels varies depending on external parameters. Figure 4a,b
have the same arrangements as Figure 3a,b, but these are for A2 = 4.0. The variation of
the energies according to the structure parameters and the applied external field is as in
Figure 3a,b. The results in Figure 4 show the same trends and behaviors as those reported
in Figure 3. However, in this case, a shift towards higher energies of all the reported states
is observed, a situation that is in line with the displacement of the minimum of potential
wells shown in Figure 1.
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Figure 3. For A2 = 2.0, the variation of the energies that corresponds to the first six lower-lying levels
of a confined electron within Harmonic-Gaussian asymmetric DQW as a function of the z0-parameter.
Solid (dashed) lines are for A1 = 0.2 (A1 = 0.5). Results are for B = 0 (a) and B = 15 T (b).
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Figure 4. Results are as in Figure 3, but for A2 = 4.0.

The variations of TACs and total refractive index (RIC) as a function of the incident
photon energy corresponding to the (2–3) transition for A2 = 2.0 (black lines) and (2–4)
transition for A2 = 4.0 (red lines) in H-G SDQW (z0 = 0) with A1 = 0.5 are given in
Figures 5a and 5b, respectively. Solid (dashed) lines are for B = 0 (B = 15 T). For A2 = 2.0,
the (2–4) or (1–3) transition is forbidden, and for A2 = 4.0, the (2–3) or (1–4) transitions
are forbidden. This is because dipole matrix elements are zero due to the wave functions
with the same parity. For z0 = 0, the structure is symmetrical, and the diagonal matrix
elements due to the even and odd characters of the wave functions are identical to zero
(Mjj = Mii = 0). In addition, the dipole matrix elements of transitions for odd-to-odd or
even-to-even (i.e., 1–3 or 2–4) quantum numbers disappear (meaning this kind of transitions
are not allowed) since the envelope functions of these energy states have the same parity
due to symmetry of the well. However, if the symmetry of the well is broken, the transitions
mentioned become allowed.

To see more clearly how the TAC and RIC positions and amplitudes change concerning
the structure parameters and magnetic field, the variation of the energy difference between
related levels and the variation of RDME according to parameter-A2 for only A1 = 0.5 are
given Figures 5c and 5d, respectively. Here, black/red lines are for (2–3)/(2–4) transitions.
Except for E24 in the presence of the magnetic field and the values of A2 ≤ 2, the difference
between the indicated energy levels is usually an increasing function of parameter-A2.
After a certain A value, E24 also begins to be an increasing energy function. In the range of
1 ≤ A2 ≤ 2.5, since the energy difference of E23 = E3 − E2 (E24 = E4 − E2) in the presence
of a magnetic field is smaller (larger) than in the case without a magnetic field, both TAC
and RIC positions shift to lower (higher) photon energies. In large A2 values, since two-fold
degeneracy starts in the energies in the presence of the magnetic field, E23 becomes equal to
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E24. Consequently, it is observed only one absorption peak exists, and so the peak positions
of TAC and total RIC shift to high photon energies with the effect of the magnetic field.

20 30 40 50 60 70 80
0

300

600

900

1200

1500

1800

0 10 20 30 40 50 60 70 80
-0.10

-0.05

0.00

0.05

0.10

 A2 = 2.0

 A2 = 4.0

 B = 0 
 B = 15 T

 (c
m

-1
)

k = 20 nm;(a)
A1 = 0.5;  zo = 0

(b)

n/
n r

Photon Energy (meV)

 (2-3)    (2-4)
 (2-3)    (2-3)

1 2 3 4
20

30

40

50

60

1 2 3 4

0

10

20

30

40

50

60

 23    24

ij 
= 

j-
i (

m
eV

)  B = 0    B = 15 T

A1 = 0.5; k = 20 nm; zo = 0

(c)

re
du

ce
d 

di
po

le
 m

at
rix

el
em

en
t (

nm
2 )

A2 parameter

 M23    M24

 M23    M24

(d)

Mii = Mjj = 0

Figure 5. For some transitions between the energy levels in harmonic-Gaussian symmetric DQW
(z0 = 0) with A1 = 0.5, the variation of total absorption coefficients as a function of the incident
photon energy (a) and the variation of total refractive index as a function of the incident photon
energy (b). Here, black (red) lines are for A2 = 2.0 (A2 = 4.0), according to parameter-A2. The
variation of the energy difference between related levels (c) and the variation of reduced dipole
matrix element (d), where black/red lines are for (2–3)/(2–4) transitions. Solid (dashed) lines are for
B = 0 (B = 15 T).

In general, the positions of the absorption peaks depend on the transition energy
between the two energy levels, while the change in peak amplitudes is attributed to the
dipole matrix element. Let us examine the given equations for AC and RI according to the
resonance conditions. Resonance conditions for incident photon energy are satisfied with

the equality h̄ ωmax =
√(

Eij − h̄ω
)2

+
(
h̄Γij

)2 for which the linear AC has a maximum

value, and so β
(1)
max(ω), the maximum value of linear AC in Equation (4), becomes directly

proportional to the energy difference and squared dipole matrix element in the form of

|Mij|2
(

Eij +
√
(Eij − h̄ω)2 + (h̄Γij)2

)
. The energy difference between the two energy levels

is the dominant term on the peak positions of the ACs. The peak positions of ACs shift
towards the higher (smaller) photon energies as the transition energy increases (decreases).

By using the resonance condition in the form of h̄ωmin = 1
3

(
Eij +

√
(4Eij)2 + 3(h̄Γij)2

)
for the incident photon energy that corresponds to the minimum value of third-order
non-linear AC, it is seen that non-linear AC depend on the I-light intensity, dipole matrix
element-|Mij|4, and transition energy-Eij.

Furthermore, the positions and maximum and minimum values of the linear RIC,(
∆n(1)/nr

)
max

and
(

∆n(1)/nr

)
min

for the resonance conditions h̄ωmax(min) = Eij ± h̄Γij,

are proportional to |Mij|2 and −|Mij|2, respectively. Similarly, the positions and maximum

and minimum values of third-order non-linear RIC,
(

∆n(3)/nr

)
max

and
(

∆n(3)/nr

)
min

for

the resonance conditions h̄ωmax (min) = Eij∓ 1√
3

h̄Γij, are proportional to |Mij|4 and−|Mij|4,
respectively. Extreme values of linear and non-linear RICs are symmetrically positioned
with respect to h̄ω = Eij [27]. In this context, it is seen that the positions and amplitudes of
total ACs and RICs are consistent with the analyses made above about theirs and also the
results of Figure 5c,d are consistent with these analyses.

For some transitions between the energy levels in H-G ADQW, which have parameters
z0 = 0.10, A1 = 0.2, and A2 = 2.0, the variation of TACs and RICs as a function of the
incident photon energy, the variations of the energy difference between related levels and
RDME according to parameter-A2 are given in Figure 6a–d, respectively. Here black/red
lines are for (1–3)/(2–4) transitions, and solid (dashed) lines are for B = 0 (B = 15 T). For
these parameters, all the energies considered are below the barrier and non-degenerate.
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Since the structure is asymmetrical, all possible transitions are allowed. In the absence of
the magnetic field, the electrons in the first, third, and fifth levels are localized in the left
well, and the electrons in the second, fourth, and sixth levels are localized in the right well.
The (1–2), (2–3), and (3–4) transitions are not observed because the overlap integral are
zero, while the (1–3) and (2–4) transitions are observed. With the effect of the magnetic
field, the first, second, fourth, and sixth level electrons are localized in the left well, and the
third and fifth level electrons are localized in the right well. In this case, the (1–3) transition
is not observed since the overlap integral between the wave functions corresponding to
the first and second levels is zero, but (1–2) and (2–4) transitions are observed. The peak
positions of TAC and RIC corresponding to the transition of (2–4) shift towards the blue
with increasing magnitudes appropriately with the results of Figure 6c,d. Furthermore,
as seen in Figure 6d, the RDME for the (2–4) transition takes a substantial value under
the magnetic field, a minimum in the total TAC occurs, and a small increase in the RIC is
observed since the non-linear term becomes dominant.
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Figure 6. For some transitions between the energy levels in harmonic-Gaussian asymmetric DQW
with z0 = 0.10, A1 = 0.2, and A2 = 2.0, the variation of total absorption coefficients as a function
of the incident photon energy (a), the variation of total refractive index as a function of the incident
photon energy (b). According to the parameter-A2, the variation of the energy difference between
related levels (c) and the variation of reduced dipole matrix element (d), where black/red lines are
for (1–3)/(2–4) transitions. Solid (dashed) lines are for B = 0 (B = 15 T).

For some transitions between the energy levels in H-G ADQW with z0 = 0.25,
A1 = 0.2, and A2 = 2.0, the variations of TAC and RIC as a function of the incident
photon energy are given in Figures 7a and 7b, respectively. Solid (dashed) lines are for
B = 0 (B = 15 T). As the asymmetry of the structure increases, the fourth and sixth level
electrons are localized in the right well when there is no magnetic field, while the fifth
level electron is completely localized in the right well, and the electron in the sixth level is
more localized in the left well, although it is localized in both wells. The peaks of TACs
and RICs corresponding to the (1–2) and (2–3) transitions shift towards the higher photon
energies (blue shift), a minimum in the TAC occurs, and a small increase in the RIC for
the (2–3) transition is observed since the non-linear term becomes dominant; this is more
pronounced in the absence of a magnetic field.

To validate our study, in Figure 8, we present a comparison between the wave func-
tions and energies for the ground state and the first excited state corresponding to an
electron confined in a double quantum well with abrupt barriers, Figure 8a, and an electron
confined in an H-G SDQW, Figure 8b. For the case of the H-G SDQW the confining potential
is given by V(z) = 50(z/k)2 + 228 e−(z/k)2

(in meV units). In the case of the rectangular
double quantum well, we have taken a potential barrier whose height is 103 meV, which
corresponds to a concentration of aluminum in the barriers of x = 0.12. Notice that the
bottom of the squared potential well is at the same energy as the bottom of the H-G SDQW.
For the system of rectangular wells, the width of the central barrier is 6 nm while the width
of each of the two symmetric wells is 5.1 nm. The transition energy between the ground
state and the first excited state in the H-G SDQW system is 9.9 meV, while for the double
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rectangular well it is 10.3 meV. The agreement between wave functions, energies of the
two reported states, and the transition energy for the two systems is evident. Among the
advantages of using the H-G SDQW model to simulate a double quantum well structure
lies in the fact that, in this case, non-abrupt variations of aluminum concentration at the
interfaces from the well region to the barrier region can be considered, a situation that is
in excellent agreement with the interdiffusion phenomena in low-dimensional semicon-
ductor heterostructures. Additionally, the H-G SDQW system allows the introduction of a
non-abrupt dependence on the effective mass, adapted to the aluminum concentration’s
functional variation.

20 30 40 50 60

-3000

-2000

-1000

0

1000

2000

0 10 20 30 40 50 60 70
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20

 (c
m

-1
)

 1-2 (LS)     2-3 (LS)

k = 20 nm

 B = 0    B = 15 T

(a)

n/
n r

Photon Energy (meV)

(b)

A1 = 0.2; A2 = 2.0; zo = 0.25

Figure 7. For some transitions between the energy levels in Harmonic-Gaussian asymmetric DQW
with z0 = 0.25, A1 = 0.2, and A2 = 2.0, the variation of total absorption coefficients as a function of
the incident photon energy (a) and the variation of total refractive index as a function of the incident
photon energy (b). Solid (dashed) lines are for B = 0 (B = 15 T).
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shaped (a) and harmonic-Gaussian (b) symmetric double quantum wells. The corresponding energies
are also depicted.
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4. Conclusions

Using the effective mass and parabolic conduction band approximations, in this pa-
per, we report the optical absorption and refractive index coefficients in symmetric and
asymmetric double quantum wells. The one-dimensional confinement potential has been
modeled by the sum of an internal Gaussian barrier and a harmonic potential under the
effects of an externally applied magnetic field. The solution of the eigenvalues differential
equation has been obtained via a diagonalization method considering a base of sine-like
orthonormal function. To calculate the linear and third-order non-linear optical absorp-
tion and refractive index coefficients, a two-level approach is used in the density matrix
expansion. Among the main findings of this research, we can report the following: (i) the
depth of the two potential wells and the degree of coupling between them can be controlled
by variations in the A1 and A2 structural parameters; (ii) the z0 asymmetry parameter
is useful to simulate effects of electric fields and, thus, manipulate the selection rules of
dipole moments, giving rise to new transitions that are optically prohibited in symmetric
heterostructures; (iii) the variations in the asymmetry parameter of the heterostructures,
z0, generate oscillations in the functional dependence with z0 of the confined electronic
states, a situation that becomes more noticeable for highly excited states; (iv) depending
on the parameters that control the double quantum well system, the applied magnetic
field may be responsible for shifts to red or blue of the different transitions considered in
the optical properties studied; and, finally, (v) the presence of bleaching in the absorption
coefficient for certain geometries evidences the limitations of the model used to study the
optical properties in these systems.

Finally, we want to say that the double spatial confinement model is helpful to de-
scribe the physics of coupled dot-ring systems considering the rotation of the potential in
Equation (3) around the x-axis, for example, and taking as a reference point the minimum
to the left of the potentials shown in Figure 1. Likewise, this model can be extended to the
study of colloidal spherical quantum dots such as core/shell structures. Research in this
regard is under development and will be published on another occasion.
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